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Abstract. We study the coset weight distributions of the 3-error-correcting binary narrow-
sense BCH-codes and of their extensions, whose lengths are, respectively, 2m − 1 and 2m, m odd.
We prove that all weight distributions are known as soon as those of the cosets of minimum weight 4
of the extended code are known. We point out that properties of the cosets which are orphans yield
interesting properties on the other cosets. We describe the classes of cosets which are equivalent
under the affine permutations. At the end we produce significant numerical results, proving that the
number of distinct weight distributions of cosets increases with the length of the codes.
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1. Introduction. This paper was initiated by the papers of Camion, Courteau,
Fournier, and Kanetkar [6]; Camion, Courteau, and Montpetit [7]; and Charpin [9],
[10]. Charpin showed in [10] that there are eight distinct weight distributions of cosets
of 2-error-correcting binary primitive BCH-codes of length 2m − 1, m even, and of
length 2m for the extended such codes. For the length 2m−1, m odd, it is well known
[3], [20] that there are four such distinct weight distributions. We examine here the
coset weight distributions of the 3-error-correcting binary narrow-sense BCH-codes
of length 2m − 1 with m odd, also extended or not. The results of this paper were
announced in [11].

We denote by B the 3-error-correcting BCH-code and by B̂ its extension. For
length 32 the coset weight distribution of B̂ was given by Camion, Courteau, and
Montpetit [7]; this code is in fact the self-dual Reed–Muller code [32, 16, 8] and there
are eight distinct weight distributions for its cosets. Our main result is that the number
of weight distributions of cosets of B̂ (respectively, of B) increases with the value of
m. Of course, we suppose that this property holds also when m is even, although
we do not study this case here. At any rate, we prove that the code B̂ gives us an
example of an infinite class of codes whose dual distance is constant while the number
of distinct lines in the distance matrix increases with the length.

In section 2, we present the fundamental equations which give as solutions the
coefficients of the distance matrices of B and B̂. Throughout the equations (A.i) and
(E.i), what is easy and what is hard appear clearly, and the next sections are in fact
a precise explanation of both aspects.

We begin in section 3 with the easy cases. They are globally the cosets of weight
1, 2, 3, and 5. We don’t know all about the cosets of B of weight 3 and 5, but we
prove that any unsolved problem about these cosets is an unsolved problem about
the cosets of B̂ of weight 4 and 6. We consider these last cases as the hard cases. In
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ON COSET WEIGHT DISTRIBUTIONS OF SOME BCH-CODES 129

section 4 we study the action of affine permutations on cosets of B̂. It is natural to do
that because it is well known that the code B̂ is invariant under these permutations.
We characterize the classes of equivalent cosets by their syndromes, and we give some
properties about the cosets of weight 4. The cosets of weight 4 and 6 are studied
in section 5. We point out the significant role of the cosets of B̂ which are orphans,
taking here the terminology of [5]. In section 6 we summarize our results, showing
clearly that our problem is reduced to the study of the weight distributions of cosets
of B̂ of weight 4. By using the classification of section 4, we were able to compute
the full weight distribution for length 128. That is given by Table 5 in section 7.
We found 12 distinct weight distributions for the cosets of B̂. Moreover, we found at
least 18 distinct weight distributions for the length 512. At the end we give several
conjectures.

The distance and the weight are the Hamming distance and the Hamming weight.
The weight of any code word x is denoted by wt(x), and the distance between any
two code words x and y is denoted by d(x, y). Denote by K the Galois field of order 2.
Let C be any binary code of length n. Recall that the covering radius of C, generally
denoted by ρ, is the following distance:

ρ = max
x∈Kn

min
c∈C

{ d(x, c) }.

Let D = x+C be a coset of C. The weight of the coset D is the minimum weight
of the code words of D. A leader of D is a code word of D of minimum weight.

2. The fundamental equations. Let C be any code of length n over K and
let ρ be its covering radius. We will say that such a code is uniformly packed, in the
sense of [3], if there exist rational numbers α0, . . . , αρ such that for any v ∈ Kn

ρ∑
k=0

αk fk(v) = 1,(1)

where fk(v) is the number of code words at distance k from v. Let B denote here
the 3-error-correcting primitive binary BCH-code of length n = 2m − 1, where m is
odd, and let B⊥ denote as usual the dual code of B. The minimal distance of B is
d = 7. It was shown by Kasami [17] that the external distance of B, i.e., the number
of nonzero weights in B⊥, is s = 5 (see also [19], p. 669). According to the well-known
result due to Delsarte [12], we have the following inequality for the covering radius of
B:ρ ≤ 5. But on the other hand, we know from the result of Gorenstein, Peterson,
and Zierler [14] that for these codes ρ ≥ 5. Hence we have ρ = 5 for the code B.
Note that this result was obtained by Helleseth [15], who proved even more: all binary
3-error-correcting BCH-codes have covering radius 5 (essential steps in this result also
belong to Assmus and Mattson [1] and van der Horst and Berger [16]). Now we use
the following result from the paper of Bassalygo and Zinoviev [4, Theorem 1]: the code
C is a uniformly packed code (in the sense of [3]) if and only if the covering radius ρ
of C is equal to the external distance s: ρ = s. Therefore B is a uniformly packed
code in the sense of [3]. Note that Goethals and Van Tilborg [13] have previously
showed that the code B is a uniformly packed code of order j = 2 (see [13, 21]). From
this last paper we have the following parameters αi for the code B:

α0 = α1 = 1,
α2 = α3 = −120/(n− 1)(n− 7),
α4 = α5 = 120/(n− 1)(n− 7).

(2)

D
ow

nl
oa

de
d 

10
/2

5/
12

 to
 1

28
.9

3.
58

.1
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



130 PASCALE CHARPIN AND VICTOR ZINOVIEV

Now let B̂ be the 3-error-correcting primitive binary extended BCH-code of length
N = 2m, where m is odd; B̂ is obtained from B by overall parity check. Assume
that the position we add to the code words of B is always the first position of B̂.
The minimal distance of B̂ is d = 8, of course. Now we can use the following result
[4, Theorem 2]: an extension of a binary uniformly packed code with parameters αi,
i ∈ [0, ρ], is a uniformly packed code if and only if the parameters αi satisfy

αρ−2i = αρ−2i−1, i = 0, 1, . . . , [(ρ− 1)/2],

where [a] denotes the integer part of a. Applying this to the code B, the condition
above becomes α5 = α4, α3 = α2, and α1 = α0. So we deduce from (2) that the

code B̂ is uniformly packed with covering radius 6. Note that the external distance
of the code B̂ (respectively, of B) is equal to its covering radius. Then, by applying
the general result of Assmus and Pless, the weight distribution of cosets of weight 5
in B is uniquely determined, as are the weight distributions of cosets of weight 5 and
6 in B̂ [2, Corollary 1–2].

From now on, the notation for the parameters of codes B and B̂ will be as follows:
we will use the same symbols for both codes, but for B̂ all the corresponding symbols
will have a hat. The parameters α̂i of the code B̂ are connected with the parameters
αi. This connection is given by [4, Theorem 2]. That is,

α̂ρ−2i = αρ−2i, i = 0, 1, . . . , [ρ/2]

and for i = 0, 1, . . . , [(ρ+ 1)/2],

α̂ρ−2i+1 = ((ρ+ 1− 2i)αρ−2i + (n− ρ+ 2i)αρ−2i+2 )/(n+ 1),

where by convention α−1 = αρ+1 = αρ+2 = 0. We have

α̂0 = α̂1 = 1, α̂2 = 2(N − 68)/N(N − 8),
α̂3 = −120/(N − 2)(N − 8), α̂4 = 120/N(N − 2),
α̂5 = −α̂3, α̂6 = 720/N(N − 2)(N − 8).

(3)

Recall that N = 2m denotes here the length of the code B̂.
Let D be any coset of B. Recall that the weight of D is the minimum weight of

the code words of D. Since the covering radius of B is 5, the weight i of B is in the
range [0, 5]. We will denote by µi,j the number of code words of weight j in such a
coset of weight i:

µi,j = card { x ∈ D | wt(x) = j }.

Similarly, we will denote by µ̂i,j the number of code words of weight j in a coset of

B̂ of weight i, i ∈ [0, 6].
For a coset D with weight distribution

µi,i, µi,i+1, . . . , µi,n

we denote by Ai(x) the weight polynomial of D:

Ai(x) =

n∑
k=i

µi,k x
k.(4)
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ON COSET WEIGHT DISTRIBUTIONS OF SOME BCH-CODES 131

To write out a general expression for the polynomial Ai(x) we need some results from
[3], which we give, for simplicity, only for the binary case. First denote by Pu(n, ξ)
the Krawtchouk polynomial of degree u:

Pu(n, ξ) =
u∑

j=0

(−1)u−j
(
n− ξ

j

)(
ξ

u− j

)
,

where (
a

b

)
=

a(a− 1) . . . (a− b+ 1)

b!

for any real a. Lloyd’s type theorem for the uniformly packed codes asserts (Theorem 1
in [3]) that the existence of a uniformly packed code C of length n with the parameters
αi, i = 0, 1, . . . , ρ, implies that the Lloyd polynomial Lρ(n, ξ),

Lρ(n, ξ) =

ρ∑
i=0

αi Pi(n, ξ),

has ρ distinct integer roots between 0 and n. Denote by ξi the ith root of Lρ(n, ξ),
where i = 0, 1, . . . , ρ. Now suppose that D is an arbitrary coset of C of weight i with
the weight polynomial A(x) of type (4). We want to know the weight distribution of
D (or, in other words, to know the coefficients of Ai(x)).

Theorem 2 in [3] gives us the following result: the weight polynomial Ai(x) of
a coset (of weight i) of a uniformly packed code C, with the roots ξj of the Lloyd
polynomial Lρ(n, ξ), might be written in the following general form:

Ai(x) =
|C|(1 + x)n

2n

+

ρ∑
j=1

ci,j(1 + x)n−ξj (1− x)ξj ,

where |C| is the cardinality of the code C and ci,j are constants depending on the initial
known coefficients of Ai(x) and therefore determined by solving the corresponding
system of linear equations. So to know the weight polynomial Ai(x) of C we must
know any ρ numbers µi,j for j ∈ [0, n] enough to find the unknown values ci,j from
the corresponding equations.

Now we return to our BCH-codes B and B̂. The determination of the coset weight
distribution of B is reduced to the resolution of the following equations, considered
separately. In other words, if we consider the weight distribution of the coset of weight
i, then we use the equation (A.i):

(A.1) α1 µ1,1 = 1,
(A.2) α2 µ2,2 + α5 µ2,5 = 1,
(A.3) α3 µ3,3 + α4 µ3,4 + α5 µ3,5 = 1,
(A.4) α4 µ4,4 + α5 µ4,5 = 1,
(A.5) α5 µ5,5 = 1,

where the numbers αi are given above by (2). These equations are obtained from (1)
for each weight i ∈ [1, 5] for the case when the vector v is a zero vector. Each equation
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132 PASCALE CHARPIN AND VICTOR ZINOVIEV

(A.i) corresponds to the weight distributions of cosets of minimum weight i, implying
µi,j = 0 for j < i. Moreover, since the minimum weight of B is 7, the sum of two
weights in a given coset cannot be less than 7.

Now consider the corresponding equations for the code B̂. By the definition of the
extension, a coset of B̂ has either only even weights or only odd weights. Therefore, in
the same manner as we obtained the equations (A.i), we obtain from (1) the equations

(E.i) corresponding to the weights i ∈ [1, 6] of the cosets of B̂:

(E.1) α̂1 µ̂1,1 = 1,
(E.2) α̂2 µ̂2,2 + α̂6 µ̂2,6 = 1,
(E.3) α̂3 µ̂3,3 + α̂5 µ̂3,5 = 1,
(E.4) α̂4 µ̂4,4 + α̂6 µ̂4,6 = 1,
(E.5) α̂5 µ̂5,5 = 1,
(E.6) α̂6 µ̂6,6 = 1.

From the results of Kasami [17] and Bassalygo and Zinoviev [4] we have all the roots

ξ̂i of the Lloyd polynomial L̂6(N, ξ) for the code B̂ (these roots are exactly the values

of nonzero weights in the dual code B̂⊥):

ξ̂1 = N/2 − √
2N, ξ̂2 = N/2 − √N/2,

ξ̂3 = N/2, ξ̂4 = N/2 +
√
N/2,

ξ̂5 = N/2 +
√

2N, ξ̂6 = N.

Note that the five roots of the Lloyd polynomial L5(n, ξ) for the code B are the

first five roots ξ̂i, i ∈ [1, 5], of L̂6(N, ξ). This is so because the all-one vector, which

corresponds to the root ξ̂6, cannot belong to the code B⊥.
Now we give some definitions and notation which we will use in the next sections.
Let v ∈ Kn, v = (v1, . . . , vn). The support of v is

supp(v) = { ` | v` 6= 0 }.

Note that the Hamming weight wt(v) of v is equal to the cardinality of the support
of v.

We will use here the terminology of [5], where special cosets, so-called orphans,
are introduced.

Definition 2.1. Let C be an arbitrary linear code C of length n and let D be a
coset of C of weight i. Let D′ be the coset

D′ = D + v(j),

where v(j) denotes a binary vector with exactly one nonzero position at the jth coor-
dinate.

If the weight of D′ is i− 1, then D′ is said to be a child of D.
If the weight of D′ is i+ 1, then D′ is said to be a parent of D.
The coset D is said to be an orphan if and only if it has no parent. In other

words, an orphan of C is a coset D with the following property:⋃
v is a leader of D

supp(v) = { 1, . . . , n }.D
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ON COSET WEIGHT DISTRIBUTIONS OF SOME BCH-CODES 133

Notation. From now on let us denote by D (respectively, by D̂) the full set of the

cosets of B (respectively, of B̂). We will denote by Di (respectively, by D̂i) the subset

of D (respectively, of D̂) which consists of all the cosets of weight i.
The number of cosets of B will be denoted by Γ and the number of such cosets

of minimum weight i will be denoted by Γ(i). Similarly, for the extended code B̂, a
notation is as follows:

Γ̂ = |D̂| and Γ̂(i) = |D̂i|.
3. Cosets weight distribution: The easy cases. Since the dimension of both

codes B and B̂ is 2m − 3m− 1, m ≥ 5, we obviously obtain

Γ = 23m and Γ̂ = 23m+1.

The weight distribution of B is known, due to Kasami, who in [17] gave the weight
distribution of the dual of B. In fact, we use here the table given in [19, p. 669]; it

is the weight distribution of B⊥. Since we also need the weight distribution of B̂, we
give the weight distribution of the dual code in Table 1.

Table 1

The weight distribution of the dual of the binary 3-error-correcting extended BCH-code of
length 2m, m odd.

Weights Number of code words
0 1

2m−1 ± 2(m+1)/2 2m−3(2m − 1)(2m−1 − 1)/3

2m−1 ± 2(m−1)/2 2m−1(2m − 1)(5.2m−1 + 4)/3
2m−1 (2m − 1)(5.22m−1 + 7.2m−2(2m−1 − 1) + 2m+2 + 6)/3
2m 1

Remark. Recall that a tactical configuration T (n,w, `, β) is a set of binary vectors
of length n and weight w such that any `, 1 ≤ ` ≤ w, positions are simultaneously
occupied by ones in precisely β vectors of T (n,w, `, β). If β = 1, a configuration
T (n,w, `, 1) is called a Steiner system and is denoted by S(n,w, `).

Let B7 be the set of code words of weight 7 in B and B̂8 be the set of code words
of weight 8 in B̂. Using equation (1) for arbitrary vectors v of weights 2 and 3 we have

immediately the following: the set B̂8 is a tactical configuration T (N, 8, 3, β) and the
set B7 is a tactical configuration T (n, 7, 2, β), where

β =
1− α̂3

α̂5
=

(N − 2)(N − 8)

120
+ 1.(5)

This result can be also deduced from Theorem 3 in [4].

3.1. Cosets of minimum weights 1, 2, and 3. Since the minimum distance
of codes B and B̂ are, respectively, 7 and 8, any coset of weight i, 1 ≤ i ≤ 3, has only
one code word of weight i. So the number of such cosets of weight i is exactly the
number of code words of weight i in the ambient space. That is, for cosets of B and
B̂

Γ(1) = n, Γ(2) = n(n− 1)/2, and Γ(3) = n(n− 1)(n− 2)/6,(6)

Γ̂(1) = N, Γ̂(2) = N(N − 1)/2, and Γ̂(3) = N(N − 1)(N − 2)/6.(7)
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134 PASCALE CHARPIN AND VICTOR ZINOVIEV

The condition µ̂i,i = 1 for i ∈ [1, 3] immediately gives us the solution of the corre-
sponding equations (E.i). We then obtain the values of µ̂2,6 and µ̂3,5. Similarly, the
condition µi,i = 1 for i ∈ [1, 2] immediately gives us the solution of the corresponding
equations (A.i). We can then obtain the value of µ2,5. Note that µ2,5 and µ̂3,5 are
also given by the remark above. These results can be summarized as follows.

Proposition 3.1. There is only one coset weight distribution for the cosets of
B of weight 1 and 2. The number of code words of weight 5 in the coset of weight 2
is µ2,5 = β (see (5)).

There is only one coset weight distribution for the cosets of B̂ of weight 1, 2, and
3. The number of code words of weight 6 in the coset of weight 2 is

µ̂2,6 =
1− α̂2

α̂6
=

(N − 2)(N2 − 10N + 136)

720
.

The number of code words of weight 5 in the coset of weight 3 is µ̂3,5 = β (see (5)).
Finally, we cannot describe the set D3 of cosets of B of weight 3; we only know

its cardinality. Moreover, according to (2), by using (A.2) and (A.3) we can state the
following relation:

µ3,4 + µ3,5 = µ2,5,(8)

where µ2,5 is known to be equal to β. Note also that µ2,5 = µ̂3,5. Hence we can

conclude that to describe D3 is equivalent to describing D̂4. Indeed, a coset of D3 can
be seen as a shortened coset of D̂4, with

µ3,4 = µ̂4,4 − 1.

Such a coset of D̂4 must have a leader which has zero in its first position (this position

is the parity check position of B̂). We will explain in section 4 that any coset of D̂4

is equivalent to such a coset.

3.2. Cosets of minimum weight 5. All cosets of D5 have the same weight
distribution—it is immediate from (A.5)(see also [1]). However, we are not able to

give the cardinality of D5; we only can say that it is equal to the cardinality of D̂6.
Proposition 3.2. There is only one weight distribution for the cosets of D5.

Any coset of D5 is an orphan, and it contains

µ5,5 =
1

α5
=

(n− 1)(n− 7)

120

code words of weight 5. Moreover, the cardinality of D5 is equal to the number of
cosets of B̂ of weight 6:

Γ(5) = Γ̂(6).

Proof. The value µ5,5 follows from (A.5). From Definition 2.1, we know that an
orphan is a coset without parent. Since the covering radius of B is 5, it is clear that
any coset G ∈ D5 is an orphan. Now for any coset H ∈ D̂6, we obtain a coset G ∈ D5

by deleting one position of H. We always delete the first position, which corresponds
to the overall parity checking position of B̂. Two such cosets G and G′ are distinct,
as soon as we got two distinct cosets H and H ′. Actually, this correspondence is
one-to-one: by the definition of the extension, two distinct cosets of D5 cannot give
the same extension. So Γ(5) = Γ̂(6).
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ON COSET WEIGHT DISTRIBUTIONS OF SOME BCH-CODES 135

Now for D̂5, equations (E.i) involve a full description. Moreover, we will end this

section by explaining some links between D̂5 and D̂4.
Proposition 3.3. There are

Γ̂(5) = N(N − 1)(5N + 8)/6

distinct cosets of B̂ of weight 5. All of these cosets have the same weight distribution
and each of them contains

µ̂5,5 = (N − 2)(N − 8)/120(9)

vectors of weight 5. Note that µ̂5,5 = µ5,5.
Proof. All cosets of minimum weight 3 have the same weight polynomial. We

know from (E.3) that the number of the code words of weight 5 in the coset of
minimum weight 3 is

µ̂3,5 = β,

where β is defined in (5). From the equation (E.5) we have µ̂5,5 = 1/α̂5. Taking
into account the value of α̂5 in (3) we obtain (9). Now the total number of binary
vectors of length N and weight 5 is

T =

(
N

5

)
,

and we have

T = Γ̂(5) µ̂5,5 + Γ̂(3) µ̂3,5.

Then we can compute Γ̂(5) using the value of Γ̂(3) given by the equation (7).

Proposition 3.4. Let G ∈ D̂5, let F be a child of G, that is,

F = G + v(j), F ∈ D̂4

for some j ∈ { 1, . . . , N }, and let kj(G) denote the weight of the jth column of
the binary matrix formed by the leaders of G. Then the weight distribution of F is
defined by µ̂4,4 = kj(G), where kj(G) < N/4.

Proof. Consider the jth column of the matrix formed by all the leaders of G. So
we have kj(G) vectors us, s = 1, . . . , kj(G), which have “1” at jth position. Then
the coset F has weight 4 and the kj(G) vectors

us + v(j), s = 1, . . . , kj(G)

are the only vectors in F that have weight 4. Hence, such a coset F is not an orphan
since it has some parent. That gives the inequality at the statement, completing the
proof.

Note that any F ∈ D̂4, which is not an orphan, is a child of some coset of D̂5. In
this section we have proved that each unsolved problem on cosets of B can be seen
as an unsolved problem on cosets of B̂. We will see in section 5 that the general
problem we treat here is reduced to the determination of the weight distribution of
cosets of D̂4, more precisely to the determination of the possible values of µ̂4,4. The
proposition above suggests an equivalent point of view: we know all about the weight
distribution of cosets of D̂5, but we do not know, for such a coset, how much leaders
have for one given position in its support.
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136 PASCALE CHARPIN AND VICTOR ZINOVIEV

4. Equivalent cosets. At the end of this paper we will give numerical results
on the coset weight distributions of the code B̂ for m = 7 and m = 9. We obtain these
results with the aid of a computer; however, the computation was possible because
of some properties on the equivalent cosets. In this section we want to present these
properties and their corollaries.

Let K and G be, respectively, the fields of order 2 and of order N . Since we treat
primitive binary codes, we can consider extended codes as K-subspaces in the group
algebra of the additive group of G. This representation is more convenient when we
want to describe the permutations on cosets which conserve the code B̂. So, in this
section, the ambient space is the group algebra A = K[{G,+}] and a code word is a
formal sum:

x =
∑
g∈G

xgX
g, xg ∈ K.

Recall that the code B̂ is invariant under the affine permutations on G. That means
that any permutation

σu,v :
∑
g∈G

xgX
g 7−→

∑
g∈G

xgX
ug+v , u 6= 0, u ∈ G, v ∈ G

is an automorphism of the code B̂ [18]. Therefore, for any coset D = x+ B̂, we have

obviously σu,v(D) = σu,v(x) + B̂. Let us define, for any integer s ∈ [0, N − 1], the
mapping φs(x),

φs : A → G, φs(x) =
∑
g∈G

xgg
s,(10)

where by convention φ0(x) =
∑

g∈G xg.

Definition 4.1. The extended 3-error-correcting BCH-code B̂ is the following
subspace of A:

B̂ = { x | φs (x) = 0, s ∈ {0} ∪ cl(1) ∪ cl(3) ∪ cl(5) },
where cl(t) is the cyclotomic coset of 2 (mod n) containing t and m ≥ 5. So the

dimension of B̂ equals N − 3m− 1, where N = 2m and n = N − 1.
Definition 4.2. There are 23m+1 cosets of B̂. Each coset x + B̂ is uniquely

defined by its so-called syndrome:

S(x) = ( φ0(x), φ1(x), φ3(x), φ5(x) ).

When φ0(x) = 0, all weights of the coset are even and we will say that the coset is
even; otherwise, all weights of the coset are odd and we will say that the coset is odd.

We will see that our problem is in fact the determination of the weight distribu-
tions of the cosets of B̂ of weight 4. Moreover, the odd cosets can be studied simply
from the even cosets. For this reason we now study even equivalent cosets. Recall
that we denote by D̂ the set of all cosets of B̂.

Lemma 4.3. Let us define the following subsets of D̂:

B1 = { x+ B̂ | φ0(x) = 0 and φ1(x) 6= 0 },(11)

B2 = { x+ B̂ | φ0(x) = 0 and φ1(x) = 0 },(12)
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ON COSET WEIGHT DISTRIBUTIONS OF SOME BCH-CODES 137

B3 = { x+ B̂ | φ0(x) = φ1(x) = φ3(x) = 0 }.(13)

Then B1 is contained in the Reed–Muller code R(m − 1,m) of order m − 1 and not
contained in R(m − 2,m); B2 is contained in R(m − 2,m); B3 is contained in the
extended 2-error correcting BCH-code.

Proof. Recall the definition of the Reed–Muller code of length N and order r,
denoted by R(r,m). For any t ∈ [0, n] let us define the 2-weight of t to be ω2(t) =∑m−1

i=0 ti, where

t =
m−1∑
i=0

ti2
i

is the binary expansion of t. Let Ir be the set of integers from [0, n] such that
ω2(t) < m − r. The code R(r,m) is the set of code words x satisfying φt(x) = 0
for all t ∈ Ir. We have Im−1 = {0} and Im−2 = {0} ∪ cl(1). The extended 2-error
correcting BCH-code is the set of code words satisfying φt(x) = 0 for t in {0}∪cl(1)∪
cl(3).

Lemma 4.4. Let u and v be in G, where u 6= 0. Consider a coset x + B̂ whose
syndrome is S(x) = (0, δ, γ, λ). Then the syndrome of the coset σu,v(x) + B̂ is as
follows:

S(σu,o(x)) = (0, uδ, u3γ, u5λ)(14)

and

S(σ1,v(x)) = (0, δ, γ + δv2 + δ2v, λ+ δv4 + δ4v).(15)

Proof. For any code word x =
∑

g∈G xgX
g, we have

φt(σu,o(x)) =
∑
g∈G

xg(ug)
t = utφt(x).

Thereby (14) follows immediately. Now φt(σ1,v(x)) = φt(X
vx). So, for t = 1, 3 and 5

we obtain

φ1(X
vx) =

∑
g∈G

xg(g + v) = φ1(x) + v wt(x) = φ1(x) = δ,

φ3(X
vx) =

∑
g∈G

xg(g + v)3 = φ3(x) + v2φ1(x) + v(φ1(x))2 = γ + δv2 + δ2v,

φ5(X
vx) =

∑
g∈G

xg(g + v)5 = φ5(x) + v4φ1(x) + v(φ1(x))4 = λ+ δv4 + δ4v,

where the sums are computed modulo 2. Then we obtain (15), therefore completing
the proof.

Let us define an equivalence relation ∆ on the set D̂ of the cosets of B̂. Let u
and v be any elements in G, where u 6= 0; for any D1 ∈ D̂ and any D2 ∈ D̂,

D1∆D2 ⇔ ∃ u, v, u 6= 0 such that D1 = σu,v(D2).(16)
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138 PASCALE CHARPIN AND VICTOR ZINOVIEV

From now on, D1 is equivalent to D2 means that D1∆D2. For a given D, we are
interested in the number of cosets D1 such that D∆D1. Moreover, we want to char-
acterize explicitly the cosets D1 by its syndromes. We here study even cosets; hence
the syndrome of D will always be of the form (0, δ, γ, λ), and the weight of such a
coset should be 2, 4, or 6.

Since m is odd then 3 (respectively, 5) and 2m − 1 are relatively prime. Hence
it follows from (14) that there are always N − 1 distinct cosets σu,0(D), u ∈ G∗.
Suppose that δ = 0, meaning D ∈ B2. It follows from (15) that σ1,v(D) = D for any
v. In this case the coset D is an orphan, because each coordinate position is covered
by at least one leader of D (see Definition 2.1). The weight of D could be 4 or 6.
When it is 4 the supports of two leaders cannot intersect, proving that the number
of leaders is N/4. Since B2 is contained in R(m − 2,m), the support of any code
word of weight 4 is an affine subspace of dimension 2. As there are (N − 1)(N − 2)/6
linear subspaces of dimension 2, there are the same number of cosets of weight 4 in
B2. On the other hand, there are N2 cosets in B2, implying that the number of cosets
of weight 6 in B2 is

N2 − (N − 1)(N − 2)/6− 1 = (N − 1)(5N + 8)/6.

Moreover, by definition, B3 is composed of N − 1 cosets of weight 6, if we except B̂
itself.

So we have proved the following.
Proposition 4.5. Let D ∈ B2. Then D is an orphan and

card { D1 | D∆D1 } = card { σu,0(D) | u ∈ G∗ } = N − 1.

When the weight of D is 4, D has N/4 leaders.
There are (N−2)/6 nonequivalent cosets of weight 4 and (5N+8)/6 nonequivalent

cosets of weight 6 in B2.
There is only one coset D of weight 6 in B3 up to equivalence. The cosets of B3

are σu,0(D), u = αk, whose syndromes are (0, 0, 0, αk) (α denotes here a primitive
element of G = GF (2m)).

Suppose now that δ 6= 0; i.e., we consider cosets D in B1. It comes from (15) that
D is invariant under a permutation σ1,v if and only if

δv2 + δ2v = 0 and δv4 + δ4v = 0.

The mapping v → δv2 + δ2v is linear; its kernel has dimension 1. Hence it takes
exactly 2m−1 distinct values. Since m is odd, we obtain the same result for the
mapping v → δv4 + δ4v. In both cases the kernel is {0, δ}; so, by applying σ1,v,
we obtain exactly 2m−1 different syndromes. Suppose that the weight of D is 4.
Whenever D contains the code words a whose support is { a1, a2, a3, a4 }, it
contains also the word Xδa whose support is { a1 + δ, a2 + δ, a3 + δ, a4 + δ }. These
code words do not intersect. Indeed, the equalities a1 = a2 + δ and a3 = a4 + δ would
imply

∑4
i=1 ai = 0, meaning that D is contained in R(m− 2,m) (i.e., δ = 0). So we

have proved the following.
Proposition 4.6. The set B1 contains N2(N − 1) elements. For any D ∈ B1

we have

card { D1 | D∆D1 } = N(N − 1)/2.

So there are 2N classes of nonequivalent cosets in B1.
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ON COSET WEIGHT DISTRIBUTIONS OF SOME BCH-CODES 139

The permutation σ1,v leaves a coset D with the syndrome (0, δ, γ, λ) invariant if
and only if v = δ. Therefore, when the weight of D is 4, the number of leaders in D
is even: whenever D contains a word a, it contains also the word Xδa, which cannot
be equal to a.

There are N(N − 1)/2 distinct code words of weight 2 and each coset of weight 2
contains only one code word of weight 2. All cosets of weight 2 are in B1, because the
minimum weight of R(m− 2,m) is 4. Since the group of the σu,v is doubly transitive,
they are equivalent. The syndromes can be calculated from the formulas of Lemma
4.4.

Proposition 4.7. The cosets of weight 2 are in B1. The corresponding syn-
dromes are of the form

( 0, u, u3 + uv2 + u2v, u5 + uv4 + u4v ), u ∈ G\{0}, v ∈ G.

These cosets are the σu,v(D), where D is the coset whose leader is 1 + X and whose
syndrome is (0, 1, 1, 1).

Note that the coset σu,v(D) is equal to the coset σu,v′(D) if and only if v′ = v or
v′ = v + u. This gives us N(N − 1)/2 different cosets of weight 2.

5. Cosets weight distribution: The hard cases.

5.1. Cosets of minimum weight 4. We begin by giving the results we have
on cosets of weight 4 of B, the elements of D4. Moreover we claim that the weight
distributions of cosets of D4 can be precisely obtained from those of the cosets of D̂4.

Proposition 5.1. Let F be any coset of D4. The weight distribution of F is
uniquely defined by the value µ4,4, where µ4,4 is an even number in the interval

2 ≤ µ4,4 ≤ (n+ 1)/4 − 2.

Moreover,

µ4,4 + µ4,5 = µ5,5 =
(n− 1)(n− 7)

120
.

The coset F can be seen as a shortened coset of D̂4 with parameter µ̂4,4 = µ4,4.
Proof. From equation (A.4) and the equality α4 = α5 (see (2)) we have for an

arbitrary coset F of weight 4

µ4,4 + µ4,5 =
1

α5
=

(n− 1)(n− 7)

120
.

Extending F , we clearly obtain a coset of weight 4 of B̂, which has as its set of leaders
the set of leaders of F . So µ4,4 is even according to Proposition 4.6. Of course, F
cannot be an orphan, since n is an odd number, implying µ4,4 < n/4 and therefore
µ4,4 < (n+ 1)/4 − 1 (because (n+ 1)/4 − 1 is also odd).

Proposition 5.2. Let F be any coset of weight 4 of B̂, i.e., F ∈ D̂4. The weight
distribution of F is uniquely defined by the value µ̂4,4, where µ̂4,4 is an even number
in the interval

2 ≤ µ̂4,4 ≤ N/4.

Proof. Suppose that F is an arbitrary coset of B̂ of weight 4:F ∈ D̂4. Since
every weight of F is even we obtain from formula (E.4) the value µ̂4,6:

µ̂4,6 =
1− α̂4µ̂4,4

α̂6
.(17)
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140 PASCALE CHARPIN AND VICTOR ZINOVIEV

Therefore, the weight distribution of F is uniquely determined from the value µ̂4,4.
Now note that two leaders of F have disjoint supports, since the minimum weight of
B is 8. Hence µ4,4 ≤ N/4. From Proposition 4.6 we have that the number µ̂4,4 is
always even.

It is clear that any coset F ∈ D̂4 with µ̂4,4 leaders has N − 4µ̂4,4 different parents

from D̂5. As we already know from Proposition 4.5, there are at least (N−1)(N−2)/6

cosets in D̂4 with weight distribution

µ̂4,4 = N/4 and µ̂4,6 = N(N − 8)(N − 32)/720.(18)

These cosets have no parent; they are orphans. There are N different cosets in D̂3

which are generated by any such orphan. They are the N children of the orphan.
Can two different orphans R and R′ give the same children? If yes, that implies that
the distance between these two cosets is 2, i.e., that the set of code words

R +R′ = { x+ x′ | x ∈ R, x ∈ R′ }

has minimum weight 2. So, if the set above has minimum weight 4 there is a contra-
diction. Particularly, if the orphans R and R′ are in the RM-code of order m− 2, the
set of the children of R and the set of the children of R′ do not intersect. In this way,
we obtain at least N(N − 1)(N − 2)/6 cosets of weight 3. In accordance with (7), we
have the following.

Proposition 5.3. Any coset in D̂3 is a child of some orphan of B̂ of weight 4
which is contained in the RM-code of order m− 2.

5.2. Cosets of minimum weight 6. At the end, we have to study the cosets
of D̂6. It is the same situation we had for cosets of D5. Although we know the weight
distribution of such cosets, we cannot give the cardinality of D̂6. However, we can
give a property analogous to those stated in Proposition 5.3.

Proposition 5.4. All cosets of B̂ of weight 6 have the same weight distribution.
Such a coset is an orphan and it contains

µ̂6,6 = N(N − 2)(N − 8)/720(19)

code words of weight 6.
Proof. It is clear that the equation (E.6) has only one solution (it can be deduced

also from [1]). That is µ̂6,6 = 1/α̂6. We deduce (19) from the formula (3), which gives

the value of α̂6. Then all cosets in D̂6 have the same weight distribution. Such cosets
are orphans since the covering radius of B̂ is 6.

Now take F ∈ D̂6 and consider its children. They are cosets G ∈ D̂5 such that

G = F + v(i)

for some i ∈ [1, N ]. So if we denote

supp(G) =
⋃

v is a leader of G

supp(v),

then we have for such a child of F

supp(G) ⊆ {1, . . . , N} \ {i}.
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ON COSET WEIGHT DISTRIBUTIONS OF SOME BCH-CODES 141

Proposition 5.5. Let G be any coset from D̂5. Then G is not an orphan, and
there is i ∈ [1, N ] and a coset F ∈ B2 (i.e., a coset of weight 6, which belongs to Reed–
Muller code R(m − 2,m)) such that G is a child of F with G = F + v(i). Moreover,
we have

supp(G) = { 1, . . . , N } \ {i}.

Proof. Let F and F ′ be two arbitrary cosets from D̂6. Using the same idea we
used for the proof of Proposition 5.3, we can say if F + F ′ has minimum weight 4,
then the set of the children of F and the set of the children of F ′ do not intersect.
That is particularly true when we consider cosets in B2.

From Proposition 4.5 we know that there are (N −1)(5N +8)/6 distinct cosets of
weight 6 in B2. Each such coset has exactly N children because any coset of weight 6 is
an orphan. Since all children of such cosets are distinct, we obtain N(N−1)(5N+8)/6
distinct cosets of weight 5. But from Proposition 3.3 we know that this is exactly
the number Γ̂(5) of different cosets of weight 5. Therefore, any coset G from D̂5 is a

child of some coset F from D̂6. We have G = F + v(i) for some i. Clearly, a leader
of the coset G cannot have the position i in its support. So G is not an orphan and
we have supp(G) ⊆ { 1, . . . , N } \ {i}. Suppose now that there is another position
j which is not covered by supp(G). Then there is a contradiction with the fact that
any coset of D5 is an orphan. Indeed, we can suppose that j = 0 because of the
invariance of cosets of B under affine permutations. With this hypothesis, shortening
G we obtain a coset of B of weight 5 which is not an orphan because ith position is
not covered by the nonzero position of its leaders. According to Proposition 3.2 we
have a contradiction.

6. Summary of results. In this section we summarize the results we have about
the weight distribution of the cosets of the code B and of its extension. These results
are explained in sections 3, 4, and 5. In Table 2, the values we know for the number
of cosets of a given weight are presented. We give the distance matrices of B and B̂
in Tables 3 and 4. Let C be a code with the dual distance t. Recall that the distance
matrix of C is the u × (t + 1) matrix containing the t + 1 first coefficients of the u
distinct weight distributions of cosets of C. The weight distributions of the cosets of
C can be fully calculated from these elements [12].

Table 2

The number Γ(i) of cosets of B of weight i and the number Γ̂(i) of cosets of B̂ of weight i.

We denote by γ the number of cosets of B̂ of weight 4 which are not in R(m− 2,m).

i Γ(i) Γ̂(i)

1 n N
2 n(n− 1)/2 N(N − 1)/2
3 n(n− 1)(n− 2)/6 N(N − 1)(N − 2)/6
4 ? (N − 1)(N − 2)/6 + γ

5 = Γ̂(6) N(N − 1)(5N + 8)/6
6 0 ?

In Table 2, it clearly appears that the knowledge of γ involves the knowledge
of any Γ̂(i), implying the knowledge of any Γ(i) since we know the total number of
cosets. The coefficients of the distance matrix of B (see Table 3) depend only on

those of the distance matrix of B̂ (see Table 4). Moreover, we have proved that all

D
ow

nl
oa

de
d 

10
/2

5/
12

 to
 1

28
.9

3.
58

.1
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



142 PASCALE CHARPIN AND VICTOR ZINOVIEV

Table 3

The distance matrix of the code B of length n, n = 2m − 1, m odd.

0 1 2 3 4 5
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 (n− 1)(n− 7)/120 + 1

0 0 0 1 µ̂4,4 − 1 µ̂3,5 − µ̂4,4 + 1
0 0 0 1 · · · · · ·
0 0 0 0 µ̂4,4 ≤ (n− 7)/4 µ̂5,5 − µ̂4,4

0 0 0 · · · · · · · · ·
0 0 0 0 0 (n− 1)(n− 7)/120

Table 4

The distance matrix of the code B̂ of length N , N = 2m, m odd.

0 1 2 3 4 5 6
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 (N − 2)(N2 − 10N + 136)/720
0 0 0 1 0 (N − 2)(N − 8)/120 + 1 0

0 0 0 0 µ̂4,4 ≤ (N − 8)/4 0 µ̂4,6

0 0 0 0 · · · 0 · · ·
0 0 0 0 N/4 0 N(N − 8)(N − 32)/720
0 0 0 0 0 (N − 2)(N − 8)/120 0
0 0 0 0 0 0 N(N − 2)(N − 8)/720

coefficients of the distance matrix of B̂ are known as soon as the possible values of
µ̂4,4 are known (see Proposition 5.2).

Therefore, we conclude that the problem of the weight distribution of the cosets
of the 3-error-correcting BCH-codes, extended or not (i.e., B or B̂), is reduced to the

problem of the weight distribution of the cosets of weight 4 of B̂, which are not in the
Reed–Muller code of order m− 2.

7. Numerical results and conjectures. For length 128 we have computed
the cosets weight distribution of B̂. We give in Table 5 the distance matrix and the
number of cosets for each weight. Note that in this case, we obtain 12 distinct weight
distributions, whereas we had 8 weight distributions for length 32. So we conjecture
that the number of weight distributions increases with the length. We will make our
conjecture precise later. Now we want to explain how Table 5 was completed.

• The number of cosets and the corresponding lines of the distance matrix are
known for cosets of weight 1, 2, 3, or 5 for any length (see sections 3 and 6).

• So it remains to determine the number of cosets of weight 4 or 6 and the
weight distributions of the cosets of weight 4. For the computation of weight distri-
butions we only need to determine the number of leaders. We use the definition of
cosets by syndrome (see Definition 4.2).

• We know the number of cosets of weight 4 or 6 contained in B2, i.e., in
R(m−2,m) (see Proposition 4.5). There are 127×21 cosets of weight 4 and 127×108
cosets of weight 6. Such a coset of weight 4 has 32 leaders; it is an orphan. Our
numerical results prove that all orphans of weight 4 are in B2.

• From now on we study the cosets of weight 4 or 6 contained in B1, i.e., in
R(m − 1,m)\R(m − 2,m). There are 127 × 214 cosets in B1, whose 127 × 64 have
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weight 2. So there remain 127 × 16320 cosets of weight 4 or 6. Actually, we have
computed the syndrome of any code word of weight 4 which is not in R(m − 2,m).
Taking into account the results of section 4 it is sufficient to consider the syndromes

( 0, 1, 0, λ ) and ( 0, 1, 1, λ ), λ ∈ GF (128).

Indeed, they define 128 + 127 cosets of weight 4 or 6; the syndrome (0, 1, 1, 1) corre-
sponds to a coset of weight 2. From Proposition 4.6 each of these cosets has 127× 64
equivalent cosets. Then we obtain

127× 64× (128 + 127) = 127× 16320

distinct cosets, and it is exactly the number of cosets of weight 4 or 6 in B1. So we
need to examine a few code words of weight 4; the number of such code words of the
same syndrome is the number of leaders.

• We found that 127 × 192 syndromes correspond to cosets of weight 6. By
adding the number of such cosets in B2, we obtain the total number of cosets of weight
6. There remain 127× 16128 cosets of weight 4 in B1. The number of leaders is even,
in accordance with Proposition 4.6. This number takes all even value in the range
[2, 10].

Table 5

The distance matrix of the 3-error-correcting extended BCH-code of length 128; Wmin is the
minimum weight of the coset.

Wmin Number of cosets Number of words
of weight:

0
1
2
3
4
4
4
4
4
4
5
6

1
128

127× 64 = 8128
127× 2688 = 341376
127× 1792 = 227584
127× 6272 = 796544
127× 5376 = 682752
127× 2240 = 284480
127× 448 = 56896
127× 21 = 2667

127× 13824 = 1755648
127× 300 = 38100

0 1 2 3 4 5 6
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 2667
0 0 0 1 0 127 0
0 0 0 0 2 0 2648
0 0 0 0 4 0 2608
0 0 0 0 6 0 2568
0 0 0 0 8 0 2528
0 0 0 0 10 0 2488
0 0 0 0 32 0 2048
0 0 0 0 0 126 0
0 0 0 0 0 0 2688

By using Tables 3 and 5, it is very easy to compute the distance matrix of the
code B (of length 127). We also easily obtain the number of cosets of B of weight i,
i ∈ [0, 5], by using Table 2. It is more complicated if we want to compute to number
of cosets of weight 3 or 4 for each weight distribution. We proceed as follows.

• Let x(i) be the number of cosets of B̂ of weight 4 such that µ̂4,4 = i, i < N/4.
• Then x(i) = 127×64×y(i), where y(i) is the number of nonequivalent cosets

in the sense of (16); we can suppose that the y(i) cosets have position zero in their
support.

• Let F be such a coset. The cardinality of its support is 4i. Consider the 64
cosets σ1,v(F ). Among these cosets 2i have position zero in their support and 64− 2i
have not.

• So we obtain from F , 127 × 2i cosets of weight 3 of B and 127 × (64 − 2i)
cosets of weight 4 of B. Multiplying these numbers by y(i), we obtain the number of
cosets of weight 3 and 4 whose weight distributions are defined by µ̂4,4 = i.
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• From the 127× 21 orphans of weight 4, we obtain the same number of cosets
of B of weight 3. They correspond to one and only one weight distribution.

Recall that, for length 32, all cosets of weight 4 have the same weight distribution
with µ̂4,4 = 2. It is because in this case the code B̂ is exactly the Reed–Muller code
of order 2. Any coset of weight 4 is a coset of the RM-code of minimum weight 8.
Since the supports of these code words of weight 8 are the affine subspaces of K5

of dimension 3, it is clear that such a coset cannot contain more than two words of
weight 4.

For length 128, we have found six different weight distributions for the cosets of
weight 4. For length 512, we made a random exploration of cosets of weight 4. Our
numerical results allow us to state the following conjecture.

Conjecture 1. Let B̂ be the extended 3-error-correcting BCH-code of length 512.
There are 12 different weight distributions for the cosets of B̂ of weight 4. These
distributions are determined by the number µ̂4,4 of code words of weight 4. This
number is

1. µ̂4,4 = 128 for the orphans contained in the RM-code of order 7. (We did
not find other cosets corresponding to this value.)

2. µ̂4,4 = i for all even integers i in the range [12, 32].
So we have shown that the situation here is completely different from those we had

for the 2-error-correcting BCH-codes. In both cases the external distance is a constant
not depending on the length. The number of weight distributions of cosets is constant
for any length for the 2-error-correcting BCH-codes. And that is true not only when
m is odd (and codes are completely regular) but also when m is even [10, 20]. For the
3-error-correcting BCH-codes, we strongly conjecture that this number increases with
the length. When m is odd these codes are uniformly packed, and we point out this
property for m = 5, 7, and 9. Moreover, we are able to propose general conjectures.

Conjecture 2. Let B̂ be the extended 3-error-correcting BCH-code of length N ,
m odd. Then any coset of B̂ of weight 4, which is an orphan, is contained in the
RM-code of order m− 2.

Conjecture 3. Denote by G the Galois field of order 2m, m odd. For any (A,B),
where A and B are any elements in G, let us denote by E(A,B) the following system
of three equations, with four variables, on G:

W +X + Y + Z = 1,

W 3 +X3 + Y 3 + Z3 = A,

W 5 +X5 + Y 5 + Z5 = B.

Let N (A,B) be the number of solutions of E(A,B) satisfying X 6= Y 6= Z 6= W .
Consider the (A,B) such that N (A,B) is not zero and recall that N (A,B) is always
even (see Proposition 4.6). Then there exist two even integers depending on m, say
`m and um, `m < um < 2m−2, such that

`m ≤ N(A,B) ≤ um.

Moreover, for any even value i in the range [`m, um], there is an (A,B) such that
N (A,B) = i.
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