Cryptanalysis of a Fast Encryption Scheme for Databases

Stéphane Jacob

Project-team SECRET, INRIA Paris-Rocquencourt

June 15, 2010

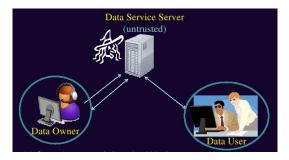
Outline

Database Encryption

- Context
- Description of the FCE Encryption Scheme

2 An Attack against FCE

- Concept
- Algorithm
- Simulation Results and FCE Variant


Outline

1 Database Encryption

- Context
- Description of the FCE Encryption Scheme

- Concept
- Algorithm
- Simulation Results and FCE Variant

Data As Service: Outsourced Data

- The client is trusted but has low storage/computation capacities.
- The server is untrusted but has high storage/computation capacities.

Naïve but Impractical Examples

- Encrypt the whole database (*e.g.* AES in CBC mode):
 - every query requires a full database decryption.
- Encrypt every field separately (with its own IV):
 - every query requires a full column decryption,
 - it requires a lot of padding.

General Goal

We want to:

- Prevent information leaking.
- Detect data falsification.
- Use fast encryption and decryption algorithm.
- Keep a good structure in order to be able to query the database.

There is a trade-off between functionalities and security, and a perfect solution does not exist.

Some Methods Proposed by the Database Community

- Order preserving encryption (OPE).
- Prefix preserving encryption (PPE).

Outline

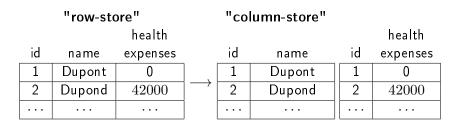
Database Encryption

- Context
- Description of the FCE Encryption Scheme

2 An Attack against FCE

- Concept
- Algorithm
- Simulation Results and FCE Variant

Fast Comparison Encryption


📔 T. Ge and S. Zdonik.

Fast, secure encryption for indexing in a column-oriented DBMS. In *International Conference on Data Engineering - ICDE 2007*, pages 676–685. IEEE, 2007.

- This encryption scheme allows fast comparison *i.e.* it allows to quickly decide if 2 data are different.
- The comparison of 2 encrypted data with "Early Stopping":
 - starts from the most significant byte,
 - proceeds byte by byte,
 - stops once a difference is found.

This can be obtained by using stream ciphers.

Database Storage

health

id	expenses		
1	$0\oplus s_0$		
2	$42000 \oplus s_1$		
• • •	•••		

Encryption with $(s_t, t \ge 0)_{\{K, \text{ page number}\}}$

Encryption Algorithm: FCE

- There is a unique secret k-bit length key K for the whole database.
- Encryption proceeds page by page.
- To each plain text page corresponds a polynomial:

 $P(x) = ax^3 + bx^2 + cx + d \mod p$ with $a, b, c, d \in [0, p-1]$,

where a, b, c, and d are computed from K and the page number j using a classic block encryption, *e.g.* AES(K, j).

Parameters:

- key size $k=2^{\kappa}=2^{15}$ bits,
- page size $p = 2^{\kappa+1} = 2^{16}$ bytes,
- a, b, c, d size: 64 bits per 64Kbytes page.

Encryption Algorithm: FCE

Page encryption:

For i from 0 to p-1:

•
$$d_i = P(i) \mod k$$

•
$$v_i = K_{\{d_i \rightarrow d_i + 7\}}$$
 is the key byte starting at the bit d_i :
 $K_0, K_1, \dots, \underbrace{K_{d_i}, \dots, K_{d_i+7}}_{v_i = K_{\{d_i \rightarrow d_i+7\}}}, \dots, K_{k-1}$

• $c_i = m_i \oplus v_i$

An Attack against FCE Concept

Outline

Database Encryption

- Context
- Description of the FCE Encryption Scheme

2 An Attack against FCE

- Concept
- Algorithm
- Simulation Results and FCE Variant

An Attack against FCE Concept

Known Plain Text Attack

Input: half a page of plain text $(2^{\kappa} \text{ bytes } m_i)$ and the corresponding half page of cipher text $(2^{\kappa} \text{ bytes } c_i)$.

Output: key K (and thus all the polynomials of the different pages).

An Attack against FCE Concept

Important Remark

$$\forall d'$$
, the keys $\begin{cases} K' = K \gg d' \\ P'(x) = ax^3 + bx^2 + cx + (d - d') \end{cases}$ are equivalents.

Therefore, we are looking for $\widetilde{K} = K \ggg d$.

An Attack against FCE Concept

Naïve Attack

- For each triple (a, b, c), we try to rebuild the key from the keystream.
- In case of success, we search for d by computing the page polynomial, • from the page number and the key we built.

Cost: 2^{48+15} polynomial evaluations + 2^{15} AES computations.

Main Idea

Searching for (α, β, γ) antecedents of (1, 2, 3) by \widetilde{P} , *i.e.* triples (α, β, γ) where $\widetilde{P}(\alpha) = 1$, $\widetilde{P}(\beta) = 2$, $\widetilde{P}(\gamma) = 3$. Indeed, v_0 (which is known), v_{α} , v_{β} and v_{γ} overlap:

$$v_{0} = \widetilde{K}_{0}, \underbrace{\widetilde{K}_{1}, \ldots, \widetilde{K}_{7}}_{v_{\alpha}}$$

$$v_{\alpha} = \underbrace{\widetilde{K}_{\widetilde{P}(\alpha)}, \ldots, \widetilde{K}_{\widetilde{P}(\alpha)+6}, \widetilde{K}_{\widetilde{P}(\alpha)+7}}_{v_{\beta}}$$

$$v_{\beta} = \underbrace{\widetilde{K}_{\widetilde{P}(\beta)}, \ldots, \widetilde{K}_{\widetilde{P}(\beta)+6}, \widetilde{K}_{\widetilde{P}(\beta)+7}}_{v_{\gamma}}$$

$$v_{\gamma} = \underbrace{\widetilde{K}_{\widetilde{P}(\gamma)}, \ldots, \widetilde{K}_{\widetilde{P}(\gamma)+6}, \widetilde{K}_{\widetilde{P}(\gamma)+7}}_{\widetilde{P}(\gamma)+6}, \widetilde{K}_{\widetilde{P}(\gamma)+7}$$

Outline

Database Encryption

- Context
- Description of the FCE Encryption Scheme

2 An Attack against FCE

- Concept
- Algorithm
- Simulation Results and FCE Variant

Step 1: Reduction of the Number of Systems

$$\mathcal{E}_{1} = \left\{ \alpha \text{ odd } | v_{\alpha\{0\to6\}} = v_{0} \gg 1 \right\}$$

$$\mathcal{E}_{2}(x) = \left\{ \beta | v_{\beta\{0\to6\}} = (v_{0} \gg 2, x) \right\}$$

$$\mathcal{E}_{3}(x, y) = \left\{ \gamma \text{ odd } | v_{\gamma\{0\to6\}} = (v_{0} \gg 3, x, y) \right\}$$

Remark:

• Both
$$lpha$$
 and γ are odd.

$$|\mathcal{E}_1| \sim \frac{1}{2} \frac{2^{15}}{2^7} = 2^7 \quad |\mathcal{E}_2(x)| \sim \frac{2^{15}}{2^7} = 2^8 \quad |\mathcal{E}_3(x,y)| \sim \frac{1}{2} \frac{2^{15}}{2^7} = 2^7$$

Thus we have $\sim 2^{22}$ triples (α, β, γ) .

Building cost: 7.2^{κ} masks and comparisons.

Step 2: Filters the (a, b, c)

$$\begin{split} & \text{For all } \alpha \in \mathcal{E}_1 \\ & x_\alpha \leftarrow \text{lsb bit of } v_\alpha \\ & \text{For all } \beta \in \mathcal{E}_2(x_\alpha) \\ & y_\beta \leftarrow \text{lsb bit of } v_\beta \\ & \text{For all } \gamma \in \mathcal{E}_3(x_\alpha, y_\beta) \\ & \text{If the system } (S) \text{ has a solution } (a, b, c) \text{ in } \mathbb{Z}/2^{\kappa}\mathbb{Z} \\ & \mathcal{L} \leftarrow \mathcal{L} \cup \{(a, b, c)\}. \end{split}$$

$$S: \begin{pmatrix} \alpha^3 & \alpha^2 & \alpha \\ \beta^3 & \beta^2 & \beta \\ \gamma^3 & \gamma^2 & \gamma \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix} 2^{\kappa}$$

Cost of building \mathcal{L} : 2^{22} solving of 3×3 systems (~ 25 multiplications each). Size of \mathcal{L} : $\sim 2^{21}$.

Step 3: Rebuilding the key K

- For every solution, we build the corresponding key.
- If this works, we then search for d.

 $\mathsf{Cost:}\ 2^\kappa\ \mathsf{AES}.$

Complexity

Thus the cost of the attack is:

 2^{15} AES $+ \sim 2^{25}$ multiplications on 16 bits.

With only half a page of plain text/cipher text, we are able to recover the key K and the whole set of polynomials in less than 10 minutes on a standard PC.

Outline

Database Encryption

- Context
- Description of the FCE Encryption Scheme

2 An Attack against FCE

- Concept
- Algorithm
- Simulation Results and FCE Variant

Simulation Results

Simulations of 300 attacks on 2 distinct computers (150 on each), only using a single core of each computer.

Type of processor	Time (FCE)		
	Min.	Max.	Av.
Intel(R) Core(TM)2 Duo	283 s	784 s	$514 \mathrm{s}$
CPU E6850 @ 3.00GHz			
Intel(R) Xeon(R)	$479 \mathrm{s}$	1295 s	828 s
CPU 5120 @ 1.86GHz			

Table: Time of the attacks (in seconds)

FCE Variant

In FCE, computations are made in the ring $\mathbb{Z}/2^{\kappa}\mathbb{Z}$.

For a FCE variant, where the computations are made in the field $GF\left(2^{\kappa}\right)$, the attack can be adapted:

- no trick to get rid of d: naïve attack complexity multiplied by 2^{16} ,
- complexity of our attack multiplied by 2^{12} .

From a cryptographic point of view, database encryption is still an open problem.