
Lattice coding over AWGN channel
- Introduction -

Vincent Herbert

TELECOM Bretagne - Département SC

Monday, February 4, 2013 - 10h

V. Herbert (TELECOM Bretagne) 4 février 2013 # 1



Course Material

John Horton Conway and Neil James Alexander Sloane.
Sphere-Packings, Lattices, and Groups.
Springer-Verlag New York, Inc., 1987.

David Forney.
Lattice and Trellis Codes - Lectures 24 and 25
http://ocw.mit.edu, 2005.

V. Herbert (TELECOM Bretagne) 4 février 2013 # 2

http://ocw.mit.edu


Sphere Packing, Lattices

These objects are studied in different areas.

mathematics
analog-to-digital conversion
data compression
design of error-correcting codes
digital signature
data encryption
cristallography
. . .

They have both a theoretical and practical interest.
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Communication Channel

Transmitter
Source coding

Channel coding
Modulation

Noisy channel
Demodulation

Channel decoding
Source decoding

Receiver
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Today Example : Lattice Communication Channel

Transmitter

Source coding

Lattice channel coding

Additive white Gaussian noise channel

Lattice channel decoding

Source decoding

Receiver
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Nyquist-Shannon sampling theorem (1949)

Theorem
Let f be a signal (i.e. a function of time) contain no frequencies higher
than cutoff frequency, W hertz. It is completely determined by giving its
ordinates at a series of points spaced 1

2W second apart.

Guess f has almost all of its energy in r0,T s.
Sample f each 1

2W second during T seconds.
Set F � pf p0q, f p 1

2W q ,f p 2
2W q, . . ., f pn�1

2W qq where n � 2TW .
We obtain f from F with the cardinal series :

f ptq �
8̧

i�0
f p i

2W qsinp2πW pt � i{2W qq
2πW pt � i{2W q .

V. Herbert (TELECOM Bretagne) 4 février 2013 # 6



Signal energy and average power

Let Ef be the energy in f ptq.

Ef :�
» 8
�8

|f ptq|2 dt

Proposition

Ef � 1
2W

n�1̧

i�0
f 2p i

2W q

Let P be the average power in f ptq.

P :� 1
T Ef

V. Herbert (TELECOM Bretagne) 4 février 2013 # 7



Norm and signal energy

Let ‖.‖ be the Euclidean norm or length.

‖F‖2 :� F � F
Let us remind n � 2TW .

Proposition
‖F‖2 � 2W Ef � nP

The squared length is proportionnal to the energy in f ptq.
F is on the n-sphere of radius

?
nP centered at the origin.
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Additive white Gaussian noise channel

The AWGN channel transmits continuous signals.

Let Y � pYiq1¤i¤n be a family of i .i .d random variables.
Guess Yi ãÑ N p0, σ2q for all 1 ¤ i ¤ n.
σ2 is the average power of the noise.

Information signal f ptq

Transmitted signal F � pf p0q, f p 1
2W q ,f p 2

2W q, . . ., f pn�1
2W qq

Received signal F � Y
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Error-correcting codes over AWGN channel

For the AWGN channel, the code C is a set of points in Rn.

Denote M the cardinality of C.

The rate of the code is :

R � 1
T log2pMq bits/s

Each codeword represents a signal of bandwidth W and duration T .

Notice the rate is sometimes defined as :

R � 1
n log2pMq bits/dimension
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Reducing noise effects over AWGN channel

We want a code with big minimum distance to correct numerous errors.

But, keep in mind, we have a power constraint on the signal.

Indeed, the squared length is proportionnal to the energy in the signal.

Thus, it could be too costly.

Noisy-channel coding theorem ensures the existence of a solution.

But, it does not exhibit a way to construct it.
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Noisy-channel coding theorem

Let Pe be the error probability, that is, the probability of a decoding error.

The signal-to-noise ratio SNR is equal to P
σ2 .

Theorem
For any rate R   C �W log2p1� SNRq bits/s with T and thus n � 2WT
sufficiently large, there exists a code of rate R, average power P, for which
Pe is arbitrarily small.
Conversely, such codes do not exist for rates R ¥ C.

C is called the channel capacity or the Shannon limit.

The spectral efficiency η is equal to R
W . It is measured in bit{s{Hz .

In practice, we often use : SNRdB � 10 log10 SNR.
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Error probability

Let C � tc1, . . . , cMu. Let V pxq be the Voronoi cell of any x P C.

Let x be the sent codeword and y the received word.

y is correctly decoded if and only if y P V pxq.

Ppy P V pxqq � 1
pσ?2πqn

»
V pxq

e�
1
2 p

x
σ
q2dx

Assume each codeword has the same probability to be sent (uniformity).

Pe � 1� 1
M

M̧

i�1
Ppy P V pciqq
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Gaussian channel coding problem

Error-correcting code version
Find a n-dimensional code tc1, . . . , cMu such that

‖ci‖2 ¤ nP for i � 1, . . . ,M

for which Pe is minimized.
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Real lattice

A lattice Λ � Rn is a discrete additive subgroup of the Euclidean space Rn.
(additive subgroup) Λ � Rn is closed under substraction
(discrete) There is an ε ¡ 0 such that any two distinct lattice points
x � y P Λ are at distance at least ε. There is no accumulation point.

It is also a free Z-module (free abelian group).
A free module is a module which possess a basis.
The cardinal of a basis is the rank of the module. It is often understood as
the dimension.
The cardinal of a lattice is infinite.
Counterexample : Qn and Z� xZ with x P RzQ are not lattices.
0 is an accumulation point.
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Lattice parameters

Let B � pb1, b2, . . . , bkq be a basis of a lattice Λ with dimension k in Rn.
Let bi ,j be the j�th coordinate the n�coordinates vector bi .

G :�

�
����
b1,1 b1,2 b1,3 . . . b1,n
b2,1 b2,2 b2,3 . . . b2,n
...

...
...

...
bk,1 bk,2 bk,3 . . . bk,n

�
���

G is a generator matrix of Λ.

Λ � ZkG
The k�order matrix A :� GG t is called the Gram matrix.
The pi , jqth entry of A is equal to bi � bj .

V. Herbert (TELECOM Bretagne) 4 février 2013 # 16



Lattice parameters (contd)

The fundamental region Π of Λ is :#
λ1b1 � . . .� λkbk : 0 ¤ λi   1, @i P J1, kK

+

We can choose different bases of Λ and thus different fundamental regions.

But, the volume of fundamental regions is invariant.
It is named the (fundamental) volume of Λ.

VolpΠq �
a

|DetpGramq|

If Λ has full-rank, that is k � n, then VolpΠq � |DetpBq|.
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Gaussian channel coding problem (contd)

Assume the code forms a lattice.
Then, all the Voronoi cells are congruent to a polytope V .
V has the same volume than Π.

Pe � 1� 1
pσ?2πqn

»
V
e�

1
2 p

x
σ
q2dx

Lattice version
Find a n-dimensional lattice of volume 1 for which Pe is minimized.

Toy example : In 1D, there is only one lattice of volume 1.
This is an integer lattice Z. Not to be confused with an integral lattice.
But, for real-life examples, we upper bound Pe with simpler expressions.
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Main lattice problems

Geometrical problems
 Packing : densest packing of equal non-overlapping spheres
 Covering : thinnest covering of equal overlapping spheres
 Quantizing : closest point of a set from a received point

Communication problem
 Channel Coding : power-constrained code with minimum Pe
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Sphere packings, lattices and codes

A sphere packing is described by the set of centers and their radius.

When the set of centers form a lattice, it is a lattice packing.

Lattice packings will be often understood as lattices.

Coded modulation systems can be obtained from a lattice.

We focus on some of them : lattice constellations or lattice codes.

Sphere packings and particularly lattices can be constructed from codes.

There often exist different constructions for a same lattice.
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Lattice parameters (contd)

Let Vn be the volume of the n�dimensional unit sphere.
The radius of the spheres in a lattice is the packing radius ρ.
The density of Λ is the proportion of the space occupied by the spheres :

∆ :� Vnρ
n

VolpΠq

The larger the volume, the sparser the lattice.
The center density of Λ is :

δ :� ∆
Vn

In 2D, the hexagonal lattice A2 is the densest packing.
In 3D, the face-centered cubic lattice A3 is the densest lattice.
But, it is not known if it is the densest packing.
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Construction A (Leech, 1964)

Let C be a binary code with minimum Hamming distance d and x P Rn.

x belongs to the set of centers ô x is congruent to a word of C modulo 2

If C is linear, the sphere packing forms a lattice.

If two distinct centers are congruent, their distance is at least 2.

Else, their Hamming distance is ¥ d , then their distance is ¥ ?
d .

ρ ¥ 1
2 minp2,

?
dq

This construction gives the densest sphere packings up to dimension 15.

Let us mention the E8 lattice, for instance.

The minimum Hamming distance is always 1.
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Construction A with Zris-lattices

A Zris-lattice Λ � Cn is a free discrete Zris-module of Cn.

We consider the lattice is generated by a basis tb1, . . . , bnu of Cn as :

Λ �
#

ņ

i�1
aibi : @ai P Zris

+

Let C be a binary linear code and x P Cn.

x belongs to the lattice ô x is congruent to a word of C modulo 1� i

The minimum Hamming distance is always 1.
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Construction A over different rings and alphabets

To sum up.
For real lattices : Λ � C � 2Zn.
For Zris-lattice : Λ � C � p1� iqZrisn.
The real construction can be extended for linear codes over rings Z{qZ.
In this way, we obtain the lattice Λ � C � qZn.
Notice p1� iq is a Gaussian prime whereas 2 is not since 2 � p1� iqp1� iq
and 2 does not divide any factor on the right.
So p1� iq is a prime in Zris, it has norm |1� i | � 2 and thus we have :

Zris{p1� iqZris � F2

We can also use Eisenstein integers, Zrωs-lattices, ω � ei2π{3.
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Other constructions

Let us mention some variants of construction A. We only give keywords.
Af , linear codes, real lattices, symmetric bilinear form
Aφ, Zreiπ{4s-lattices, code over F9, hermitian bilinear form
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Construction B (Leech, 1964)

Let C be an even binary code with minimum Hamming distance d and
x � px1, � � � , xnq P Rn.

x belongs to the set of centers
õ"

x is congruent to a word of C modulo 2°n
i�1 xi � 0 mod 4

*

If C is linear, the sphere packing forms a lattice.

The minimum Hamming distance is always 1.
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Construction C (Leech, 1964)

Most of the time, it gives non-lattice packings.

Construction D is a modified version which produces lattices .
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Construction D in two words

The construction D generalizes the construction A with linear codes .

It rests upon a nested family of binary linear codes.

It always produces lattices.

Examples : Take n � 2m.
Consider n�length Reed-Muller codes Rp2r ,mq.
For 0 ¤ s ¤ t ¤ m, Rps,mq � Rpt,mq.
It is a way to get the n�dimensional Barnes-Wall lattice BWn.

Consider n�length extended BCH codes of designed distance δ.

For 1 ¤ δ1 ¤ δ2 ¤ n, BCHpδ2q � BCHpδ1q.
We obtain the n�dimensional Bn lattices.
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Construction D (Barnes & Sloane, 1983)

Let Ci be a rn, ki , di s binary linear code for i P J0, aK. Let
Fn

2 � C0 � C1 � . . . � Ca. Let pc1, . . . , cnq be a row basis of Fn
2 such that :

c1, . . . cki spans Ci for i P J0, aK.
we can build an upper triangular matrix by permuting ci for i P J0, nK

Let us define :
σ̄i : F2 Ñ R, x ÞÑ x

2i�1

σi : Fn
2 Ñ Rn, x ÞÑ pσ̄ipx1q, σ̄ipx2q, � � � , σ̄ipxnqq

A lattice in Rn is defined by the vectors x such that :

x �
a̧

i�1

ki̧

j�1
bi ,jσipcjq � y

where bi ,j P t0, 1u and y P 2Zn.
The minimum Hamming distance is always 1.
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Construction D’ (Barnes & Sloane, 1983)

Let Ci be a rn, n � ri , di s binary linear code for i P J0, aK. Let
C0 � C1 � . . . � Ca. Let ph1, . . . , hnq be a row basis of Fn

2 such that :
h1, . . . hri give parity check equations defining Ci for i P J0, aK.
we can build an upper triangular matrix by permuting hi for i P J0, nK

Let us define :
r�1 � 0

A lattice in Zn is defined by the vectors x such that :

hj � x � 0 mod 2i�1

where i P J0, aK and ra�i�1 � 1 ¤ j ¤ ra�i .
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Craig’s lattice

Apmqn � ∆m�1An

where ∆ �

�
������

1 �1 0 � � � 0 0
0 1 �1 � � � 0 0
...

...
... � � � ...

...
0 0 0 � � � 1 �1
1 0 0 � � � 0 1

�
����� is a matrix of order n.

Ñ densest known packings for 148 ¤ n ¤ 3000 are Craig’s lattices when
n � 1 is prime and m is the nearest integer to 1{2 n

lnpn � 1q .
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Construction E in two words (Bos, Conway & Sloane, 1982)

It generalizes construction D amongst others.
It inputs :

a lattice Λ in RN

a nested family of n-length additive codes pCiq0¤i¤a over an
elementary abelian group (� Fb

p for p prime and b integer).

It is a recursive construction in two meanings :
It outputs a nested family of lattices pΛiq0¤i¤a in RnN with Λ0 � Λn.
For some function f , Λi � f pΛi�1q and Λi�1 � Λi for i P J1, aK.
It can be applied to the densest lattice Λa.

A lattice obtained by applying construction E to Λ is named ηpΛq.
This construction give the densest known lattices in high dimension.
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Construction E through example

Λ � Z2, C0 � F2
2, C1 � t00, 11u
ó
D4

ó
Λ4 � D4, Λ8 � E8, Λ12, Λ16, Λ20 with n � 1, . . . , 5.
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pu, u � vq construction

The pu, u � vq construction is an algebraic construction.
Let C1 and C2 be a rn, k1, d1s (resp. rn, k2, d2s) linear codes.
It gives a r2n, k1 � k2,minp2d1, d2qs code :#

pu, u � vq : u P C1, v P C2

+

Denote 1, the all-ones vector.

Rp1, 1q � F2
2

Rp1,mq �
#
pu, uq , pu, u � 1q : u P Rp1,m � 1q

+
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pu, u � vq construction (contd)

Let Λ1 and Λ2 be two lattices in Rn.
The pu, u � vq construction gives a lattice in R2n :#

pu, u � vq : u P Λ1, v P Λ2

+

Set R :�
�
1 1
1 �1



and BW2 :� Z2.

E8
D4

Z2

RZ2

RD4
2Z2

2RZ2

R j BW2m�1 �
#
pu, u � vq : u P R j BW2m , v P R j�1 BW2m

+
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Current status

Most of the densest sphere packings are lattice packings.

Some non-lattice packings are denser than the densest known lattice
packing.

We ignore if there exists a non-lattice packing denser than the densest
lattice packing.
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Density and error probability

In practice, lattice codes which minimizes Pe correspond to densest lattice.

Nevertheless, sphere packing problem and channel coding problem differ.

Both asks to maximize the packing radius ρ.

But, channel coding problem involves another parameter.

It requires to minimize the average number of code points at distance 2ρ.

Notice, the minimum distance d � 2ρ.

The minimum squared distance d2 is also important parameter of a lattice.

Since 0 P Λ, d2 is equal to the minimum squared length.
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Coding gain

The coding gain of a code C1 over a code C2 of minimum distance d1
(resp. d2) and average energy E1 (resp. E2) is equal to

γpC1, C2q :� d2
1 E2

d2
2 E1

The (nominal) coding gain of a lattice Λ over the integral lattice Zn is :

γcpΛq :� 4δ
2
n � d2

VolpΠq 2
n

The Hermite’s constant is :
γn :� 4δ

2
nn

where δn is the center density of the densest lattice in Rn.
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Practical channel codes

permutation codes
group codes
spherical codes
trellis modulation (convolutional code + geometrical channel code)
lattice codes
. . .

Lattice codes can achieve the capacity 1
2 log2p1� SNRq bits/dimension.

R. Urbanke & B. Rimoldi,
Lattice codes can achieve capacity on the AWGN channel,

IEEE Transactions on Information Theory, Vol. 44, Nr. 1, pp. 273-278, 1998
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Lattice constellation

Let Λ be a lattice in Rn, λ P Rn and R be a compact region of Rn.

Λ � λ is a coset or translated of Λ.

A lattice constellation CpΛ,Rq is the finite set :

CpΛ,Rq � pΛ � λq XR

Notice, if λ P Λ, then Λ � λ � Λ. (geometrical uniformity)
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Region parameters

The volume of R is :
VolpRq �

»
R

dx

The average energy per dimension of a uniform pdf over R is :

EpRq �
»

R

‖x‖2

n
dx

VolpRq

The normalized second moment of a uniform pdf over R is :

GpRq � EpRq
VolpRq 2

n

GpRq is invariant to scaling, orthogonal transformations, Cartesian products.
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Baseline Example

Take n � 1, m P Z, R � r�1, 1s.

VolpRq � 2

EpRq �
» 1

�1

‖x‖2

2 dx � 1
3

GpRmq � 1
12
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Total coding gain

The coding gain measures the increase in density over Zn :

γcpΛq :� 4δ
2
n � d2

VolpΠq 2
n

The shaping gain of the region is defined as :

γspRq :� 1{12
GpRq

It measures the decrease in average energy of R over a cube centered in 0.
The total coding gain is

γtot � γcpΛqγspRq
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“[Euclidean-space coding] is to [Hamming-space coding]
as classical music is to rock and roll.”
N. J. A. Sloane, Shannon Lecture
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Changelog

1 lattice constellations denoted CpΛ,Rq instead of C.
2 an integer lattice is � Zn

3 generator matrix k � n instead of n � k
4 Constructions A,B,C,D,E
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