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Abstract. We study [2m−1, 2m]-binary linear codes whose weights lie between w0 and 2m−w0,
where w0 takes the highest possible value. Primitive cyclic codes with two zeros whose dual satisfies
this property actually correspond to almost bent power functions and to pairs of maximum-length
sequences with preferred crosscorrelation. We prove that, for odd m, these codes are completely
characterized by their dual distance and by their weight divisibility. Using McEliece’s theorem we
give some general results on the weight divisibility of duals of cyclic codes with two zeros; specifically,
we exhibit some infinite families of pairs of maximum-length sequences which are not preferred.
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1. Introduction. This paper presents a new theoretical approach for studying
the weight polynomials of binary cyclic codes with two zeros. Using Pless power mo-
ment identities [30] and some ideas due to Kasami [18], we point out the essential
role played by the weight divisibility of linear codes of length (2m − 1) and dimen-
sion 2m in the determination of their weight distributions. We especially focus on
[2m− 1, 2m]-linear codes which are optimal in the following sense: their weights lie in
the range [w0, . . . , 2

m−w0], where w0 takes the highest possible value. Most notably
we prove that, for odd m, these [2m − 1, 2m]-optimal codes are completely charac-
terized by their dual distance and by their weight divisibility. The use of McEliece’s
theorem [24] then reduces the determination of cyclic codes with two zeros whose
dual is optimal to a purely combinatorial problem. It especially provides a very fast
algorithm for finding such optimal cyclic codes, even for large lengths. These results
also enables us to exhibit some infinite families of cyclic codes with two zeros whose
dual is not optimal.

This result widely applies in several areas of telecommunications: binary cyclic
codes with two zeros whose dual is optimal in the previous sense are especially related
to highly nonlinear power functions on finite fields; they also correspond to pairs of
maximum-length sequences with preferred crosscorrelation. A function f from F2m

into F2m is said to achieve the highest possible nonlinearity if any nonzero linear
combination of its Boolean components is as far as possible from the set of Boolean
affine functions with m variables. When m is odd, the highest possible value for the
nonlinearity of a function over F2m is known and the functions achieving this bound
are called almost bent (AB). These functions play a major role in cryptography; in
particular, their use in the S-boxes of a Feistel cipher ensures the best resistance to
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both differential and linear cryptanalyses. It was recently proved [6] that a function f
from F2m into F2m having maximal nonlinearity corresponds to an optimal code
of length (2m − 1) and dimension 2m. In particular when f is a power function,
f : x 7→ xs, this code is the dual of the cyclic code of length (2m − 1) whose zeros are
α and αs (α denotes a primitive element of F2m). Cyclic codes with two zeros whose
dual is optimal also appear in the study of maximum-length sequences (also called m-
sequences): the exponents s such that the permutation x 7→ xs over F2m has maximum
nonlinearity coincide with the values of the decimations such that the absolute value
of the crosscorrelation function between an m-sequence and its decimation by s is
minimum. In this case, any two sequences in the set consisting of all time-shifted
versions of an m-sequence and all time-shifted versions of its decimation by s can be
easily distinguished. Such pairs of m-sequences are then intensively used in many
communication systems, especially in code-division multiple access systems.

The next section recalls some properties of binary cyclic codes; it also exhibits
the link between the weight distribution of the duals of cyclic codes with two zeros
and both concepts of nonlinearity of a power function from F2m into F2m and of
crosscorrelation of a pair of m-sequences. In section 3 we develop a new theoretical
tool for studying the weight distribution of some linear codes, which generalizes some
ideas due to Kasami. This method provides new characterizations of AB power map-
pings and of pairs of m-sequences having some 3-valued correlation spectra, which
are presented in section 4. These characterizations use the weight divisibility of the
duals of cyclic codes with two zeros which can be derived from McEliece’s theorem.
Section 5 exhibits some general bounds on the weight divisibility of these codes. Most
notably we examine the cyclic codes with two zeros whose dual is at most 8-divisible.
Section 6 focuses on power functions x 7→ xs over F2m for odd m when the exponent s

can be written as s = 2
m−1

2 + 2i − 1. This set of exponents contains the values which
appear in both Welch’s and Niho’s conjectures. Here we prove that for most values

of i, x 7→ x2
m−1

2 +2i−1 is not AB on F2m . In section 7 we give some results on the
weight divisibility of the duals of cyclic codes with two zeros of length (2m− 1) when
m is not a prime. This leads to a very simple necessary condition on the values s of
the decimations providing preferred pairs of m-sequences; in this case we are able to
eliminate most values of s. We also give the exact weight divisibility of the duals of
the binary cyclic codes of length (2m−1) with a defining set {1, s} when m is even and
s mod (2

m
2 − 1) is a power of 2. All of these results notably generalize two recently

proved conjectures on the crosscorrelation of pairs of m-sequences [15, 31, 25, 3]. They
also imply that the conjectured almost perfect nonlinear (APN) function x 7→ xs with
s = 24g+23g+22g+2g−1 over F25g is not AB. Finally, we give some numerical results
which point out that our theoretical results directly provide the weight divisibility of
many infinite families of duals of cyclic codes with two zeros.

2. Cyclic codes with two zeros and related objects. We first give two
different formulations of the McEliece theorem which enable us to determine the
weight divisibility of the dual of a primitive binary cyclic code with two zeros. These
results will be extensively used in the paper.

2.1. Weight divisibility of cyclic codes. Here we consider primitive binary
cyclic codes. Let α denote a primitive element of F2m . Any cyclic code C of
length (2m − 1) can be defined by its generator polynomial whose roots are called
the zeros of the code. The defining set of C is then the set

I(C) = {i ∈ {0, . . . , 2m − 2}|αi is a zero of C}.
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Since C is a binary code, its defining set is a union of 2-cyclotomic cosets modulo (2m−
1), Cl(a), where Cl(a) = {2ja mod (2m − 1)}. From now on the defining set of a
binary cyclic code of length (2m − 1) is identified with the representatives of the
corresponding 2-cyclotomic cosets modulo (2m − 1).

Definition 2.1. A binary code C is 2`-divisible if the weight of any of its code-
words is divisible by 2`. Moreover, C is exactly 2`-divisible if, additionally, it contains
at least one codeword whose weight is not divisible by 2`+1.

The following theorem due to McEliece reduces the determination of the exact
weight divisibility of binary cyclic codes to a combinatorial problem.

Theorem 2.2 (see [24]). A binary cyclic code is exactly 2`-divisible if and only
if ` is the smallest number such that (` + 1) nonzeros of C (with repetitions allowed)
have product 1.

We now focus on primitive cyclic codes with two zeros and on the exact weight
divisibility of their duals. We denote by C1,s the binary cyclic code of length (2m −
1) with defining set Cl(1) ∪ Cl(s). The nonzeros of the cyclic code C⊥1,s are the

elements α−i with

i ∈ Cl(1) ∪ Cl(s).
Then (`+ 1) nonzeros of C⊥1,s have product 1 if and only if there exist I1 ⊂ Cl(s) and
I2 ⊂ Cl(1) with |I1|+ |I2| = `+ 1 and∏

k∈I1∪I2
α−k = 1

⇐⇒
∑

k∈I1∪I2
k ≡ 0 mod (2m − 1).

We consider both integers u and v defined by their 2-adic expansions: u =
∑m−1
i=0 ui2

i

and v =
∑m−1
i=0 vi2

i, where

ui =

{
1 if 2is mod (2m − 1) ∈ I1,
0 otherwise,

vi =

{
1 if 2i mod (2m − 1) ∈ I2,
0 otherwise.

Then we have

∑
k∈I1∪I2

k ≡
m−1∑
i=0

ui2
is+

m−1∑
i=0

vi2
i mod (2m − 1)

≡ 0 mod (2m − 1).

The size of I1 (resp., I2) corresponds to w2(u) =
∑m−1
i=0 ui (resp., w2(v)) which is the

2-weight of u (resp., v). McEliece’s theorem can then be formulated as follows.
Corollary 2.3. The cyclic code C⊥1,s of length (2m − 1) is exactly 2`-divisible if

and only if for all (u, v) such that 0 ≤ u ≤ 2m − 1, 0 ≤ v ≤ 2m − 1, and

us+ v ≡ 0 mod (2m − 1),

we have w2(u) + w2(v) ≥ `+ 1.
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Since v ≤ 2m − 1, the equation

us+ v ≡ 0 mod (2m − 1)

can be written

v = (2m − 1)− (us mod (2m − 1)).

This leads to the following equivalent formulation.
Corollary 2.4. The cyclic code C⊥1,s of length (2m − 1) is exactly 2`-divisible if

and only if for all u such that 0 ≤ u ≤ 2m − 1,

w2(A(u)) ≤ w2(u) +m− 1− `,
where A(u) = us mod (2m − 1).

2.2. APN and AB functions. We now point out that some cryptographic
properties of power functions over F2m are related to the weight enumerators of cyclic
codes with two zeros.

Let f be a function from Fm2 into Fm2 . For any (a, b) ∈ Fm2 × Fm2 , we define

δf (a, b) = #{x ∈ Fm2 : f(x+ a) + f(x) = b},
λf (a, b) = |#{x ∈ Fm2 : a · x+ b · f(x) = 0} − 2m−1|,

where · is the usual dot product on Fm2 . These values are of great importance in
cryptography, especially for measuring the security of an iterated block cipher using
f as a round permutation. A differential attack [2, 21] against such a cipher exploits
the existence of a pair (a, b) with a 6= 0 such that δf (a, b) is high. Similarly, a linear
attack [22, 23] is successful if there is a pair (a, b) with b 6= 0 such that λf (a, b) is
high. The function f can then be used as a round function of an iterated cipher only
if both

δf = max
a6=0

max
b
δf (a, b),

λf = max
a

max
b6=0

λf (a, b)

are small. Moreover, if f defines the S-boxes of a Feistel cipher, the values of δf
and λf completely determine the complexity of differential and linear cryptanalyses
[29, 28].

Since x is a solution of f(X + a) + f(X) = b if and only if x+ a is a solution too,
δf is always even. Then we have the following.

Proposition 2.5. For any function f : Fm2 → Fm2 ,

δf ≥ 2.

In the case of equality, f is called almost perfect nonlinear (APN).
Proposition 2.6 (see [32, 7]). For any function f : Fm2 → Fm2 ,

λf ≥ 2
m−1

2 .

In the case of equality, f is called almost bent (AB).
Note that this minimum value for λf can be achieved only if m is odd. For even m,

some functions with λf = 2
m
2 are known and it is highly conjectured that this value

is the minimum [31, p. 603].
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From now on the vector space Fm2 is identified with the finite field F2m . The
function f can then be expressed as a unique polynomial of F2m [X] of degree at
most (2m − 1). Note that the values of δf and λf are invariant under both right and
left compositions by a linear permutation of F2m . Similarly, if f is a permutation,
δf = δf−1 and λf = λf−1 . We can then assume that f(0) = 0 without loss of
generality. Both APN property and nonlinearity can also be expressed in terms of
error-correcting codes. The proofs of the following results are developed by Carlet,
Charpin, and Zinoviev in [6].

Theorem 2.7. Let f be a function from F2m into F2m with f(0) = 0. Let Cf be
the linear binary code of length 2m − 1 defined by the parity-check matrix

Hf =

(
1 α α2 · · · α2m−2

f(1) f(α) f(α2) · · · f(α2m−2)

)
,(2.1)

where each entry is viewed as a binary vector and α is a primitive element of F2m .
Then

• If dim Cf = 2m − 1− 2m,

λf = max
c∈C⊥

f
,c6=0
|2m−1 − wt(c)|.

In particular, for odd m, f is AB if and only if for any nonzero codeword
c ∈ C⊥f ,

2m−1 − 2
m−1

2 ≤ wt(c) ≤ 2m−1 + 2
m−1

2 .

• λf = 2m−1 if and only if dim Cf > 2m − 1 − 2m or C⊥f contains the all-one
vector.
• f is APN if and only if the code Cf has minimum distance 5.

In particular, if f is a power function x 7→ xs over F2m , the code Cf is the cyclic
code of length (2m − 1) whose zeros are α and αs.

Tables 2.1 and 2.2 (resp., Tables 2.3 and 2.4) give all known and conjectured
values of exponents s (up to equivalence) such that the power function x 7→ xs is
APN (resp., has the highest known nonlinearity).

Table 2.1
Known and conjectured APN power functions xs on F2m with m = 2t+ 1.

Exponents s Status

Quadratic functions 2i + 1 with gcd(i,m) = 1, proven
1 ≤ i ≤ t [13, 27]

Kasami’s functions 22i − 2i + 1 with gcd(i,m) = 1, proven
2 ≤ i ≤ t [19]

Inverse function 22t − 1 proven
[27, 1]

Welch’s function 2t + 3 proven
[11]

Niho’s function 2t + 2
t
2 − 1 if t is even proven

2t + 2
3t+1

2 − 1 if t is odd [10]

Dobbertin’s function 24i + 23i + 22i + 2i − 1 if m = 5i conjectured
[10]
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Table 2.2
Known and conjectured APN power functions xs on F2m with m = 2t.

Exponents s Status

Quadratic functions 2i + 1 with gcd(i,m) = 1, proven
1 ≤ i < t [13, 27]

Kasami’s functions 22i − 2i + 1 with gcd(i,m) = 1 proven
2 ≤ i < t [19, 17]

Dobbertin’s function 24i + 23i + 22i + 2i − 1 if m = 5i conjectured
[10]

Table 2.3
Known AB power permutations xs on F2m with m = 2t+ 1.

Exponents s Status

Quadratic functions 2i + 1 with gcd(i,m) = 1, proven
1 ≤ i ≤ t [13, 27]

Kasami’s functions 22i − 2i + 1 with gcd(i,m) = 1 proven
2 ≤ i ≤ t [19]

Welch’s function 2t + 3 proven
[5, 4]

Niho’s function 2t + 2
t
2 − 1 if t is even proven

2t + 2
3t+1

2 − 1 if t is odd [16]

Table 2.4
Known power permutations xs with highest known nonlinearity on F2m with m = 2t.

Exponents s Status

22t−1 − 1 proven
[20]

2i + 1 with gcd(i,m) = 2 proven
1 ≤ i < t,m ≡ 2 mod 4 [13]

22i − 2i + 1 with gcd(i,m) = 2 proven
1 ≤ i < t,m ≡ 2 mod 4 [19]∑t

i=0
2ik with t even, proven

0 < k < t such that gcd(k,m) = 1 [12]

2t + 2
t+1
2 + 1 proven

t odd [9]

2t + 2t−1 + 1 proven
t odd [9]

2t + 2
t
2 + 1 proven

t ≡ 2 mod 4 [12]

2.3. Crosscorrelation of a pair of binary m-sequences. A binary sequence
(ui)i≥0 generated by a linear feedback shift register (LFSR) of length m has maxi-
mal period when the feedback polynomial of the LFSR is primitive. Such a sequence
is called an m-sequence of length (2m − 1). From now on, a binary m-sequence of
length (2m− 1) is identified with the binary vector of length (2m− 1) consisting of its
first (2m − 1) bits. A further property of m-sequences is that they are almost uncor-
related with their cyclic shifts. This property is important in many communication
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systems (such as radar communications or transmissions using spread-spectrum tech-
niques) since it is often required that a signal be easily distinguished from any time-
shifted version of itself. It is well known that for any m-sequence u of length (2m− 1)
there exists a unique c ∈ F2m \ {0} such that

∀i, 0 ≤ i ≤ 2m − 2, ui = Tr(cαi),

where α is a root of the feedback polynomial of the LFSR generating u (i.e., α is a
primitive element of F2m) and Tr denotes the trace function from F2m to F2.

When a communication system uses a set of several signals (usually corresponding
to different users), it is also required that each of these signals be easily distinguished
from any other signal in the set and its time-shifted versions. This property is of
great importance, especially in code-division multiple access systems. The distance
between a sequence u and all cyclic shifts of another sequence v can be computed
with the crosscorrelation function.

Definition 2.8. Let u and v be two different binary sequences of length N . The
crosscorrelation function between u and v, denoted by θu,v, is defined as

θu,v(τ) =
N−1∑
i=0

(−1)ui+vi+τ .

The corresponding crosscorrelation spectrum is the vector (T−N , . . . , TN ) with

Tω = #{τ, 0 ≤ τ ≤ N − 1, θu,v(τ) = ω}.

Since θu,v(τ) = N − 2wt(u+ στv), where σ denotes the cyclic shift operator, the
above mentioned applications use pairs of sequences (u, v) such that |θu,v(τ)| is small
for all τ ∈ {0, . . . , N − 1}.

If u and v are two different binary m-sequences of length (2m−1), there exists an
integer s in {0, . . . , 2m − 2} and a pair (c1, c2) of nonzero elements of F2m such that

∀i, 0 ≤ i ≤ 2m − 2, ui = Tr(c1α
i) and vi = Tr(c2α

si) .

If c1 = c2, the sequence v is said to be a decimation by s of u. Writing c1 = αj1 and
c2 = αj2 , the crosscorrelation function for the pair (u, v) is given by

θu,v(τ) =
2m−2∑
i=0

(−1)Tr(αi+j1+αsi+j2+τ ) =
∑

x∈F∗
2m

(−1)Tr(ατ
′
[αj1−τ

′
x+xs]) ,

where τ ′ = j2 + τ . It follows that the corresponding crosscorrelation spectrum does
not depend on the choice of j2. It is then sufficient to study the pairs (u, v), where v
is a decimation by s of u.

We now recall the well-known link between the crosscorrelation spectrum of pairs
of binary m-sequences and the weight distribution of the duals of some cyclic codes
with two zeros.

Proposition 2.9. Let m and s be two positive integers such that gcd(s, 2m−1) =
1 and s is not a power of 2. Let (T−2m+1, . . . , T2m−1) be the crosscorrelation spectrum
between an m-sequence of length (2m−1) and its decimation by s. Let (A0, . . . , A2m−1)
be the weight enumerator of the dual of the binary cyclic code C1,s of length (2m − 1)
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with defining set {1, s}. Then we have that Tω = 0 for all even values of ω and for
odd ω:

Tω = A2m−1−ω+1
2

for all ω 6∈ {−1, 2m − 1},
T−1 = A2m−1 − 2(2m − 1),

T2m−1 = 0.

In particular, if ω0 is the smallest positive integer such that

T−ω = Tω = 0for all ω such that ω > ω0,

then we have

ω0 = 2m − 1− 2w0,

where w0 is the largest integer such that 0 < w0 ≤ 2m−1 and

Aw = A2m−w = 0 for all w such that 0 < w < w0.

Proof. The code C⊥1,s consists of all codewords c = (c0, . . . , c2m−2), where

ci = Tr(aαi + bαsi) with a, b ∈ F2m .

If either a or b equals zero, c is a codeword of the simplex code of length (2m − 1).
In this case, its Hamming weight is 2m−1 except for a = b = 0. Using that θu,v(τ) =
2m − 1− 2wt(u+ στv), we obtain the expected result.

Using Theorem 2.7 we see that

ω0 = −1 + 2 max
c∈C⊥1,s,c6=0

|2m−1 − wt(c)|

= 2λs − 1,

where λs is the linearity of the power permutation x 7→ xs over F2m . In particular,

when m is odd the lowest possible value for ω0 is 2
m+1

2 − 1 and the values of s for
which this bound is reached exactly correspond to the exponents s such that x 7→ xs

is an AB permutation over F2m .

3. Weight polynomials of linear codes of length 2m − 1 and dimen-
sion 2m. As previously seen, both notions of nonlinearity of a function from F2m

into F2m and of crosscorrelation spectrum of a pair of binary m-sequences of length
(2m − 1) are related to the weight polynomials of some linear binary codes of length
(2m−1) and dimension 2m. Here we give some general results on the weight distribu-
tions of linear codes having these parameters. Our method uses Pless power moment
identities [30] and some ideas due to Kasami [18, Thm. 13] (see also [6, Thm. 4]).

Theorem 3.1. Let C be a [2m − 1, 2m]-linear code which does not contain the
all-one vector 1 = (1, . . . , 1). Assume that the minimum distance of the dual code C⊥
is at least 3. Let A = (A0, . . . , A2m−1) (resp., B = (B0, . . . , B2m−1)) be the weight
enumerator of C (resp., C⊥). Then, for any positive integer x ≤ 2m−1, we have

2m−1−1∑
w=1

(w − 2m−1)2
(
(w − 2m−1)2 − x2

)
(Aw +A2m−w)

= 22m−2
[
6(B3 +B4) + (2m − 1)(2m−1 − x2)

]
.

Most notably this implies the following:
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(i) If w0 is such that for all 0 < w < w0

Aw = A2m−w = 0,

then

6(B3 +B4) ≤ (2m − 1)
[
(2m−1 − w0)2 − 2m−1

]
,

where equality holds if and only if Aw = 0 for all w 6∈ {0, w0, 2
m−1, 2m−w0}.

(ii) If w1 is such that for all w1 < w < 2m−1

Aw = A2m−w = 0,

then

6(B3 +B4) ≥ (2m − 1)
[
(2m−1 − w1)2 − 2m−1

]
,

where equality holds if and only if Aw = 0 for all w 6∈ {0, w1, 2
m−1, 2m−w1}.

Proof. The main part of the proof relies on the first Pless power moment identi-
ties [30]. The first four power moment identities on the weight distribution of a code
of length 2m − 1 and dimension 2m are

n∑
w=0

wAw = 22m−1(2m − 1),

n∑
w=0

w2Aw = 23m−2(2m − 1),

n∑
w=0

w3Aw = 22m−3
(
(2m − 1)2(2m + 2)− 3!B3

)
,

n∑
w=0

w4Aw = 22m−4
(
2m(2m − 1)(22m + 3 · 2m − 6) + 4! (B4 − (2m − 1)B3)

)
.

Let us consider the numbers I` =
∑2m−1
w=1 (w − 2m−1)`Aw. Since for ` even

(w − 2m−1)` = ((2m − w)− 2m−1)` ,

we have for any even `

I` =
2m−1∑
w=1

(w − 2m−1)`Aw =
2m−1−1∑
w=1

(w − 2m−1)`(Aw +A2m−w).

Note that the codeword of weight zero is not taken into account in the sum above.
Recall that C does not contain the all-one codeword.

By using the four power moments, we obtain the following values for I2 and I4:

I2 = 22m−2(2m − 1),

I4 = 22m−2
[
6(B3 +B4) + 2m−1(2m − 1)

]
.

Let x be a positive integer and let I(x) denote the value of I4 − x2I2. We have

I(x) =
2m−1−1∑
w=1

(w − 2m−1)2
(
(w − 2m−1)2 − x2

)
(Aw +A2m−w)

= 22m−2
[
6(B3 +B4) + (2m − 1)(2m−1 − x2)

]
.
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The wth term in this sum satisfies

(w − 2m−1)2
(
(w − 2m−1)2 − x2

)
< 0 if 0 < |2m−1 − w| < x
= 0 if w ∈ {2m−1, 2m−1 ± x}
> 0 if |2m−1 − w| > x.

This implies that, if Aw = A2m−w = 0 for all w such that 0 < w < w0, all the
terms in I(2m−1 − w0) are nonpositive. Then we have

6(B3 +B4) + (2m − 1)
[
2m−1 − (2m−1 − w0)2

] ≤ 0

with equality if and only if all terms in the sum are zero. This can happen only when
Aw = 0 for all w 6∈ {0, w0, 2

m−1, 2m − w0}.
Similarly, if Aw = A2m−w = 0 for all w such that w1 < w < 2m−1, all the terms

in I(2m−1 − w1) are positive. Then we have

6(B3 +B4) + (2m − 1)
[
2m−1 − (2m−1 − w1)2

] ≥ 0

with equality if and only if all terms in the sum are zero, i.e., if Aw = 0 for all
w 6∈ {0, w1, 2

m−1, 2m − w1}.
This theorem obviously gives an upper bound on the value of w0 for which all

nonzero weights of C lie between w0 and 2m − w0.
Corollary 3.2. Let C be a [2m − 1, 2m]-linear code which does not contain the

all-one vector 1 = (1, . . . , 1). Assume that the minimum distance of the dual code C⊥
is at least 3. Let w0 be the smallest w such that 0 < w < 2m−1 and

Aw +A2m−w 6= 0.

Then

w0 ≤ 2m−1 − 2
m−1

2

and equality holds if and only if the weight of every codeword in C belongs to {0, 2m−1,

2m−1±2
m−1

2 }. In this case the weight distribution of C is the same as the weight distri-
bution of the dual of the 2-error-correcting Bose–Chaudhuri-Hocquenghem (BCH) code,
i.e.,

Weight: w Number of words: Aw

0 1
2m−1 − 2(m−1)/2 (2m − 1)(2m−2 + 2(m−3)/2)

2m−1 (2m − 1)(2m−1 + 1)
2m−1 + 2(m−1)/2 (2m − 1)(2m−2 − 2(m−3)/2)

Proof. The first statement directly results from the previous theorem. Moreover,

if w0 = 2m−1 − 2
m−1

2 , then Aw0 , A2m−1 , and A2m−w0 are the only unknown values in
the weight distribution of C. They are then completely determined by inverting the
linear system formed by Aw0

+ A2m−1 + A2m−w0
= 22m − 1 and the first two Pless

power moments identities.
Pless power moment identities also imply that if all nonzero codewords of a [2m−

1, 2m] code have Hamming weight in the set {2m−1±W, 2m−1}, the weight distribution
of this code is unique as long as its dual has minimum distance at least 3.
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Proposition 3.3. Let C be a [2m − 1, 2m]-linear code which does not con-
tain the all-one vector 1 = (1, . . . , 1). Assume that the minimum distance of the
dual code C⊥ is at least 3. Assume that the weight of every codeword in C lies in

{0, 2m−1, 2m−1 ±W}. Then W is divisible by 2d
m−1

2 e. Moreover, the weight distribu-
tion of C is completely determined:

Weight: w Number of words: Aw

0 1

2m−1 −W 2m−2(2m−1)(2m−1+W )
W 2

2m−1 (2m−1)((2m+1)W 2−22m−2)
W 2

2m−1 +W 2m−2(2m−1)(2m−1−W )
W 2

In particular, the number B3 (resp., B4) of codewords of weight 3 (resp., 4) in C⊥ is
given by

B3 =
(2m − 1)(W 2 − 2m−1)

3 · 2m−1
,

B4 =
(2m − 1)(2m−2 − 1)(W 2 − 2m−1)

3 · 2m−1
.

Proof. Let A = (A0, . . . , A2m−1) (resp., B = (B0, . . . , B2m−1)) be the weight
enumerator of C (resp., C⊥). By hypothesis, B1 = B2 = 0. Using the first two Pless
power moment identities, we obtain

A2m−1−W +A2m−1 +A2m−1+W = 22m − 1,

(2m−1 −W )A2m−1−W + 2m−1A2m−1 + (2m−1 +W )A2m−1+W = 22m−1(2m − 1),

(2m−1 −W )2A2m−1−W + 22m−2A2m−1 + (2m−1 +W )2A2m−1+W = 23m−2(2m − 1).

Inverting this linear system gives the expected weight distribution. By writing
the third and fourth Pless power moment identities, we can compute the number of
codewords of weights 3 and 4 in C⊥:

B3 =
(2m − 1)(W 2 − 2m−1)

3 · 2m−1
,

B4 =
(2m − 1)(2m−2 − 1)(W 2 − 2m−1)

3 · 2m−1
.

Since B3 is an integer, we have that 2m−1 divides W 2− 2m−1 and then W is divisible

by 2d
m−1

2 e.

4. AB functions, 3-valued crosscorrelation functions, and weight
divisibility.

4.1. A new characterization of AB functions. Let us now suppose that m
is odd, m = 2t + 1. We give a necessary and sufficient condition on f : F2m → F2m

to achieve the highest possible nonlinearity.

Theorem 4.1. Let m be an odd integer and C be a [2m−1, 2m]-linear code which
does not contain the all-one vector 1 = (1, . . . , 1). Assume that the minimum distance
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of the dual code C⊥ is at least 3. Let A = (A0, . . . , A2m−1) be the weight enumerator
of C and let w0 be the smallest w such that 0 < w < 2m−1 and

Aw +A2m−w 6= 0.

Then

w0 = 2m−1 − 2
m−1

2

if and only if the minimum distance of the dual code C⊥ is 5 and C is 2
m−1

2 -divisible.
Proof. This condition is sufficient because, if

w0 = 2m−1 − 2
m−1

2 ,

the code C has the same weight distribution as the 2-error-correcting BCH code (ac-
cording to Corollary 3.2).

This condition is also necessary since, for any w such that 2m−1 − 2
m−1

2 < w <

2m−1, both integers w and 2m−1−w are not divisible by 2
m−1

2 . The condition on the
divisibility of the weights of C then implies that

Aw +A2m−w = 0 for all w such that 2m−1 − 2
m−1

2 < w < 2m−1 .

If B3 = B4 = 0, the lower bound given in Theorem 3.1(ii) (applied with w1 = 2m−1−
2
m−1

2 ) is reached. Then the weight of every codeword in C lies in {0, 2m−1, 2m−1 ±
2
m−1

2 }.
Corollary 4.2. Let m be an odd integer and let f be a function from Fm2

into Fm2 such that λf 6= 2m−1. Then f is AB if and only if f is APN and the code C⊥f
defined in Theorem 2.7 is 2

m−1
2 -divisible.

When f is a power function, f : x 7→ xs, the corresponding code Cf is the binary
cyclic code C1,s of length (2m − 1) with defining set {1, s}. The weight divisibility
of the corresponding dual code can therefore be obtained by applying McEliece’s
theorem, as expressed in Corollary 2.4. This leads to the following characterization
of AB power functions.

Corollary 4.3. Let m = 2t+ 1. Assume that the power function f : x 7→ xs on
F2m satisfies λf 6= 2m−1. Then f is AB on F2m if and only if f is APN on F2m and

∀u, 1 ≤ u ≤ 2m − 1, w2(A(u)) ≤ t+ w2(u),(4.1)

where A(u) = us mod (2m − 1).
Note that λf = 2m−1 means that there exists a linear combination of the Boolean

components of f which is an affine function.
Condition (4.1) is obviously satisfied when w2(u) ≥ t+1. Moreover, if gcd(s, 2m−

1) = 1 (i.e., if x 7→ xs is a permutation), the condition also holds for all u such that
w2(u) = t. Using that

A(u2i mod (2m − 1)) = 2iA(u) mod (2m − 1),

we deduce that condition (4.1) must be checked only for one element in each cyclotomic
coset. Note that if u is the smallest element in its cyclotomic coset and w2(u) < t, we
have u ≤ 2m−2 − 1.

This result provides a fast algorithm for checking whether an APN power function

is AB and then for finding all AB power functions on F2m . There are roughly 2m−1

m
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cyclotomic representatives u such that w2(u) ≤ t, and each test requires one modular
multiplication on m-bit integers and two weight computations. Condition (4.1) can
then be checked with approximately 2m elementary operations and at no memory
cost.

4.2. A new characterization of some pairs of m-sequences with 3-valued
crosscorrelation. We now suppose that m is even, m = 2t, and we are interested
in the values of s such that the crosscorrelation function between an m-sequence of
length (2m− 1) and its decimation by s takes the following three values: −1, 2W − 1,
and −2W − 1. From Proposition 2.9, this means that the weight of every codeword
in C⊥1,s lies in {0, 2m−1, 2m−1 +W, 2m−1−W}. Proposition 3.3 then implies that W is
divisible by 2t. When W is a power of 2, we have W = 2t+e. The [2m − 1, 2m]-codes
whose weights lie in {0, 2m−1, 2m−1±2t+e} are then completely characterized by their
weight divisibility and by the number of codewords of weights 3 and 4 in their dual.

Theorem 4.4. Let m = 2t be an even integer and C be a [2m−1, 2m]-linear code
which does not contain the all-one vector 1 = (1, . . . , 1). Assume that the minimum
distance of the dual code C⊥ is at least 3. Let A = (A0, . . . , A2m−1) be the weight
enumerator of C and let e be an integer. The weight of every codeword in C lies in
{0, 2m−1, 2m−1 ± 2t+e} if and only if C is 2t+e-divisible and the number B3 (resp.,
B4) of codewords of weight 3 (resp., 4) in C⊥ satisfies

B3 =
(2m − 1)(22e+1 − 1)

3
,

B4 =
(2m − 1)(2m−2 − 1)(22e+1 − 1)

3
.

Proof. Applying Proposition 3.3 shows that this condition is sufficient. It is also
necessary since, for any w such that 2m−1 − 2t+e < w < 2m−1, both integers w and
2m−1 − w are not divisible by 2t+e. The condition on the divisibility of the weights
of C then implies that

Aw +A2m−w = 0 for all w such that 2m−1 − 2t+e < w < 2m−1.

For the given values of B3 and B4, we have

6(B3 +B4) = 2m−1(2m − 1)(22e+1 − 1).

It follows that the lower bound given in Theorem 3.1(ii) (applied with w1 = 2m−1 −
2t+e) is reached. The weight of every codeword in C then lies in {0, 2m−1, 2m−1±2t+e}
and there is at least a codeword in C having any of these weights since a code with
these parameters has at least three different nonzero weights [15, Thm. 4.1].

By applying McEliece’s theorem (Corollary 2.4), we derive a necessary and suf-
ficient condition to obtain a pair of m-sequences with crosscorrelation values in {−1,
−1 ± 2t+1+e}. Note that if e = 0, ω0 = maxτ |θu,v(τ)| equals 2t+1 − 1, which is the
smallest known value for ω0. In this case, the 3-valued crosscorrelation function is said
to be preferred and the corresponding (u, v) is called a preferred pair of m-sequences.

Corollary 4.5. Let m = 2t be an even integer and s a positive integer such that
gcd(s, 2m − 1) = 1 and s is not a power of 2. Let e be a positive integer and C1,s be
the binary cyclic code of length (2m− 1) with defining set {1, s}. The crosscorrelation
function between an m-sequence of length (2m−1) and its decimation by s takes exactly
3 values, −1, −1 + 2t+1+e, and −1− 2t+1+e if and only if the number B3 (resp., B4)
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of codewords of weight 3 (resp., 4) in C1,s satisfies

B3 =
(2m − 1)(22e+1 − 1)

3
,

B4 =
(2m − 1)(2m−2 − 1)(22e+1 − 1)

3
,

and

∀u, 1 ≤ u ≤ 2m − 1, w2(A(u)) ≤ t− 1− e+ w2(u),

where A(u) = us mod (2m − 1).
In particular, the crosscorrelation function is preferred if and only if

B3 =
(2m − 1)

3
, B4 =

(2m − 1)(2m−2 − 1)

3
,

and

∀u, 1 ≤ u ≤ 2m − 1, w2(A(u)) ≤ t− 1 + w2(u).

5. Some general results on the weight divisibility of C⊥1,s. We now show
that the weight divisibility of the dual of the cyclic code C1,s is conditioned by the
2-weight of s. Most notably this implies that C⊥1,s has a low exact weight divisibility
only for particular values of s.

5.1. Upper and lower bounds on the weight divisibility of C⊥1,s. We

first give some general lower and upper bounds on the exact divisibility of C⊥1,s which
depend on the 2-weight of s. The 2-weight of s obviously gives an upper bound on the
weight divisibility of C⊥1,s (obtained for u = 1 in Corollary 2.4). Using this result, we
immediately recover the condition on the degree of AB functions given in [6, Thm. 1]
in the particular case of power functions.

Corollary 5.1. Let C1,s be the binary cyclic code of length (2m−1) with defining
set {1, s}. If C⊥1,s is 2`-divisible, then

` ≤ m− w2(s).

Most notably this implies the following:
• For odd m, if the power permutation f : x 7→ xs is AB on F2m , then

w2(s) ≤ m+ 1

2
;

• for even m, if the crosscorrelation function between an m-sequence of length
(2m−1) and its decimation by s takes the values −1, 2

m
2 +1+e−1,−2

m
2 +1+e−1,

then

w2(s) ≤ m

2
− e.

The 2-weight of s also provides a lower bound on the divisibility of C⊥1,s: the

cyclic code C⊥1,s of length (2m − 1) is a subcode of the punctured Reed–Muller code

of length (2m − 1) and of order w2(s), which is exactly 2`-divisible with ` = b m−1
w2(s)c.

When gcd(2m − 1, s) = 1, this bound can be slightly improved.
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Corollary 5.2. Let m and s be two positive integers such that s ≤ 2m − 1 and
gcd(2m − 1, s) = 1. Let C1,s be the binary cyclic code of length (2m − 1) with defining
set {1, s}. Then C⊥1,s is 2`-divisible with ` = d m−1

w2(s)e.
Proof. We use McEliece’s theorem as expressed in Corollary 2.3. Let u and v be

two integers in {0, . . . , 2m − 1} such that us + v ≡ 0 mod (2m − 1). Here we prove
that

w2(u) + w2(v) ≥
⌈
m− 1

w2(s)

⌉
+ 1.(5.1)

Since s ≤ 2m − 2, we have that

us+ v = K(2m − 1), where K lies in {1, . . . , 2m − 1}.
By writing

K(2m − 1) = (K − 1)2m + [(2m − 1)− (K − 1)] ,

we obtain that

w2(K(2m − 1)) = w2(K − 1) +m− w2(K − 1) = m

since 0 ≤ K − 1 ≤ 2m − 1. It follows that w2(us+ v) = m. We now write that

w2(us+ v) ≤ w2(us) + w2(v) ≤ w2(u)w2(s) + w2(v)

and we get

w2(u)w2(s) + w2(v) ≥ m.
We therefore obtain

w2(u) + w2(v) ≥ m− (w2(s)− 1)w2(u).(5.2)

Case 1. w2(u) ≤ d m−1
w2(s)e − 1.

Let m− 1 = qw2(s) + r with 0 ≤ r < w2(s). We have⌈
m− 1

w2(s)

⌉
=

{
q if r = 0;
q + 1 otherwise.

When r = 0, inequality (5.2) gives

w2(u) + w2(v) ≥ m− (w2(s)− 1)(q − 1)

≥ m− w2(s)q + q + w2(s)− 1

≥ 1 + q + w2(s)− 1

≥ q + 1

≥
⌈
m− 1

w2(s)

⌉
+ 1.

When r > 0, inequality (5.2) gives

w2(u) + w2(v) ≥ m− (w2(s)− 1)q

≥ 1 + r + q

≥ q + 2

≥
⌈
m− 1

w2(s)

⌉
+ 1.
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Case 2. w2(u) = d m−1
w2(s)e.

Since gcd(2m − 1, s) = 1, there is no integer u < 2m − 1 satisfying us ≡
0 mod (2m − 1). This implies that w2(v) ≥ 1, and therefore

w2(u) + w2(v) ≥
⌈
m− 1

w2(s)

⌉
+ 1.

Case 3. w2(u) ≥ d m−1
w2(s)e+ 1.

In this case, inequality (5.1) obviously holds.

5.2. Cyclic codes C⊥1,s with a small weight divisibility. We now focus on

the values of s for which the exact weight divisibility of C⊥1,s is small, i.e., for which

C⊥1,s is exactly 2`-divisible with ` ∈ {1, 2, 3}.
If gcd(s, 2m−1) = 1, the only values of s such that C⊥1,s is exactly 2-divisible satisfy

w2(s) = m−1 [15, Thm. 4.7]; they all lie in the cyclotomic coset defined by (2m−1−1).
In this case C⊥1,s is the dual of the Melas code; its weights are all even integers w such

that |w − 2m−1
2 | ≤ 2

m
2 [20]. The following proposition similarly exhibits all values of

s such that C⊥1,s is exactly 4-divisible.
Proposition 5.3. Let m and s be two positive integers such that gcd(s, 2m−1) =

1. Let C1,s be the binary cyclic code of length (2m − 1) with defining set {1, s}.
(i) C⊥1,s is exactly 2-divisible if and only if w2(s) = m− 1.

(ii) C⊥1,s is exactly 4-divisible if and only if either w2(s) = m − 2 or w2(s−1) =
m − 2, where s−1 is the only integer in {0, . . . , 2m − 1} such that s−1s ≡
1 mod (2m − 1).

Proof.
(i) This was proved by Helleseth [15].
(ii) Suppose that w2(s) < m − 1. In this case, C⊥1,s is at least 4-divisible. Ac-

cording to McEliece’s theorem (Corollary 2.3) C⊥1,s is exactly 4-divisible if
and only if there exists a pair of integers (u, v) in {0, . . . , 2m − 1} such that
us + v ≡ 0 mod (2m − 1) and w2(u) + w2(v) = 3. Since gcd(s, 2m − 1) = 1,
we have w2(v) ≥ 1. It follows that (w2(u), w2(v)) ∈ {(1, 2), (2, 1)}.

If w2(u) = 1 and w2(v) = 2, such a pair exists if and only if w2(s) =
m − 2; s then lies in the same cyclotomic coset as 2m−1 − 2i − 1 for some
i ∈ [0, . . . , 2m − 1]. If w2(u) = 2 and w2(v) = 1, such a pair exists if and
only if there exists an element s′ ∈ Cl(s) and two distinct integers i1 and i2
in [0, . . . ,m− 1] such that

−(2i1 + 2i2)s′ ≡ 1 mod (2m − 1)

⇐⇒ (2m − 2i1 − 2i2 − 1)s′ ≡ 1 mod (2m − 1).

It follows that s′ is the inverse modulo (2m−1) of an element whose 2-weight
equals m− 2.

We now prove that if gcd(2m−1, s) = 1 and if C⊥1,s is exactly 8-divisible, s should
satisfy the following necessary condition.

Proposition 5.4. Let m and s be two positive integers such that gcd(2m−1, s) =
1. Let C1,s be the binary cyclic code of length (2m− 1) with defining set {1, s}. If C⊥1,s
is exactly 8-divisible, then s satisfies one of the following conditions:

(i) w2(s−1) = m− 3, where s−1 is the only integer in {0, . . . , 2m − 1} such that
s−1s ≡ 1 mod (2m − 1);
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(ii) dm−2
2 e ≤ w2(s) ≤ m− 3.

Proof. Proposition 5.3 implies that C⊥1,s is 8-divisible if and only if w2(s) ≤ m− 3
and w2(s−1) ≤ m− 3. Let us assume that this condition is satisfied. We now use the
same technique as in the previous proof: C⊥1,s is exactly 8-divisible if and only if there
exists a pair of integers (u, v) ∈ {0, . . . , 2m − 1} such that us + v ≡ 0 mod (2m − 1)
and w2(u) + w2(v) = 4. Since gcd(s, 2m − 1) = 1, we have that (w2(u), w2(v)) ∈
{(1, 3), (2, 2), (3, 1)}.

• If (w2(u), w2(v)) = (1, 3), then w2(s) = m− 3.
• If (w2(u), w2(v)) = (3, 1), then w2(s−1) = m− 3 (the proof here is the same

as the proof of Proposition 5.3(ii)).
• If (w2(u), w2(v)) = (2, 2), we use inequality (5.2) proved in Corollary 5.2:

w2(u)w2(s) + w2(v) ≥ m.

It follows that

w2(s) ≥ m− 2

2
.

Note that Corollary 5.1 and Proposition 5.3 imply that C⊥1,s is exactly 8-divisible
when w2(s) = m− 3 or w2(s−1) = m− 3.

Open problem 5.5. For any `, 1 ≤ ` ≤ bm−1
2 c, does there exist an s such that

w2(s) = m− ` and the cyclic code C⊥1,s of length (2m − 1) is exactly 2`-divisible?

6. Weight divisibility of the code C⊥1,s of length (22t+1 − 1) with s =

2t + 2i− 1. In his 1968 paper [14], Golomb mentioned a conjecture of Welch stating
that for m = 2t + 1, the crosscorrelation function between a binary m-sequence of
length (2m − 1) and its decimation by s = 2t + 3 takes on precisely the three values
−1,−1±2t+1. Niho [26] stated a similar conjecture for s = 2t+ 2

t
2 −1 when t is even

and s = 2t + 2
3t+1

2 − 1 when t is odd. These conjectures equivalently assert that, for
these values of s, the power function x 7→ xs is AB over F2m . Note that all of these
exponents s can be written as 2t + 2i − 1 for some i. Since both Welch’s and Niho’s
functions are APN [11, 10], Corollary 4.3 leads to a new formulation of Welch’s and
Niho’s conjectures.

Conjecture 6.1. Let m = 2t+ 1 be an odd integer. For all u such that 1 ≤ u ≤
2m − 1, we have

w2((2t + 2i − 1)u mod (2m − 1)) ≤ t+ w2(u)(6.1)

for the following values of i: i = 2, i = t/2 for even t, and i = (3t+ 1)/2 for odd t.
Previously, we proved that condition (6.1) is satisfied in the Welch case (i =

2) [5, 4]. More recently, Hollmann and Xiang used this formulation for proving Niho’s
conjecture [16]. Here we focus on all other values of s which can be expressed as s =
2t+2i−1 for some i. We prove that for almost all of these values C⊥1,s actually contains
a codeword whose weight is not divisible by 2t. This result is derived from both of the
following lemmas which give an upper bound on the exact weight divisibility of C⊥1,s.

Lemma 6.2. Let m = 2t+1 be an odd integer and s = 2t+2i−1 with 2 < i < t−1.
Let C1,s be the binary cyclic code of length (2m − 1) with defining set {1, s}. If 2`

denotes the exact divisibility of C⊥1,s, we have
• if t ≡ 0 mod i and i 6= t/2, then ` ≤ t− 1;
• if t ≡ 1 mod i, then ` ≤ t− i+ 2;
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• if t ≡ r mod i with 1 < r < i, then ` ≤ t− i+ r.
Proof. Let t = iq+r with r < i and A(u) = (2t+2i−1)u mod 2m − 1. McEliece’s

theorem (Corollary 2.4) implies that C⊥1,s is at most 2`-divisible if there exists an
integer u ∈ {0, . . . , 2m − 1} such that

w2(A(u)) = w2(u) + 2t− `.
Here we exhibit an integer u satisfying this condition for the announced values of `.

• We first consider the case r 6= 0. Let u = 2t + 2r−1
∑q
k=1 2ik + 1. Then

w2(u) = q + 2 and we have

A(u) = 22t + 2t+r−1

q∑
k=1

2ik + 2t + 2t+i − 2t + 2r−1
(

2(q+1)i − 2i
)

+ 2i − 1

= 22t + 2t+r−1

q∑
k=1

2ik + 2t+i + (2t+i−1 − 2i+r−1) + (2i − 1).(6.2)

If r > 1, we have for all k such that 1 ≤ k ≤ q,
t+ i < t+ r − 1 + ik ≤ 2t− 1.

We then deduce that all terms in (6.2) are distinct. It follows that

w2(A(u)) = 1 + q + 1 + (t− r) + i

= w2(u) + t− r + i.

If r = 1, we obtain

A(u) = 22t + 2t
q∑

k=2

2ik + 2t+i+1 + 2t+i−1 − 1.

In this case

w2(A(u)) = 1 + (q − 1) + 1 + (t+ i− 1)

= w2(u) + t+ i− 2.

• Suppose now that r = 0 and i 6= t/2. Since i < t, we have q > 2. Let

u = 2t+i + 2t+2 + 2t + 2i+2
∑q−2
k=0 2ik + 1. Using that i > 2, we deduce that,

for all k ≤ q − 2,

i+ 2 + ik ≤ i(q − 1) + 2

≤ t− i+ 2 < t.

It follows that w2(u) = q + 3. Let us now expand the corresponding A(u):

A(u) ≡ 22t+i + 22t+2 + 22t + 2t+i+2

q−2∑
k=0

2ik + 2t + 2t+2i − 2t+i + 2t+i+2

−2t+2 + 2t+i − 2t + 2i+2
(

2(q−1)i − 1
)

+ 2i − 1

= 2i−1 + 2 + 22t + 2t+i+2

q−2∑
k=1

2ik + 2t+2i + 2t+i+3 + 2i+2
(

2(q−1)i − 1
)

+2i − 1

= 22t +

q−3∑
k=0

2t+2+(k+2)i + 2t+2i + 2t+i+3 − 2i+2 + 2i + 2i−1 + 1.(6.3)
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If i > 2, all values of k such that 0 ≤ k ≤ q − 3 satisfy

t+ 2i < t+ 2 + (k + 2)i < 2t.

We then deduce that, if q > 2, all the terms in (6.3) are distinct except if
i = 3. It follows that, for any i > 3,

w2(A(u)) = 1 + (q − 2) + 1 + (t+ 1) + 3

= w2(u) + t+ 1.

For i = 3, we have

A(u) = 22t +

q−3∑
k=0

2t+3k+8 + 2t+7 − 25 + 23 + 22 + 1.

In this case

w2(A(u)) = 1 + (q − 2) + (t+ 2) + 3

= t+ q + 4

= w(u) + t+ 1.

Lemma 6.3. Let m = 2t+ 1 be an odd integer s = 2t + 2i− 1 with t+ 1 < i < 2t.
Let C1,s be the binary cyclic code of length (2m − 1) with defining set {1, s}. If 2`

denotes the exact divisibility of C⊥1,s, we have

• if t+ 1 < i < 3t+1
2 , then ` ≤ m− i;

• if 3t+1
2 < i < 2t− 1, then ` ≤ 2(m− i)− 1;

• if i = 2t− 1, then ` ≤ 3.
Proof. Let A(u) = (2t + 2i − 1)u mod (2m − 1). Exactly as in the proof of the

previous lemma, we exhibit an integer u ∈ {0, . . . , 2m − 1} such that

w2(A(u)) = w2(u) + 2t− `

for the announced values of `. We write i = t+ j, where 1 < j < t.
• We first consider the case t + 1 < i < 3t+1

2 . Let u = 2t + 2j−1 + 1. Then
w2(u) = 3 and

A(u) ≡ 22t + 2t+j−1 + 2t + 22t+j + 2t+2j−1 + 2t+j − 2t − 2j−1 − 1

= 22t + 2t+2j−1 + 2t+j + 2t+j−1 − 1.(6.4)

Since j < t+1
2 , we have that 2t > t + 2j − 1. All the terms in (6.4) are

therefore distinct. We deduce

w2(A(u)) = 3 + (t+ j − 1)

= w2(u) + i− 1.

• We now focus on the case 3t+1
2 < i ≤ 2t − 1. Let u = 2t + 2j + 1. Then

w2(u) = 3 and

A(u) = 22t + 2j−1 − 2t + 2t+j + 22j−t−1 − 2j + 2t + 2t+j − 1

= 22t + 2t+j+1 − 2j−1 + 22j−t−1 − 1.(6.5)
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Since t+1
2 < j < t, we have 0 < 2j − t − 1 < j − 1. If j 6= t − 1, all the

exponents in (6.5) are distinct. It follows that

w2(A(u)) = 1 + (t+ 2) + (2j − t− 1)

= w2(u) + 2(i− t)− 1.

If j = t− 1, we have

A(u) = 22t+1 − 2j−1 + 22j−t−1 − 1.

In this case

w2(A(u)) = (2t+ 1)− (t− j)
= w2(u) + 2t− 3.

For i = 2t− 1, we actually obtain the exact divisibility of C⊥1,s.
Proposition 6.4. Let m > 3 be an odd integer. The dual of the binary cyclic

code of length (2m− 1) with defining set {1, 2m−2 + 2
m−1

2 − 1} is exactly 23-divisible.

Proof. Let s = 2m−2 +2
m−1

2 −1. The previous lemma implies that C⊥1,s is at most
23-divisible. Since

(2
m+1

2 + 1)s ≡ 2
m−3

2 (2
m−1

2 − 1) mod (2m − 1),

we obtain that gcd(2m−1, s) divides both (2m−1) and (2
m−1

2 −1) which are coprime.
It follows that gcd(2m − 1, s) = 1.

From Proposition 5.3 we know that the divisibility of C⊥1,s is less than 23 if either
w2(s) ≥ m − 2 or w2(s−1) ≥ m − 2. None of these conditions is satisfied here:

w2(s) = m+1
2 and s−1 lies in the same cyclotomic coset as 2m−2 − 2

m−1
2 − 1 since

(2m−2 − 2
m−1

2 − 1)(2m−2 + 2
m−1

2 − 1) ≡ (2m−2 − 1)2 − 2m−1 mod (2m − 1)

≡ 2m−4 mod (2m − 1).

It follows that w2(s−1) = m− 3 and therefore that C⊥1,s is exactly 8-divisible.

From Lemmas 6.2 and 6.3 we deduce that C⊥1,s is not 2t-divisible for most values

of s = 2t + 2i − 1.
Theorem 6.5. Let m = 2t + 1 be an odd integer and let s = 2t + 2i − 1 with

i ∈ {1, . . . , 2t}. Let C1,s be the binary cyclic code of length (2m − 1) with defining set
{1, s}. The only values of i such that C⊥1,s is 2t-divisible are 1, 2, t2 , t, t + 1, 3t+1

2 , 2t,
and maybe t− 1.

Proof. If i 6∈ {1, 2, t2 , t − 1, t, t + 1, 3t+1
2 , 2t}, C⊥1,s is not 2t-divisible since the

upper bounds given in both previous lemmas are strictly less than t. Moreover, C⊥1,s
is 2t-divisible for i ∈ {1, 2, t2 , t, t+ 1, 3t+1

2 , 2t}:
• i = 1 corresponds to a quadratic value of s.
• i = 2 corresponds to the Welch’s function.
• i = t corresponds to the inverse of a quadratic exponent since (2t+1− 1)(2t +

1) ≡ 2t mod 2m − 1.
• i = t+ 1 corresponds to a Kasami’s function since 2t(2t+1 + 2t − 1) ≡ 22t −

2t + 1 mod 2m − 1.
• i = 2t gives an s which is in the same 2-cyclotomic coset as 2t+1 − 1.
• i = t

2 or i = 3t+1
2 corresponds to Niho’s function.
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The only unresolved case is then i = t − 1. In accordance with our simulation
results we formulate the following conjecture.

Conjecture 6.6. Let m = 2t + 1 be an odd integer, m > 3. The dual of the
binary cyclic code of length (2m − 1) with defining set {1, 2t + 2t−1 − 1} is exactly
2t-divisible.

Note that an equivalent assertion is that the binary cyclic code of length (2m−1)
with defining set {1, 2t+2 + 3} is exactly 2t-divisible, since 2t+2 + 3 lies in the same
cyclotomic coset as the inverse of 2t+2t−1−1. We checked this conjecture by computer
for m ≤ 39. Note that it is obviously satisfied for m = 5 and m = 7 since the function
x 7→ xs for s = 2t + 2t−1 − 1 corresponds, resp., to a quadratic function and to the
Welch function. On the contrary it is known that the corresponding function is not
APN when 3 divides m since C1,s has minimum distance 3 in this case.

Proposition 6.7 (see [8]). Let m = 2t + 1 be an odd integer, m > 3. The
binary cyclic code of length (2m− 1) with defining set {1, 2t + 2t−1− 1} has minimum
distance 3 if and only if m ≡ 0 mod 3. In this case, the number of codewords of
weight 3 is

B3 = 2m − 1.

Proof. This comes from [8, Thm. 5]. This cyclic code has minimum distance 3 if
and only if

gcd(m, t− 1) = 1.

Since m = 2t − 1, it follows that gcd(m, t − 1) = 3 when m ≡ 0 mod 3 and that
gcd(m, t− 1) = 1 otherwise.

Table 6.1 gives the weight distributions of C⊥1,s, where s = 2t + 2t−1 − 1 for
m ∈ {9, 11, 13} and the corresponding number B3 (resp., B4) of codewords of weight 3
(resp., 4) in C1,s.

Table 6.1
Weight distribution of some codes C⊥1,s with s = 2t + 2t−1 − 1.

m s B3 B4 w Aw

9 23 511 9709 224 4599
240 55188
256 146657
272 55188
288 511

11 47 0 180136 960 45034
992 900680
1024 2368379
1056 835176
1088 45034

13 95 0 2981524 3968 745381
4032 14055756
4096 38030813
4160 13531532
4224 745381

7. Weight divisibility of C⊥1,s when m is not a prime. We now focus on
the binary cyclic codes C1,s of length (2m − 1) when m is not a prime. We show
that in this case the weight divisibility of C⊥1,s is closely related to the exact weight

divisibility of the cyclic code C⊥1,s0 of length (2g − 1) where g is a divisor of m and
s0 = s mod (2g − 1).
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7.1. A general result. We first derive a lower and an upper bound on the
exact weight divisibility of C⊥1,s from the exact weight divisibility of the code C⊥1,s0 of
length (2g−1). These bounds allow us to give a necessary condition on the decimations
which provide preferred pairs of m-sequences of length (2m − 1) when m is not a
prime. This general condition generalizes the Sarwate–Pursley conjecture [31, 25] on
the nonexistence of preferred pairs of m-sequences of length (2m−1) when 4 divides m.

Theorem 7.1. Let g be a divisor of m. Let C1,s be the binary cyclic code of
length (2m−1) with defining set {1, s} and C0 the binary cyclic code of length (2g−1)
with defining set {1, s0}, where s0 = s mod (2g − 1). Assume that C⊥0 is exactly 2`-
divisible. Then we have the following:

(i) C⊥1,s is 2`-divisible. In particular, if there exists i such that s ≡ 2i mod

(2g − 1), then C⊥1,s is 2g−1-divisible.

(ii) C⊥1,s is not 2
m
g (`+1)-divisible.

Proof. Let s = s0 + a(2g − 1). Here we use McEliece’s theorem as expressed in
Corollary 2.3.

(i) Let u and v be two integers in {0, . . . , 2m − 1} such that us+ v = k(2m − 1).
Then we have

us+ v = au(2g − 1) + (us0 + v) = k(2m − 1).

This implies that

us0 + v ≡ 0 mod (2g − 1).

Let u0 = u mod (2g − 1) and v0 = v mod (2g − 1). For any integer x, we have
w2(x) ≥ w2(x mod (2g − 1)): by writing x = x22g + x1 with 0 ≤ x1 < 2g, we
obtain that x mod (2g − 1) = x1 + x2. It follows that

w2(x mod (2g − 1)) = w2(x1 + x2)

≤ w2(x1) + w2(x2) = w2(x).

This implies that

w2(u) + w2(v) ≥ w2(u0) + w2(v0) ≥ `+ 1

since C⊥0 is 2`-divisible.
(ii) If C⊥0 is exactly 2`-divisible, there exists a pair of integers (u0, v0) with u0 ≤

2g − 1 and v0 ≤ 2g − 1 such that

u0s0 + v0 ≡ 0 mod 2g − 1 and w2(u0) + w2(v0) = `+ 1.

Let us now consider both integers u and v defined by

u = u0
2m − 1

2g − 1
and v = v0

2m − 1

2g − 1
.

For s = s0 + a(2g − 1), the pair (u, v) satisfies

us+ v = ua(2g − 1) + us0 + v

= u0a(2m − 1) +
2m − 1

2g − 1
(u0s0 + v0)

≡ 0 mod (2m − 1).
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Since 2m−1
2g−1 =

∑m/g−1
i=0 2ig and both u0 and v0 are less than 2g − 1, we have

w2(u) + w2(v) =
m

g
(w2(u0) + w2(v0)) =

m

g
(`+ 1).

We then deduce that C⊥1,s is not 2
m
g (`+1)-divisible.

Corollary 7.2. Let g be a divisor of m. Let C1,s be the binary cyclic code of
length (2m−1) with defining set {1, s} and C0 the binary cyclic code of length (2g−1)
with defining set {1, s0}, where s0 = s mod (2g − 1). If C⊥1,s is 2b

m
2 c-divisible, then C⊥0

is 2b
g
2 c-divisible.

Proof. We denote by 2` the exact divisibility of C⊥0 . Following Theorem 7.1(ii),

we have that C⊥1,s is not 2
m
g (`+1)-divisible. If C⊥1,s is 2b

m
2 c-divisible, it therefore follows

that ⌊m
2

⌋
≤ m

g
(`+ 1)− 1.

For odd m, this gives

`+ 1 ≥ g(m+ 1)

2m
>
g − 1

2

since (m+ 1)g > m(g − 1).
For even m, we similarly get

`+ 1 ≥ g(m+ 2)

2m
>
g

2
≥
⌊g

2

⌋
.

This implies in both cases that ` ≥ b g2c; C⊥0 is then 2b
g
2 c-divisible.

We now deduce a necessary condition on the values of the decimations which
provide preferred pairs of m-sequences (or equivalently on the exponents which cor-
respond to AB power permutations when m is odd).

Proposition 7.3. Let m and s be two positive integers such that gcd(2m−1, s) =
1 and s is not a power of 2. The pair formed by an m-sequence of length (2m − 1)
and its decimation by s is not preferred if there exists a divisor g of m with g > 2
satisfying one of the following conditions:

1. ∃i, 0 ≤ i < g, s ≡ 2i mod (2g − 1);
2. s0 = s mod (2g − 1) 6= 2i and the dual of the cyclic code of length (2g − 1)

with defining set {1, s0} is not 2b
g
2 c-divisible.

Proof. Theorems 4.1 and 4.4 provide a necessary condition for obtaining a pre-
ferred crosscorrelation: C⊥1,s has to be 2b

m
2 c-divisible and the number B3 of codewords

of weight 3 in C1,s should be

B3 =
(2m − 1)

3
if m is even

= 0 if m is odd.

When s ≡ 2i mod (2g − 1), it is known [8] that the cyclic code C1,s has minimum
distance 3 and that the number B3 of codewords of weight 3 satisfies

B3 ≥ (2m − 1)(2g−1 − 1)

3
.

This implies that the crosscorrelation is not preferred if g > 2.
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If s0 = s mod (2g − 1) is such that the dual of the cyclic code of length (2g − 1)
with defining set {1, s0} is not 2b

g
2 c-divisible, C⊥1,s is not 2b

m
2 c-divisible according to

Corollary 7.2.
This proposition is a generalization of the following result conjectured by Sarwate

and Pursley [31] and recently proved in [25].
Corollary 7.4 (see [31, 25]). There is no pair of preferred m-sequences of length

(2m − 1) when 4 divides m.
Proof. We consider the pair formed by an m-sequence of length (2m − 1) and

its decimation by s. Let s0 = s mod 15. Since 4 divides m, we should have s0 ∈
{1, 2, 4, 8} ∪ {7, 11, 13, 14}; otherwise s and 2m − 1 are not coprime. The previous
proposition then applies with g = 4 for any such s: condition 1 is satisfied when
s0 ∈ {1, 2, 4, 8} and condition 2 holds when s0 ∈ {7, 11, 13, 14} since the dual of the
cyclic code of length 15 with defining set {1, 7} is not 4-divisible.

7.2. Exact weight divisibility of the code C⊥1,s of length (22t − 1) with

s ≡ 2i mod (2t − 1). When m = 2t and s ≡ 2i mod (2t − 1), all the weights of C⊥1,s
are divisible by 2t−1. This particular case of Theorem 7.1(i) was already treated
in [26] and in [12, Lemma 1]. We now prove that this bound actually corresponds to
the exact divisibility of C⊥1,s.

Theorem 7.5. Let m = 2t be an even integer and let s be an integer such that

s ≡ 2i mod (2t − 1) with 0 ≤ i < t

and s is not a power of 2. Let C1,s be the binary cyclic code of length (2m − 1) with
defining set {1, s}. Then C⊥1,s is exactly 2t−1-divisible.

Proof. Since Theorem 7.1(i) implies that the weights of C⊥1,s are divisible by 2t−1, it
is sufficient to find a pair (u, v) such that us+v ≡ 0 mod (2m − 1) and w2(u)+w2(v) =
t. By cyclotomic equivalence, we have only to consider the values of s such that

s = a(2t − 1) + 2t−1,

where a ≤ 2t and a 6∈ {0, 2t−1} (otherwise s is a power of 2).
• If a < 2t−1, we write a = 2ja′ with a′ odd. Then s lies in the same 2-

cyclotomic coset as s′ = a′(2t−1)+2t−j−1. Let us choose u = 2t+1−2t−j−1.
Then we have

us′ ≡ a′(22t − 1) + 2t−j−1
[−a′(2t − 1) + 2t + 1− 2t−j−1

]
mod (22t − 1)

≡ 2t−j−1
[
2t(1− a′) + (a′ + 1− 2t−j−1)

]
mod (22t − 1).

Then us′ + v ≡ 0 mod 2m − 1 implies that

v ≡ 2t−j−1
[
2t(a′ − 1) + (2t−j−1 − 1− a′)] mod (2m − 1).

Therefore, we obtain

w2(v) ≤ w2

(
2t(a′ − 1) + (2t−j−1 − 1− a′))

≤ w2(a′ − 1) + w2(2t−j−1 − 1− a′)
≤ w2(a′ − 1) + t− j − 1− w2(a′)
≤ t− j − 2

since a′ ≤ 2t−j−1 − 1 and a′ is odd. Using that w2(u) = j + 2, we finally get

w2(u) + w2(v) ≤ t.
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• If 2t−1 < a ≤ 2t, we choose u = 1. By writing

s = (a− 1)2t + (2t − 1)− (a− 1− 2t−1),

we obtain that

w2(s) = w2(a− 1) + t− w2(a− 1− 2t−1).

Since 2t−1 ≤ a−1 ≤ 2t−1, we clearly have that w2(a−1−2t−1) = w2(a−1)−1.
It follows that

w2(s) = w2(a− 1) + t− (w2(a− 1)− 1) = t+ 1.

For v = 2m − 1− s, we then have w2(u) + w2(v) = t.
Most values of s for which the weight distribution of C⊥1,s is completely determined

satisfy s ≡ 2i mod (2t − 1). Theorem 7.5 most notably covers the following well-
known cases:

(i) s = 2t + 1 since s = (2t − 1) + 2. In this case the weights of C⊥1,s take the
following values: 2m−1 − 2t−1, 2m−1, 2m−1 + 2t−1 [19].

(ii) s = 2t+3 since s = (2t−1)+4. The weights of C⊥1,s take the following values:
2m−1 − 2t − 2t−1, 2m−1 − 2t, 2m−1 + 2t−1, 2m−1, 2m−1 − 2t−1 [15, Thm. 4.8].

(iii) s =
∑t
i=0 2ik, where 0 < k < t and gcd(m, k) = 1. Since k is odd, we have

s =

t∑
i=0

2ik ≡ 2(t+1)k − 1

2k − 1
mod (2m − 1)

≡ 2t+k − 1

2k − 1
mod (2m − 1).

It follows that

s ≡ 2kd(2t − 1) + 1 mod (2m − 1),

where d satisfies d(2k − 1) ≡ 1 mod (2m − 1). The weights of C⊥1,s take the
following values: 2m−1 − 2t, 2m−1 − 2t−1, 2m−1, 2m−1 + 2t−1 [12, Prop. 1].

(iv) s = (2t + 1)(2
t
2 − 1) + 2 when t is even. In this case, s = (2

t
2 − 1)(2t − 1) +

2
t
2 +1. The weights of C⊥1,s take the following values: 2m−1 − 2

3t
2 −1, 2m−1 −

2t−1, 2m−1, 2m−1 + 2t−1 [26].

(v) s = (2m−1)
3 + 2i with i ∈ {0, 1} when t is odd. In this case, 3 divides (2t + 1).

It follows that

s =
(2t + 1)

3
(2t − 1) + 2i.

The weights of C⊥1,s take the following values [15, Thm. 4.11]:

• 2m−1− 2t−1(2t+1)
3 , 2m−1− 2t(2t−1−1)

3 , 2m−1−2t, 2m−1−2t−1, 2m−1, 2m−1+

2t−1, when 2m−i(2m−1)
3 ≡ 0 mod 3.

• 2m−1− 2t+1(2t−2+1)
3 , 2m−1− 2t(2t−1−1)

3 , 2m−1−2t, 2m−1−2t−1, 2m−1, 2m−1+

2t−1, when 2m−i(2m−1)
3 ≡ 1 mod 3.

Tables 7.1, 7.2, and 7.3 give the complete weight distribution of all codes C⊥1,s of

length (2m − 1) for m ∈ {6, 8, 10} when s satisfies s ≡ 2i mod (2
m
2 − 1).
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Table 7.1
Weight distribution of C⊥1,s with s ≡ 2i mod (2

m
2 − 1) for m = 6.

Aw
s 20 24 28 32 36 B3 B4 ref.

9 252 63 196 63 945 (i)
11, 23 126 252 756 1827 1134 84 252 (ii),(v)

15 588 504 1827 1176 63 63 (iii)

Table 7.2
Weight distribution of C⊥1,s with s ≡ 2i mod (2

m
2 − 1) for m = 8.

Aw
s 96 104 112 120 128 136 B3 B4 ref.

17 2040 255 1800 595 37485 (i)
19, 47 2040 2040 16320 22695 22440 595 3825 (ii)
31, 91 10200 4080 30855 20400 595 1785 (iii)

53 1020 24480 15555 24480 595 6885 (iv)
23, 61 510 5100 14280 23205 22440 595 4335

Table 7.3
Weight distribution of C⊥1,s with s ≡ 2i mod (2

m
2 − 1) for m = 10.

Aw
s 320 336 352 448 464 480 496 512 528

33 16368 1023 15376
35 40920 16368 245520 377487 368280

63, 219 169136 32736 508431 338272
171 2046 1023 41261 225060 471603 307582
343 1023 2046 40920 225060 472626 306900

39, 159 5115 10230 77066 196416 390786 368962
47, 109,
125, 221 5115 10230 87978 163680 423522 358050
101, 157 30690 57288 184140 418407 358050

187 93 20460 82863 163680 422499 358980

s B3 B4 Ref.

33 5115 1304325 (i)
35 5456 81840 (ii)

63, 219 5115 35805 (iii)
171 20460 1616340 (iv)
343 20801 1677720 (iv)

39, 159 5115 71610
47, 109,
125, 221 5456 76725
101, 157 5456 71610

187 5456 92070

Open problem 7.6. Let m = 2t be an even integer and let s be an integer such
that

s ≡ 2i mod (2t − 1) with 0 ≤ i < t.

Let C1,s be the binary cyclic code of length (2m − 1) with defining set {1, s}. Let
A = (A0, . . . , A2m−1) denote the weight enumerator of C⊥1,s. Find the largest integer w0
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such that

Aw = A2m−w = 0 for all w such that 0 < w < w0.

7.3. 2
m
2 -divisible cyclic codes of length (2m − 1) when m is a multiple

of 4. By combining Theorem 7.5 and Corollary 7.2 we are now able to exhibit a neces-
sary condition on s under which the cyclic code C⊥1,s of length (2m−1) is 2

m
2 -divisible.

This condition depends on the value of the highest power of 2 which divides m.
Proposition 7.7. Let m = 2am′ with m′ odd and a ≥ 2. Let s be a positive

integer such that gcd(2m−1, s) = 1 and let C1,s be the binary cyclic code of length (2m−
1) with defining set {1, s}. If C⊥1,s is 2

m
2 -divisible, then

s ≡ 2i mod (22a − 1) for some i

and the number B3 of codewords of weight 3 in C1,s satisfies

B3 ≥ (2m − 1)(22a−1 − 1)

3
.

Proof. Assume that C⊥1,s is 2
m
2 -divisible. For j ∈ {2, . . . , a}, we set sj = s mod

(22j − 1) and we denote by Cj the binary cyclic code of length (22j − 1) with defining

set {1, sj}. From Corollary 7.2 we have that C⊥a is 22a−1

-divisible.

We now prove by induction on j that if C⊥j is 22j−1

-divisible, then sj is a power
of 2.

• If j = 2, we have that s2 6∈ {3, 6, 9, 12} ∪ {5, 10} since gcd(s, 2m − 1) = 1
implies that gcd(sj−1, 2

4 − 1) = 1. Moreover, if s2 ∈ {7, 11, 13, 14}, C2 is not
4-divisible. It follows that s2 ∈ {1, 2, 4, 8}.

• Induction step: Let us suppose that C⊥j is 22j−1

-divisible. According to Corol-

lary 7.2 we have that C⊥j−1 is 22j−2

-divisible. By an induction hypothesis sj−1

is a power of 2, i.e.,

sj ≡ 2i mod (22j−1 − 1) for some i.

Now Theorem 7.5 implies that, in this case, Cj is exactly 22j−1−1-divisible if
sj is not a power of 2.

We now deduce that if C⊥a is 22a−1

-divisible, then

s ≡ 2i mod (22a − 1) for some i.

When m is a power of 2, Proposition 7.7 implies the following corollary.
Corollary 7.8. Let C1,s be the binary cyclic code of length (2m−1) with defining

set {1, s} (s is not a power of 2). If m is a power of 2 and if gcd(2m− 1, s) = 1, then
C⊥1,s is not 2

m
2 -divisible.

By using Corollary 4.5, we see that this result actually corresponds to the follow-
ing weak version of the Helleseth conjecture [15] which was proved by Calderbank,
McGuire, and Poonen [3].

Corollary 7.9 (see [15, 3]). If m is a power of 2, then there are no pairs
of binary m-sequences of length (2m − 1) with crosscorrelation values −1, −1 + 2D,
−1− 2D.
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When 4 divides m (and m is not a power of 2) Proposition 7.7 allows us to find
all values of s for which C⊥1,s is 2

m
2 -divisible very fast, even for large values of m. We

search for all such values for m ∈ {12, 10, 24} and our numerical results lead us to
formulate the following conjecture.

Conjecture 7.10. Let m = 2am′ with a ≥ 2, m′ odd, and m′ > 1. Let s be a
positive integer such that gcd(s, 2m − 1) = 1 (s is not a power of 2) and let C1,s be
the binary cyclic code of length (2m − 1) with defining set {1, s}. The cyclic code C⊥1,s
is 2

m
2 -divisible if and only if either s or s−1 takes one of the following values (up to

cyclotomic equivalence):

2i2
a

+ 1 or 2i2
a+1 − 2i2

a

+ 1

with 1 ≤ i ≤ bm′2 c.
It is known that for these values of s, C⊥1,s is exactly 2`-divisible with ` = m

2 −
1 + 2a−1 gcd(m′, i) [13, 19]. The previous conjecture equivalently asserts that these
values are the only decimations which provide a symmetric 3-valued crosscorrelation,
i.e., a crosscorrelation function which takes its values in {−1,−1 + 2D,−1− 2D}.

7.4. Dobbertin’s function. We now obtain an upper bound on the divisibility
of the weights of C⊥1,s in the following particular case.

Proposition 7.11. Let C1,s be the binary cyclic code of length (2m − 1) with
defining set {1, s}. Let g be a divisor of m such that s satisfies:

s ≡ −s0 mod
2m − 1

2g − 1
with 0 < s0 <

2m − 1

2g − 1
.

Then C⊥1,s is not 2g(w2(s0)+1)-divisible.
Proof. Here we use McEliece’s theorem as formulated in Corollary 2.4. Let

u = 2g − 1. Then we have

A(u) = us mod 2m − 1 = (2m − 1)− (2g − 1)s0.

We obtain that

w2(A(u)) = m− w2((2g − 1)s0).

Since w2((2g − 1)s0) ≤ gw2(s0), this implies that

w2(A(u)) ≥ m− gw2(s0)

≥ w2(u) +m− g(w2(s0) + 1).

We then deduce that C⊥1,s is not 2w2(u)(w2(s0)+1)-divisible.
Corollary 7.12. Let m be an odd integer. If there exists a divisor g of m such

that s satisfies

s ≡ −s0 mod
2m − 1

2g − 1
with 0 < s0 <

2m − 1

2g − 1

and

w2(s0) ≤ 1

2

(
m

g
− 3

)
,

then the power function x 7→ xs is not AB on F2m .
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The third author conjectured that for m = 5g the power function x 7→ xs with
s = 24g + 23g + 22g + 2g − 1 is APN on F2m [10]. The previous corollary implies the
following.

Proposition 7.13. Let m be an odd integer such that m = 5g. The power
function x 7→ xs with s = 24g + 23g + 22g + 2g − 1 is not AB on F2m .

Proof. Since s = 25g−1
2g−1 − 2, we apply the previous corollary with s0 = 2 and

m/g = 5 using that

w2(s0) = 1 =
1

2

(
m

g
− 3

)
.

Note that Proposition 7.11 implies that, for m = 5g and s = 24g+23g+22g+2g−1,
C⊥1,s is not 22g-divisible. This means, for example, that for m = 15 and s ∈ Cl(3657),

C⊥1,s is at most 25-divisible; this bound actually corresponds to the exact divisibility
of the code.

7.5. Numerical results. We now give some examples for m = 10 and 14. As
above, C1,s denotes the binary cyclic code of length (2m − 1) with defining set {1, s}
and 2` denotes the exact weight divisibility of C⊥1,s. Table 7.4 recalls some values of s
for which the value of ` is known.

Tables 7.5 and 7.6 compare the true exact weight divisibility of C⊥1,s (given in the
second column of each table) with the theoretical bounds derived from the previous
results.

m = 10.
• We always have ` ≤ 10−w2(s) (Corollary 5.1) and if gcd(s, 1023) = 1, we also

get ` ≤ 10−w2(s−1), where s−1 is defined by ss−1 ≡ 1 mod 1023. Maoreover,
Proposition 5.3 implies that if w2(s) > 8 and w2(s−1) > 8, we have ` ≥ 3.

• If gcd(s, 1023) = d > 1, we have ` ≤ w2( 2m−1
d ) − 1. This is derived from

us+ v ≡ 0 mod 1023 with u = 2m−1
d and v = 0. Note that if s and 1023 are

not coprime, ` ≤ 4 since the 2-weight of any divisor of 1023 is at most 4.
• If s mod 31 ∈ {1, 2, 4, 8, 16}, then ` = 4 (Theorem 7.5).
• If s mod 31 ∈ {15, 23, 27, 29, 30}, then ` ≤ 3. This comes from Theorem 7.1

using the fact that the code C⊥1,15 of length 31 is not 4-divisible.
• Proposition 5.4 implies that ` ≥ 4 when gcd(2m − 1, s) = 1, w2(s) ≤ 3, and
w2(s−1) ≤ 6.

Table 7.4
Exact weight divisibility of the duals of some cyclic codes of length (2m − 1) with defining

set {1, s}.

s ` Ref.

2i + 1, 1 ≤ i ≤ bm
2
c m+gcd(m,i)

2
− 1 if m

gcd(m,i)
is odd [13, 19]

m
2
− 1 if m

gcd(m,i)
is even

22i − 2i + 1, 2 ≤ i ≤ bm
2
c m+gcd(m,i)

2
− 1 if m

gcd(m,i)
is odd [19]

m
2
− 1 if m

gcd(m,i)
is even

(2m−1)
3

+ 2i, m even m
2
− 1 [15]

2
m
2 + 2

m
4 + 1, m ≡ 0 mod 4 m

2
− 1 [12]

2
m
2 + 2

m+2
2 + 1, m ≡ 2 mod 4 m

2
− 1 [9]

2
m+2

2 + 3, m ≡ 2 mod 4 m
2
− 1 [9]
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Table 7.5
Exact weight divisibility of C⊥1,s for m = 10.

s (representatives of cosets) ` Argument

511 1 ` = 1 w2(s) = 9

31 93 155 341 2 ` = 1 31 divides gcd(1023, s)

173 179 255 383 447 479 495 2 ` = 2 w2(s) = 8 or w2(s−1) = 8

15 23 27 29 61 77 85 89 91 123 151 213
215 247

3 ` = 3 s mod 31 ∈ {15, 23, 27, 29, 30}

7 53 59 73 127 167 191 223 235 239
251 253 351 367 375 379 439

3 ` = 3 w2(s) = 7 or w2(s−1) = 7

19 175
4 ` = 4 w2(s) = 3 and w2(s−1) = 6

33 35 39 47 63 95 101 109 125 157 159
171 187 219 221 343

4 ` = 4 s mod 31 ∈ {1, 2, 4, 8, 16}

3 9 57
4 ` = 4 see Table 7.4

71 111 245
3 3 ≤ ` ≤ 4 w2(s) = 6 or w2(s−1) = 6

43 115 119 183 189 207 231 237 347 363 4

45 51 55 75 99 147 165 3 3 ≤ ` ≤ 4 gcd(1023, s) ∈ {3, 11, 33}
11 21 69 87 105 117 121 4

37 83 4 4 ≤ ` ≤ 5 w2(s) = 3 and w2(s−1) ≤ 6

103 149 3 3 ≤ ` ≤ 5

5 205 13 79 17 181 25 41 49 107
5 ` = 5 see Table 7.4

• There is no 8-divisible code C⊥1,s0 of length 31 with gcd(s0, 31) = 1. It follows
from Theorem 7.1(ii) that, for any s such that gcd(s, 210 − 1) = 1, the code
C⊥1,s of length (210 − 1) is at most 25-divisible.

m = 14. Here we examine only the values of s such that gcd(214 − 1, s) = 1.
Note that if gcd(214−1, s) > 1, C⊥1,s is not 27-divisible since the 2-weight of any factor
of (214 − 1) is at most 7. Table 7.6 is derived from the following theoretical results:

• Proposition 5.3 implies that ` ≥ 3 for any s such that w2(s) ≤ 12 and
w2(s−1) ≤ 12.
• From Corollary 5.1, we have ` ≤ 14− w2(s).
• For any s such that w2(s) = 3 or w2(s−1) = 3, we have ` ≥ 5 according to

Corollary 5.2.
• Proposition 5.4 implies that ` ≥ 4 when w2(s) ≤ 5 and w2(s−1) ≤ 10.
• According to Theorem 7.1(ii) we always have that ` ≤ 7 since the cyclic code
C⊥1,s0 of length (27 − 1) is at most 23-divisible when s0 is not a power of 2.

• The cyclic code C⊥1,s0 of length (27−1) is exactly 2-divisible when s0 ∈ Cl(63)
(Cl(i) here denotes the 2-cyclotomic coset modulo 127). It follows that ` ≤ 3
for any s such that s mod 127 ∈ Cl(63) (Theorem 7.1(ii)).

• The codes C⊥1,s0 of length (27− 1) are exactly 4-divisible for s0 ∈ E = Cl(7)∪
Cl(19)∪Cl(21)∪Cl(31)∪Cl(47)∪Cl(55). Theorem 7.1(ii) then implies that
C⊥1,s is at most 25-divisible for any s such that s mod 127 ∈ E .

• If s ≡ 2i mod 127 for some i, C⊥1,s is exactly 26-divisible according to Theo-
rem 7.5.
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Table 7.6
Exact weight divisibility C⊥1,s for m = 14 with gcd(214 − 1, s) = 1.

s (representatives of cosets) ` Argument

8191 1 ` = 1 w2(s) = 13
2741 2861 2867 6143 7679 8063 2 ` = 2 w2(s) = 12 or

w2(s−1) = 12
95 119 125 253 317 349 365 373 377 379 571 619 631
761 857 881 887 1015 1111 1127 1135 1139 1141 1381
1523 1619 1643 1897 1901 1903 2381 2405 2411 2539
2651 2663 3047 3413 3421 3935 4063

3 ` = 3 smod 127 ∈ Cl(63)

283 511 655 703 1003 1117 1177 1259 1273 1375 1435
1679 1919 2047 2479 2527 2797 2971 3071 3583 3703
3757 3839 3967 4031 4079 4087 4091 4093 5851 5887
6079 6127 6139 7039 7103 7135 7151 7159 7663

3 ` = 3 w2(s) = 11 or
w2(s−1) = 11

47 59 83 149 197 203 329 341 355 625 1109 1301 3055
3067 3551 3775 3835 4015 4075 5503 5627 5855 5983
6007

4 ` = 4 w2(s) ≤ 5 and
w2(s−1) = 10

175 461 691 811 967 1019 1213 1253 1277 1385 1391
1535 1615 1685 1847 1957 2015 2035 2039 2045 2347
2453 2507 2765 2771 2807 2815 3007 3455 3517 3575
3581 3823 3959 3965 4027 4055 4061 5567 5599 5615
5623 5879 5999 6011 6071 6107 7031

4 3 ≤ ` ≤ 4 w2(s) = 10 or
w2(s−1) = 10

7 19 25 31 37 41 67 73 97 245 443 529 869 983 1123
1205 2341 3547

5 ` = 5 s mod 127 ∈ E and
w2(s) = 3

115 239 463 533 617 809 1631 2005 4 4 ≤ ` ≤ 5 s mod 127 ∈ E and
w2(s) ≤ 5 and
w2(s−1) < 10

55 61 79 91 103 107 109 121 155 169 209 211 227 275
295 313 361 395 409 419 457 475 481 539 563 569 581
587 595 601 611 649 677 709 745 781 787 793 799 803
841 871 971 1013 1171 1193 1225 1307 1343 1387 1531
1597 1621 1645 1775 1895 1967 1999 2383 2407 2779
2903 3323 3389 3419 3829

5

251 455 719 1735 2389 3925 3 3 ≤ ` ≤ 5 s mod 127 ∈ E
431 437 493 503 605 629 685 697 853 1237 1243 1255
1325 1331 1357 1363 1373 1481 1693 1837 1865 2455
2717 2813 2983 2995 3805 4013

4

221 347 371 491 499 505 575 599 623 757 821 823 829
859 877 883 917 931 965 973 1001 1007 1103 1133 1181
1199 1261 1267 1337 1367 1379 1439 1447 1453 1459
1471 1507 1519 1627 1639 1727 1751 1769 1871 1885
1943 1961 1979 1981 2023 2027 2029 2359 2395 2495
2525 2647 2743 2749 2767 2791 2909 2911 2935 3005
3031 3287 3293 3485 3503 3511 3541 3563 3767 3901
3931 4021 5815

5

289 5 ` = 5 w2(s) = 3 and
w2(s−1) = 9

689 2687 4 4 ≤ ` ≤ 5 w2(s) ≤ 5 and
w2(s−1) = 9

77 85 157 269 305 307 323 325 391 401 451 613 647 913
1021 1093 1279 1787 1915 1951 2975 3391 3451 3535
3709 3773 3949 5471 5495 5591

5
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Table 7.6
(Continued)

s (representatives of cosets) ` Argument

959 3059 3 3 ≤ ` ≤ 5 w2(s) = 9 or
w2(s−1) = 9

715 895 991 1183 1223 1469 1759 1783 2419 2431 2555
2557 2677 3023 3415 3515 3791 3803 5551 5563 5819

4

235 343 427 487 743 751 767 797 847 875 935 995 1009
1231 1319 1495 1663 1747 1789 1853 1855 1939 1975
2011 2041 2357 2471 2519 2543 2551 2783 2879 2927
2939 2941 2999 3035 3037 3061 3295 3319 3325 3383
3439 3487 3559 3565 3707 3743 3797 3799 3821 3947
5611

5

131 143 191 383 389 397 413 445 509 637 667 763 893
905 953 1145 1147 1151 1175 1207 1271 1399 1405 1429
1525 1655 1715 1907 1909 1913 2429 2477 2669 2671
2675 2683 2731 2923 3431 3437 3445

6 ` = 6 s mod 127 ∈ Cl(1)

11 1501 6 5 ≤ ` ≤ 6 w2(s) = 3 and
w2(s−1) = 8

955 1187 1321 2719 4 4 ≤ ` ≤ 6 w2(s) ≤ 5 and
w2(s−1) = 8

89 101 163 181 185 331 541 553 1499 1511 2747 2933
2987 3317 3407 3509

5

353 535 583 1723 1883 2423 6
479 1351 3 3 ≤ ` ≤ 6 w2(s) = 8 or

w2(s−1) = 8
407 839 943 1303 1369 1465 1661 1711 1771 2003 2549
2803 2863 2875

4

287 439 607 695 827 845 863 997 1327 1403 1463 1483
1487 1517 1529 1595 1687 1705 1757 1781 1949 1963
1973 1997 2009 2363 2399 2653 2711 2735 2989 3029
3307 3499 3701 3755 5819

5

497 683 1823 1831 1835 1879 2483 2491 5467 5483 6
5 13 17 65 113 145 193 205 241 319 979 1339 1613 2773
2893 3277

7 ` = 7 see Table 7.4

35 49 137 161 265 335 433 469 919 1355 2515 6 5 ≤ ` ≤ 7 w2(s) = 3 or
w2(s−1) = 3

167 187 199 229 247 263 299 425 707 805 911 1097
1099 1195 1445 1589 1609 1625 1717 1843 1867 1877

4 4 ≤ ` ≤ 7 w2(s) ≤ 5 and
w2(s1 ) < 10

29 71 139 151 173 217 223 233 271 281 403 421 547
551 557 565 589 593 653 659 661 665 721 739 749 785
923 947 977 1129 1165 1189 1309 1423 1607 1691 1829
2461

5

23 53 179 277 293 337 713 727 937 1163 1315 1451
1657 1739 2869 2899

6

1241 1703 2459 2645 3 3 ≤ ` ≤ 7
415 679 701 733 755 815 907 941 949 985 1115 1211
1427 1433 1637 1721 1753 2485

4

311 359 367 467 485 671 791 851 925 1229 1235 1421
1493 1513 1709 1741 1765 1945 1993 2351 2387 2533

5

133 725 2509 6
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