Lattice coding over AWGN channel - Introduction -

Vincent Herbert

TELECOM Bretagne - Département SC

Monday, February 4, 2013 - 10h

Course Material

John Horton Conway and Neil James Alexander Sloane. Sphere-Packings, Lattices, and Groups. Springer-Verlag New York, Inc., 1987.

David Forney.

Lattice and Trellis Codes - Lectures 24 and 25 http://ocw.mit.edu, 2005.

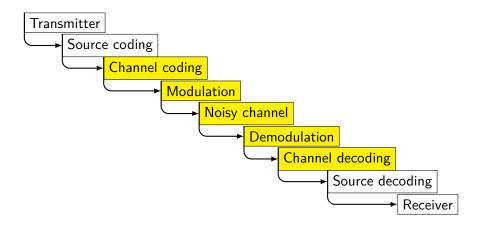
These objects are studied in different areas.

- mathematics
- analog-to-digital conversion
- data compression
- design of error-correcting codes
- digital signature
- data encryption
- cristallography

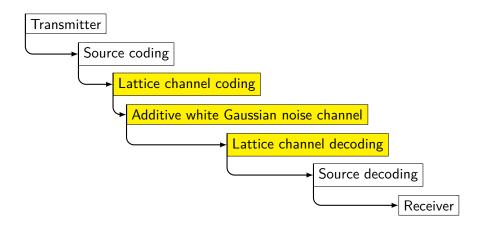
. . .

They have both a theoretical and practical interest.

Communication Channel



Today Example : Lattice Communication Channel



Theorem

Let f be a signal (i.e. a function of time) contain no frequencies higher than cutoff frequency, W hertz. It is completely determined by giving its ordinates at a series of points spaced $\frac{1}{2W}$ second apart.

Guess *f* has almost all of its energy in [0, T]. Sample *f* each $\frac{1}{2W}$ second during *T* seconds. Set $F = (f(0), f(\frac{1}{2W}), f(\frac{2}{2W}), \dots, f(\frac{n-1}{2W}))$ where n = 2TW. We obtain *f* from *F* with the cardinal series :

$$f(t) = \sum_{i=0}^{\infty} f(\frac{i}{2W}) \frac{\sin(2\pi W(t - i/2W))}{2\pi W(t - i/2W)}$$

Let \mathcal{E}_f be the energy in f(t).

$$\mathcal{E}_f := \int_{-\infty}^{\infty} |f(t)|^2 \,\mathrm{d}t$$

Proposition

$$\mathcal{E}_f = \frac{1}{2W} \sum_{i=0}^{n-1} f^2(\frac{i}{2W})$$

Let \mathcal{P} be the average power in f(t).

$$\mathcal{P} := \frac{1}{T} \mathcal{E}_{\mathsf{f}}$$

Let $\|.\|$ be the Euclidean norm or length.

$$\|F\|^2 := F \cdot F$$

Let us remind n = 2TW.

Proposition

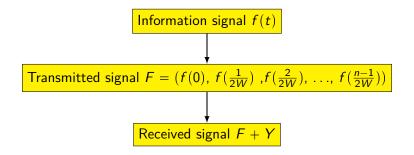
 $\|F\|^2 = 2W\mathcal{E}_f = n\mathcal{P}$

The squared length is proportionnal to the energy in f(t).

F is on the *n*-sphere of radius \sqrt{nP} centered at the origin.

The AWGN channel transmits continuous signals.

Let $Y = (Y_i)_{1 \le i \le n}$ be a family of *i.i.d* random variables. Guess $Y_i \hookrightarrow \mathcal{N}(0, \sigma^2)$ for all $1 \le i \le n$. σ^2 is the average power of the noise.



For the AWGN channel, the code C is a set of points in \mathbb{R}^n .

Denote M the cardinality of C.

The rate of the code is :

$$R = \frac{1}{T} \log_2(M) \text{ bits/s}$$

Each codeword represents a signal of bandwidth W and duration T.

Notice the rate is sometimes defined as :

$$R = rac{1}{n} \log_2(M)$$
 bits/dimension

We want a code with big minimum distance to correct numerous errors. But, keep in mind, we have a power constraint on the signal. Indeed, the squared length is proportionnal to the energy in the signal. Thus, it could be too costly. Noisy-channel coding theorem ensures the existence of a solution.

But, it does not exhibit a way to construct it.

Let P_e be the error probability, that is, the probability of a decoding error. The signal-to-noise ratio SNR is equal to $\frac{\mathcal{P}}{\sigma^2}$.

Theorem

For any rate $R < C = W \log_2(1 + SNR)$ bits/s with T and thus n = 2WT sufficiently large, there exists a code of rate R, average power \mathcal{P} , for which P_e is arbitrarily small. Conversely, such codes do not exist for rates $R \ge C$.

C is called the channel capacity or the Shannon limit.

The spectral efficiency η is equal to $\frac{R}{W}$. It is measured in bit/s/Hz. In practice, we often use : $SNR_{dB} = 10 \log_{10} SNR$. Let $C = \{c_1, \ldots, c_M\}$. Let V(x) be the Voronoi cell of any $x \in C$.

Let x be the sent codeword and y the received word.

y is correctly decoded if and only if $y \in V(x)$.

$$P(y \in V(x)) = \frac{1}{(\sigma\sqrt{2\pi})^n} \int_{V(x)} e^{-\frac{1}{2}(\frac{x}{\sigma})^2} \mathrm{d}x$$

Assume each codeword has the same probability to be sent (uniformity).

$$P_e = 1 - \frac{1}{M} \sum_{i=1}^{M} P(y \in V(c_i))$$

Gaussian channel coding problem

Error-correcting code version

Find a n-dimensional code $\{c_1, \ldots, c_M\}$ such that

$$\|c_i\|^2 \leq n\mathcal{P}$$
 for $i = 1, \ldots, M$

for which P_e is minimized.

A lattice $\Lambda \subseteq \mathbb{R}^n$ is a discrete additive subgroup of the Euclidean space \mathbb{R}^n .

- (additive subgroup) $\Lambda \subseteq \mathbb{R}^n$ is closed under substraction
- (discrete) There is an $\epsilon > 0$ such that any two distinct lattice points $x \neq y \in \Lambda$ are at distance at least ϵ . There is no accumulation point.

It is also a free \mathbb{Z} -module (free abelian group).

A free module is a module which possess a basis.

The cardinal of a basis is the rank of the module. It is often understood as the dimension.

The cardinal of a lattice is infinite.

Counterexample : \mathbb{Q}^n and $\mathbb{Z} + x\mathbb{Z}$ with $x \in \mathbb{R} \setminus \mathbb{Q}$ are not lattices. 0 is an accumulation point. Let $B = (b_1, b_2, ..., b_k)$ be a basis of a lattice Λ with dimension k in \mathbb{R}^n . Let $b_{i,j}$ be the j-th coordinate the n-coordinates vector b_i .

$$G := \begin{pmatrix} b_{1,1} & b_{1,2} & b_{1,3} & \dots & b_{1,n} \\ b_{2,1} & b_{2,2} & b_{2,3} & \dots & b_{2,n} \\ \vdots & \vdots & \vdots & & \vdots \\ b_{k,1} & b_{k,2} & b_{k,3} & \dots & b_{k,n} \end{pmatrix}$$

G is a generator matrix of Λ .

$$\Lambda = \mathbb{Z}^k G$$

The k-order matrix $A := GG^t$ is called the Gram matrix. The $(i, j)^{th}$ entry of A is equal to $b_i \cdot b_j$. The fundamental region Π of Λ is :

$$\left\{\lambda_1 b_1 + \ldots + \lambda_k b_k : 0 \leqslant \lambda_i < 1, \ \forall i \in \llbracket 1, k \rrbracket\right\}$$

We can choose different bases of Λ and thus different fundamental regions.

But, the volume of fundamental regions is invariant. It is named the (fundamental) volume of Λ .

$$\mathsf{Vol}(\Pi) = \sqrt{|\mathsf{Det}(\mathit{Gram})|}$$

If Λ has full-rank, that is k = n, then $Vol(\Pi) = |Det(B)|$.

Assume the code forms a lattice.

Then, all the Voronoi cells are congruent to a polytope V.

V has the same volume than Π .

$$P_e = 1 - \frac{1}{(\sigma\sqrt{2\pi})^n} \int_V e^{-\frac{1}{2}(\frac{x}{\sigma})^2} \mathrm{d}x$$

Lattice version

Find a n-dimensional lattice of volume 1 for which P_e is minimized.

Toy example : In 1D, there is only one lattice of volume 1.

This is an integer lattice $\mathbb Z.$ Not to be confused with an integral lattice.

But, for real-life examples, we upper bound P_e with simpler expressions.

Main lattice problems

Geometrical problems

- Packing : densest packing of equal non-overlapping spheres
- Covering : thinnest covering of equal overlapping spheres
- Quantizing : closest point of a set from a received point
- Communication problem
 - Channel Coding : power-constrained code with minimum P_e

A sphere packing is described by the set of centers and their radius. When the set of centers form a lattice, it is a lattice packing. Lattice packings will be often understood as lattices. Coded modulation systems can be obtained from a lattice. We focus on some of them : lattice constellations or lattice codes. Sphere packings and particularly lattices can be constructed from codes. There often exist different constructions for a same lattice. Let V_n be the volume of the *n*-dimensional unit sphere.

The radius of the spheres in a lattice is the packing radius ρ .

The density of Λ is the proportion of the space occupied by the spheres :

$$\Delta:=\frac{V_n\rho^n}{{\rm Vol}(\Pi)}$$

The larger the volume, the sparser the lattice.

The center density of Λ is :

$$\delta := \frac{\Delta}{V_n}$$

In 2D, the hexagonal lattice A_2 is the densest packing.

In 3D, the face-centered cubic lattice A_3 is the densest lattice.

But, it is not known if it is the densest packing.

Let C be a binary code with minimum Hamming distance d and $x \in \mathbb{R}^n$. x belongs to the set of centers $\Leftrightarrow x$ is congruent to a word of C modulo 2 If C is linear, the sphere packing forms a lattice.

If two distinct centers are congruent, their distance is at least 2.

Else, their Hamming distance is $\ge d$, then their distance is $\ge \sqrt{d}$.

$$\rho \geqslant \frac{1}{2}\min(2,\sqrt{d})$$

This construction gives the densest sphere packings up to dimension 15.

Let us mention the E_8 lattice, for instance.

The minimum Hamming distance is always 1.

A $\mathbb{Z}[i]$ -lattice $\Lambda \subseteq \mathbb{C}^n$ is a free discrete $\mathbb{Z}[i]$ -module of \mathbb{C}^n .

We consider the lattice is generated by a basis $\{b_1, \ldots, b_n\}$ of \mathbb{C}^n as :

$$\Lambda = \left\{ \sum_{i=1}^n a_i b_i : \forall a_i \in \mathbb{Z}[i] \right\}$$

Let C be a binary linear code and $x \in \mathbb{C}^n$.

x belongs to the lattice \Leftrightarrow x is congruent to a word of C modulo 1 + iThe minimum Hamming distance is always 1.

Construction A over different rings and alphabets

To sum up.

For real lattices : $\Lambda = \mathcal{C} + 2\mathbb{Z}^n$.

For $\mathbb{Z}[i]$ -lattice : $\Lambda = \mathcal{C} + (1+i)\mathbb{Z}[i]^n$.

The real construction can be extended for linear codes over rings $\mathbb{Z}/q\mathbb{Z}$. In this way, we obtain the lattice $\Lambda = C + q\mathbb{Z}^n$.

Notice (1 + i) is a Gaussian prime whereas 2 is not since 2 = (1 + i)(1 - i) and 2 does not divide any factor on the right.

So (1 + i) is a prime in $\mathbb{Z}[i]$, it has norm |1 + i| = 2 and thus we have :

 $\mathbb{Z}[i]/(1+i)\mathbb{Z}[i] \cong \mathbb{F}_2$

We can also use Eisenstein integers, $\mathbb{Z}[\omega]$ -lattices, $\omega = e^{i2\pi/3}$.

Other constructions

Let us mention some variants of construction A. We only give keywords.

- A_f, linear codes, real lattices, symmetric bilinear form
- A_{ϕ} , $\mathbb{Z}[e^{i\pi/4}]$ -lattices, code over \mathbb{F}_9 , hermitian bilinear form

Let C be an even binary code with minimum Hamming distance d and $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.

If C is linear, the sphere packing forms a lattice.

The minimum Hamming distance is always 1.

Construction C (Leech, 1964)

Most of the time, it gives non-lattice packings.

Construction D is a modified version which produces lattices .

The construction D generalizes the construction A with linear codes .

It rests upon a nested family of binary linear codes.

It always produces lattices.

Examples : Take $n = 2^m$.

Consider *n*-length Reed-Muller codes $\mathcal{R}(2r, m)$.

For $0 \leq s \leq t \leq m$, $\mathcal{R}(s, m) \subseteq \mathcal{R}(t, m)$.

It is a way to get the n-dimensional Barnes-Wall lattice BW_n.

• Consider *n*-length extended BCH codes of designed distance δ .

For $1 \leq \delta_1 \leq \delta_2 \leq n$, $BCH(\delta_2) \subseteq BCH(\delta_1)$.

We obtain the n-dimensional B_n lattices.

Let C_i be a $[n, k_i, d_i]$ binary linear code for $i \in [[0, a]]$. Let $\mathbb{F}_2^n = C_0 \supset C_1 \supset \ldots \supset C_a$. Let (c_1, \ldots, c_n) be a row basis of \mathbb{F}_2^n such that : c_1, \ldots, c_k , spans C_i for $i \in [[0, a]]$.

• we can build an upper triangular matrix by permuting c_i for $i \in [0, n]$ Let us define :

A lattice in \mathbb{R}^n is defined by the vectors x such that :

$$x = \sum_{i=1}^{a} \sum_{j=1}^{k_i} b_{i,j} \sigma_i(c_j) + y$$

where $b_{i,j} \in \{0,1\}$ and $y \in 2\mathbb{Z}^n$.

The minimum Hamming distance is always 1.

Let C_i be a $[n, n - r_i, d_i]$ binary linear code for $i \in [0, a]$. Let $C_0 \supset C_1 \supset \ldots \supset C_a$. Let (h_1, \ldots, h_n) be a row basis of \mathbb{F}_2^n such that : **a** $h_1, \ldots h_{r_i}$ give parity check equations defining C_i for $i \in [0, a]$. **b** we can build an upper triangular matrix by permuting h_i for $i \in [0, n]$ Let us define :

■ $r_{-1} = 0$

A lattice in \mathbb{Z}^n is defined by the vectors x such that :

$$h_j \cdot x \equiv 0 \mod 2^{i+1}$$

where $i \in \llbracket 0, a \rrbracket$ and $r_{a-i-1} + 1 \leq j \leq r_{a-i}$.

Craig's lattice

$$A_n^{(m)} = \Delta^{m-1} A_n$$

where
$$\Delta = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -1 \\ 1 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$$
 is a matrix of order *n*.

→ densest known packings for $148 \le n \le 3000$ are Craig's lattices when n + 1 is prime and *m* is the nearest integer to $1/2 \frac{n}{\ln(n+1)}$.

Construction E in two words (Bos, Conway & Sloane, 1982)

It generalizes construction D amongst others.

It inputs :

- a lattice Λ in \mathbb{R}^N
- a nested family of *n*-length additive codes $(C_i)_{0 \le i \le a}$ over an elementary abelian group ($\cong \mathbb{F}_p^b$ for *p* prime and *b* integer).

It is a recursive construction in two meanings :

- It outputs a nested family of lattices $(\Lambda_i)_{0 \le i \le a}$ in \mathbb{R}^{nN} with $\Lambda_0 = \Lambda^n$. For some function f, $\Lambda_i = f(\Lambda_{i-1})$ and $\Lambda_{i-1} \subset \Lambda_i$ for $i \in [[1, a]]$.
- It can be applied to the densest lattice Λ_a .

A lattice obtained by applying construction E to Λ is named $\eta(\Lambda)$.

This construction give the densest known lattices in high dimension.

Construction E through example

$$\begin{split} \Lambda &= \mathbb{Z}^2, \ \mathcal{C}_0 = \mathbb{F}_2^2, \ \mathcal{C}_1 = \{00, 11\} \\ & \downarrow \\ D_4 \\ & \downarrow \\ \Lambda_4 = D_4, \ \Lambda_8 = E_8, \ \Lambda_{12}, \ \Lambda_{16}, \ \Lambda_{20} \text{ with } n = 1, \dots, 5. \end{split}$$

The (u, u + v) construction is an algebraic construction. Let C_1 and C_2 be a $[n, k_1, d_1]$ (resp. $[n, k_2, d_2]$) linear codes. It gives a $[2n, k_1 + k_2, \min(2d_1, d_2)]$ code :

$$\left\{ (u, u + v) : u \in \mathcal{C}_1, v \in \mathcal{C}_2 \right\}$$

Denote 1, the all-ones vector.

$$\mathcal{R}(1,1) = \mathbb{F}_2^2$$
$$\mathcal{R}(1,m) = \left\{ (u,u), (u,u+1) : u \in \mathcal{R}(1,m-1) \right\}$$

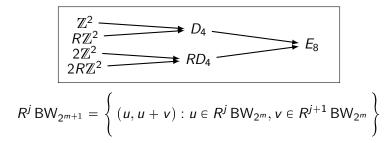
(u, u + v) construction (contd)

Let Λ_1 and Λ_2 be two lattices in \mathbb{R}^n .

The (u, u + v) construction gives a lattice in \mathbb{R}^{2n} :

$$\left\{ (u, u + v) : u \in \Lambda_1, v \in \Lambda_2 \right\}$$

Set
$$R := \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 and $\mathsf{BW}_2 := \mathbb{Z}^2$.



Most of the densest sphere packings are lattice packings.

Some non-lattice packings are denser than the densest known lattice packing.

We ignore if there exists a non-lattice packing denser than the densest lattice packing.

- In practice, lattice codes which minimizes P_e correspond to densest lattice. Nevertheless, sphere packing problem and channel coding problem differ. Both asks to maximize the packing radius ρ .
- But, channel coding problem involves another parameter.
- It requires to minimize the average number of code points at distance 2ρ . Notice, the minimum distance $d = 2\rho$.
- The minimum squared distance d^2 is also important parameter of a lattice.

Since $0 \in \Lambda$, d^2 is equal to the minimum squared length.

The coding gain of a code C_1 over a code C_2 of minimum distance d_1 (resp. d_2) and average energy \mathcal{E}_1 (resp. \mathcal{E}_2) is equal to

$$\gamma(\mathcal{C}_1, \mathcal{C}_2) := \frac{d_1^2 \mathcal{E}_2}{d_2^2 \mathcal{E}_1}$$

The (nominal) coding gain of a lattice Λ over the integral lattice \mathbb{Z}^n is :

$$\gamma_c(\Lambda) := 4\delta^{\frac{2}{n}} = \frac{d^2}{\operatorname{Vol}(\Pi)^{\frac{2}{n}}}$$

The Hermite's constant is :

$$\gamma_n := 4\delta_n^{\frac{2}{n}}$$

where δ_n is the center density of the densest lattice in \mathbb{R}^n .

Practical channel codes

- permutation codes
- group codes
- spherical codes
- trellis modulation (convolutional code + geometrical channel code)
- lattice codes

. . .

Lattice codes can achieve the capacity $\frac{1}{2}\log_2(1 + \text{SNR})$ bits/dimension.

R. Urbanke & B. Rimoldi, Lattice codes can achieve capacity on the AWGN channel, IEEE Transactions on Information Theory, Vol. 44, Nr. 1, pp. 273-278, 1998 Let Λ be a lattice in \mathbb{R}^n , $\lambda \in \mathbb{R}^n$ and \mathcal{R} be a compact region of \mathbb{R}^n . $\Lambda + \lambda$ is a coset or translated of Λ .

A lattice constellation $C(\Lambda, \mathcal{R})$ is the finite set :

$$C(\Lambda,\mathcal{R})=(\Lambda+\lambda)\cap\mathcal{R}$$

Notice, if $\lambda \in \Lambda$, then $\Lambda + \lambda = \Lambda$. (geometrical uniformity)

The volume of \mathcal{R} is :

$$\mathsf{Vol}(\mathcal{R}) = \int_{\mathcal{R}} \mathrm{d}x$$

The average energy per dimension of a uniform pdf over ${\mathcal R}$ is :

$$\mathcal{E}(\mathcal{R}) = \int_{\mathcal{R}} \frac{\|x\|^2}{n} \frac{\mathrm{d}x}{\mathsf{Vol}(\mathcal{R})}$$

The normalized second moment of a uniform pdf over $\ensuremath{\mathcal{R}}$ is :

$$\mathcal{G}(\mathcal{R}) = rac{\mathcal{E}(\mathcal{R})}{\operatorname{Vol}(\mathcal{R})^{rac{2}{n}}}$$

 $\mathcal{G}(\mathcal{R})$ is invariant to scaling, orthogonal transformations, Cartesian products.

Take n = 1, $m \in \mathbb{Z}$, $\mathcal{R} = [-1, 1]$.

 $\mathsf{Vol}(\mathcal{R})=2$

$$\mathcal{E}(\mathcal{R}) = \int_{-1}^{1} \frac{\|x\|^2}{2} dx = \frac{1}{3}$$

$$\mathcal{G}(\mathcal{R}^m) = \frac{1}{12}$$

The coding gain measures the increase in density over \mathbb{Z}^n :

$$\gamma_c(\Lambda) := 4\delta^{\frac{2}{n}} = \frac{d^2}{\operatorname{Vol}(\Pi)^{\frac{2}{n}}}$$

The shaping gain of the region is defined as :

$$\gamma_{s}(\mathcal{R}) := rac{1/12}{\mathcal{G}(\mathcal{R})}$$

It measures the decrease in average energy of $\mathcal R$ over a cube centered in 0. The total coding gain is

$$\gamma_{tot} = \gamma_c(\Lambda)\gamma_s(\mathcal{R})$$

"[Euclidean-space coding] is to [Hamming-space coding] as classical music is to rock and roll." N. J. A. Sloane, Shannon Lecture

Changelog

- **1** lattice constellations denoted $C(\Lambda, \mathcal{R})$ instead of C.
- **2** an integer lattice is $\subset \mathbb{Z}^n$
- **3** generator matrix $k \times n$ instead of $n \times k$
- 4 Constructions A,B,C,D,E