
Efficient Root Finding of Polynomials over
Fields of Characteristic 2.

Bhaskar Biswas & Vincent Herbert

CRI INRIA Paris-Rocquencourt
Domaine de Voluceau - Le Chesnay - 78153 - B.P. 105 - France

Bhaskar.Biswas@inria.fr; Vincent.Herbert@inria.fr

Abstract. Root finding is the most time-consuming stage of McEliece
cryptosystem decryption. The best method to find the zeroes of a poly-
nomial for cryptographic parameters is the Berlekamp Trace Algorithm
(BTA). Our idea is to mix BTA with ad-hoc methods proposed by Zi-
noviev. We obtain a significant gain in terms of time complexity for
finding roots and so we decrease McEliece decryption time. This paper
contains both theoretical and experimental study of this technique.

Keywords: Worst-case complexity, Code-based public-key cryptog-
raphy, Linearized polynomial, Berlekamp Trace Algorithm, Error locator
polynomial, Algebraic decoding algorithm, Binary Goppa codes.

1 Introduction

Root finding of polynomials over finite fields is a classical algebraic al-
gorithmic problem. It is considered as one of the most time-consuming
subprocess of the decoding process of Reed-Solomon, BCH and Goppa
codes. There are some well known approaches for finding roots of the
so-called error locator polynomial. The most widely known root finding
algorithm is Chien search method [Chi64], which is an evaluation of the
polynomial at all elements of the field, so it has very high time complex-
ity for the case of large fields and polynomials of high degree. Berlekamp
Trace Algorithm (BTA) [Ber71] is another well known method. It is a
recursive method based on the trace function properties.

McEliece cryptosystem is considered as one of the fastest public key
schemes and is still esteemed secure for reasonable parameters. The clas-
sical [McE78] (described in Appendix A) and hybrid [BS08] McEliece
schemes use binary Goppa codes [Gop70]. The decryption process employs
an algebraic decoding algorithm which is often broken up in three parts
namely: syndrome computation, finding the solution of the key equation,

and the root finding of the error locator polynomial. This last step takes
theoretically three fourth of the total decryption time.

In this paper, we present a hybrid method involving BTA and a
method proposed by Zinoviev [Zin96]. Zinoviev proposed direct root find-
ing procedures for polynomials with degree at most 10. Our idea is to
compute directly the roots with Zinoviev procedures up to some degree
and to use BTA for greater degrees. Moreover, we improve Zinoviev pro-
cedures for polynomials of degree 2 and 3 with time-memory tradeoffs.
We analyze both the theoretical complexities and the experimental com-
plexities of our proposal. We obtain a theoretical gain of 93% over Chien
method and 46% over BTA. Experimental results confirm theory up to
degree 4 at least. For instance with m = 11, t = 32 and dmax = 4, our
method takes 60% of the total decryption time with respect to 72% for
BTA and 87% for Chien.

The paper is structured as follows. In Section 2, we explain our mo-
tivation for root finding of polynomials over binary fields. Section 3 is
dedicated to related works. In Section 4, we state our proposal and in
Section 5, we present the simulation results to back up our proposal.

2 Motivation

Let F2m be the extension field of degree m of the two-element field F2.
We consider a univariate monic polynomial f , of degree t > 0, in the
polynomial ring F2m [z]. Without loss of generality, we assume that f has
no multiple root and that f factorizes into linear factors over the binary
field F2m (e.g. see [LN96]). Our goal is to find an efficient way, in terms
of time and space complexity, to find all the zeroes of f .

We are specifically interested in the said problem in the McEliece con-
text.

The efficiency of the root finding algorithms is a problem that we study
in code-based cryptography. McEliece-type cryptosystems are often based
on binary Goppa codes (presented in Appendix B). Their decryption al-
gorithm employs an algebraic decoding process to recover the original
message from the cyphertext. The most time-consuming stage, in the
implementation of algebraic decoding of binary Goppa codes, with prac-
tical parameters, is the root finding of the error locating polynomial. This
polynomial fulfills the above mentioned properties.

In this article, we consider an n-lenght binary Goppa code that corrects
up to t errors (the algorithm used is given in Appendix B). Let us recall,
in practice, parameters are chosen such that: n = 2m and mt ≤ n.

Decryption Complexity

Theoretical Complexity = number of arithmetic operations in F2m re-
quired to decrypt in the worst case.

– Syndrome computation O(nt)
– Key equation solving O(t2)
– Error locator polynomial root finding
• BTA O(mt2)
• Chien search O(nt)

Experimental Complexity = average running time for the decryption.

We give below the percentage of the total time spent in each stage of
the decryption algorithm.

– Syndrome computation 11.3%
– Key equation solving 12.0%
– Error locator polynomial root finding
• BTA 72.1%
• Chien search 85.6% 1

– Other tasks 4.6%

Asymptotically, syndrome computation is the leading cost. For rec-
ommended parameters (i.e. m = 11, t = 32), the most time-consuming
step in the decryption (decoding) consists in finding roots of σe. Differ-
ences that can appear between theoretical and experimental complexities
would be due to several reasons:

– tweaks of implementation (quality of implementation, used processors
and compilers);

– cost of conditional tests and memory accesses (that are neglected in
our theoretical study but that can be noteworthy in practice);

– not so good approximations (e.g. we approximate the cost of an in-
version of a binary matrix of order m to m2 field operations, we thus
overlook a small multiplicative constant);

1 The percentages given are associated with BTA, if we take Chien search, the numbers
for syndrome computation and key equation solving should vary accordingly.

– weighting2 of arithmetic operations in the field.

3 Related Works

Several approaches toward root finding in characteristic 2 are possible,
their efficiency depends on the size of the parameters m and t.

– Chien search (described in Appendix C) computes roots by evaluating
artfully the polynomial in all points of L. This method is recommended
for hardware implementations and coding theory applications in which
m is small.

– BTA is a recursive algorithm using trace function properties. It is a
faster method for secure parameters for McEliece-type cryptosystems.

– Equal-degree factorization is an algorithm of Cantor and Zassenhaus
[vzGG03, Chapter 14]. Its scope is more general but under some adap-
tations, it enables to find roots of polynomials in characteristic 2 (this
specific case is treated in Exercise 14.16 in [vzGG03]). Then it has
similarities with BTA (use of trace function, computations of gcds
and a recursive structure) but seems slightly more expensive. Its time
complexity is O((m + log t) t2 log t) operations in F2m .

– Zinoviev procedures are dedicated to root finding for polynomials of
degree less than 10. For m ≥ 11, they are (theoretically at least) more
efficient than Chien search.

We present below the overview of BTA and Zinoviev procedures that
we employ to consummate our proposal.

3.1 Berlekamp Trace Algorithm (1971)

We define the Trace function as Tr(·) : F2m → F2

Tr(z) := z + z2 + z22 + . . . + z2m−1
.

Tr(·) is a F2-linear mapping and we know that: z2m−z = Tr(z)·(Tr(z)−1).
The Trace function has the following property:

Tr(z)− i =
∏

γ s.t. Tr(γ)=i

(z − γ), ∀i ∈ F2.

2 In our study, we distinguish two cases: in the first one, addition and multiplication
both cost one operation in F2m , we denote it K(+) = K(×) = 1 where K is the cost
function of an arithmetic operation, in the second one, K(+) = 1 and K(×) = m.

Let B = (β1, . . . , βm) be a basis of F2m over F2. Every element α ∈ F2m

is uniquely represented by the binary m-tuple (Tr(β1 ·α), . . . ,Tr(βm ·α)).

BTA splits any f ∈ F2m [z], such that f(z)|(z2m−z), into linear factors
by computing iteratively on β ∈ B and recursively on f :

g(z) := gcd(f(z), Tr(β · z)) and h(z) :=
f(z)
g(z)

= gcd(f(z), Tr(β · z)− 1).

First call: f = σe and β = β1. BTA always successfully returns the linear

factors of f due to the properties of the trace given above. More details on
BTA can be found in [Ber71] and [MvOV88]. In practice, we precompute
the polynomials Tr(βi · z) mod f(z), ∀i ∈ {0, . . . ,m− 1}. The cost of this
precomputation is O(mt2). We stress on the fact that it is not a negligible
cost. Indeed, let us recall that BTA without precomputation has also a
cost of O(mt2) operations over F2m .

3.2 Zinoviev Procedures (1996)

Zinoviev methods [Zin96] find the monic affine multiple of smallest degree
of any polynomial f of degree d ≤ 10 over F2m . At step i ≥ 0, we compute
a multiple of f of degree 2dlog2 de+i and we try to decimate the non-linear
terms by solving a homogeneous system of linear equations. If the system
has no solution, we go up step i + 1. Besides, an algorithm proposed by
Berlekamp, Rumsey and Solomon in [BRS67] ensures to find an affine
multiple of degree 2d−1 and thus guarantee Zinoviev methods terminate,
in the worst case, at step d− 1− dlog2 de. After that, finding roots of an
affine polynomial is easier than in the general case (see Appendix D). For
this, we only have to solve a linear system of order m over F2. Then, we
have to determine the roots of f , among the roots of the affine polynomial
we have found. We just evaluate f in those points to do so.

Consider q is a prime power and m is a positive integer. Let us give
the useful definitions:

Definition 1. An affine polynomial has the form:

A(z) = L(z) + c

where L is a linearized polynomial over Fqm and c ∈ Fqm.

Definition 2. A linearized polynomial over Fqm is a polynomial of the
form:

L(z) =
n∑

i=0

li · zqi
.

with li ∈ Fqm and ln = 1.

In our case, q = 2. The Trace polynomial is an example of linearized
polynomial.

4 Our Proposal

4.1 Speed up McEliece Decryption

The drawback of BTA is the large number of recursive calls when the
system parameters grow. We reduce it by mixing BTA and Zinoviev pro-
cedures that are ad-hoc methods for finding roots of polynomials of de-
gree ≤ 10. This is a classical technique employed to decrease the number
of recursive levels, e.g. the well-known Quicksort algorithm is optimized
with analagous methods. We call this process BTZ (Berlekamp Trace -
Zinoviev) in the scope of this document. BTZ depends on a parameter
dmax that is the maximum degree up to which we use Zinoviev methods.
We give two pseudocodes of BTZ in Appendix F.

4.2 Implementation Tweaks

In our implementation, we use a polynomial basis to represent the field
elements. We implemented Zinoviev procedures with time-memory trade-
offs for polynomials of degree 2 and 3, that enable to perform better than
with the original procedures. We explain these new methods and give
their complexities in the following.

Time-Memory Tradeoff for Degree 2. We want to solve the equation:
z2 + az + b = 0 for a, b ∈ F2m . If the solutions exist, we denote them z1

and z2. First, we make a change of variable. We set z = ax. We obtain
the equation x2 + x + b/a2 = 0. It costs one division and one squaring in
F2m .

Let i be an element of F2m and fi be the mapping:

fi : F2m → F2m

x 7→ x2 + x + i

The equation fi(x) = 0 has two solutions in F2m if and only if Tr(i) = 0
(a proof is given in [BRS67]), else this equation has no solution in F2m .

Let T be a table containing elements of F2m .

T [i] =

{
j if j2 + j = i

∅ if Tr(i) = 1

In other words, T [i] contains one of the two elements of the kernel of
fi, if i is in the image of x 7→ x2 +x. Note that j +1 is the second element
of this kernel.

Now, we read from the table, the element T [b/a2]. We invert the
change of variable by computing: z1 = ab. Then, we compute the sec-
ond solution: z2 = ab + a. This process costs one multiplication and one
addition in F2m . Thus, we have solved our problem within four operations
in F2m with a memory of 2m field elements. It is useful for small m.

Time-Memory Tradeoff for Degree 3. In this case, the equation to
solve is: z3 + az2 + bz + c = 0 where a, b, c ∈ F2m . We obtain an affine
multiple of degree 4 by multiplying the polynomial by z + a. It costs two
multiplications, one squaring and two additions in F2m . The substitution
z =

√
(a2 + b)x (m − 1 repeated squarings3) and a normalization (two

divisions) enable to obtain an equation of the form: x4 + x2 + dx = e,
with d, e ∈ F2m . Let us denote f the mapping x 7→ x4 + x2 + dx. By
construction a is a root of f(x) = e, we want to find the other three. The
mapping f has a kernel of dimension two (except if d = 0, in this case,
the dimension is one). We have only to store two elements which form a
basis of the kernel of x 7→ x4 + x2 + dx in a table for all d ∈ F2m . This
requires a storage memory of 2×2m field elements. Notice, this step does
not depend on the coefficient e. Let us call the lookup table T and the
two elements stored in the table for a given d: λ1 and λ2. Then, we have
T [d] = (λ1, λ2). As f is linear, the three other roots of f are: a+λ1, a+λ2

and a + λ1 + λ2. We obtain them with three additions. Lastly, we invert
the substitution (three multiplications) and thus the problem is solved.
Here, we used the fact that we know that a is a root of f to find the other
ones. We cannot use anymore this extra information for polynomials of
degree 4 onwards.

3 Let us mention that one addition and one multiplication with a constant, are enough
using the method proposed in [Hub02]. We do not take it into account in Table 1.

4.3 How do we Compute Theoretical Complexity?

We will not give here the complexity recurrence formula, that we use to
compute the number of operations required to process BTZ for the sake
of clarity. Instead, we prefer to explain how we obtain it.

About BTA. The polynomials with which we deal in BTA are monic,
without multiple root and can be factorized into linear factors over F2m .
These polynomials form a set P. Such polynomials of degree d are entirely
determined by their d roots. Hence, there are

(
2m

d

)
such polynomials.

Moreover, we know that for all β ∈ B, a F2-basis of F2m , half of the
elements of F2m have Tr(β ·z) = 0 and that for the other half, Tr(β ·z) = 1.

For each step of Algorithm 2 (see Appendix F), we compute the gcd of
a polynomial with Tr(β · z). The polynomial that we obtain contains the
roots, such that Tr(β · z) = 0. We then make a Euclidean division that
gives us another polynomial of degree d − i, which contains the roots,
such that Tr(β · z) = 1. When we compute the theoretical complexity
of BTZ, we compute the expected value of the number of operations in
the worst case. Hence, we consider, for all i ∈ {0, · · · , d}, the probability
P (d,m, i) that the polynomial of degree d breaks down into a couple of
polynomials of degree i and d− i. That is, the gcd computation gives us a
polynomial of degree i whose roots are among the elements of F2m , such
that Tr(β · z) = 0. In the same manner, with the Euclidean division, we
obtain a polynomial of degree d−i, while its roots are among the elements
of F2m , such that Tr(β ·z) = 1. We assume the input polynomial is chosen
at random from a uniform distribution over P. Thus, we obtain:

P (d,m, i) =

(
2m−1

i

)× (
2m−1

d−i

)
(
2m

d

) .

About Zinoviev Procedures. In Table 1, we assume that all the arith-
metic operations on the field have unitary cost and that one binary matrix
inversion of order m costs m2 additions in F2m . Let Zd denote the Zinoviev
procedure for degree d where d varies from 2 to 5. For d = 2 and d = 3,
we consider two possibilities: with or without the time-memory tradeoff.
When we use the tradeoff, the space complexity is exponential in m, that
is, it is in the order of the size of the field i.e. 2m, up to a multiplicative
constant factor. For greater degrees (6 ≤ d ≤ 10), the time complexity is
O(m2 +dm+d2d). It is exponential in d since in the worst case, the affine
multiple has degree equal to 2d−1. Therefore, in the last step of Zinoviev

procedures, we would have to evaluate the polynomial in 2d−1 points for
finding its roots. This is a reason for which we do not use Zinoviev meth-
ods for higher degrees than 10. One observes, in Table 1, that the most
expensive part of the Zinoviev procedures is the binary matrix inversion
which enables to find the roots of the affine polynomial (see Section 3.2
for more details).

Addition Mult. Division Squaring Matrix Inv. Total Cost

Z2 precomput. m2 m2 0 m(m− 1) 1 4m2 −m

Z2 w/o tradeoff m 1 1 1 0 m + 3

Z2 w/ tradeoff 1 1 1 1 0 4

Z3 w/o tradeoff 2(m + 1) 3m 0 m 1 m2 + 6m + 2

Z3 w/ tradeoff 5 5 2 m 0 m + 12

Z4 2m + 9 3(m + 1) 8 m 1 m2 + 6m + 20

Z5 4m + 101 7m + 104 1 0 1 m2 + 11m + 206

Table 1. Number of operations over F2m in Zinoviev procedures

5 Simulation Results

In Table 2, we provide experimental data for finding the roots of a poly-
nomial of degree t = 32 over F2m = F2048. BTZd means that we use BTZ
with dmax = d, for all suitable d.

n = 2048, t = 32, m = 11 Chien BTA BTZ2 BTZ3 BTZ4

CPU cycles root finding 3200 1300 900 800 800
per byte for decrypting 3700 1800 1400 1300 1300

percentage 4 syndrome computation 5 10 13 14 14
of time solving key equation 7 14 18 19 19

spent for root finding 87 72 65 61 60

Table 2. Experimental data for finding the roots of a polynomial of degree t = 32 over
F2m = F2048.

In Table 3, we present the theoretical number of field operations for
correcting t = 32 errors of a n = 2048-length word over F211 using BTZ
with dmax = 5 and time-memory tradeoff (see Section 4.2). For informa-
tion, BTZ without the tradeoff gives very close theoretical results.
4 Remaining percentages correspond to other minor tasks.

n = 2048, t = 32, m = 11 Chien BTA BTZ2 BTZ3 BTZ4 BTZ5 BTZ6

K(+) = K(×) = 1 129k 16k 13k 11k 10k 10k 10k

K(+) = 1, K(×) = m 764k 91k 65k 54k 50k 47k 48k

Table 3. Theoretical number of field operations for correcting t = 32 errors of a
n = 2048-length word over F211 using BTZ with dmax = 5 and time-memory tradeoff.

Let us depict the gain of BTZ over BTA and Chien procedure in terms
of percentage of number of operations according to the parameter dmax

and the polynomial degree t. The results (given in Figure 1 and Figure 2)
take into account the time-memory tradeoff for degree 2 and 3. For the
sake of readibility and relevance in cryptographic applications, we restrict
to the case m = 11, K(×) = m, t ≤ 100 and dmax ≤ 6. Additionally, we
present similar results for greater degrees in Appendix E. Nevertheless, we
have also computed these results for m = 8, 11, 12, 13, 14, 15, 16, 20, 30, 40,
K(×) = 1, t ≤ 300, dmax ≤ 10 and for both with and without the tradeoff.
These data give the information that the higher is t, the higher is the
optimal dmax. One can deduce from the two following graphs that for
m = 11 and t = 32, the recommended theoretical value for dmax is 5.
Indeed, we have a substantial gain of 46% over BTA and 93% over Chien
method for this value of dmax.

Acknowledgements: We would like to express our gratitude to our PhD
advisor, Nicolas Sendrier, for his valuable help during this work.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 10 20 30 40 50 60 70 80 90 100

ga
in

of
 B

TZ
_d

_m
ax

 a
ga

ins
t B

TA
 (%

)

polynomial degree t

d_max=2 d_max=3 d_max=4 d_max=5 d_max=6

Fig. 1. BTZdmax vs. BTA; m = 11; K(+) = 1; K(×) = m; with time-memory tradeoff

 65

 70

 75

 80

 85

 90

 95

 100

 10 20 30 40 50 60 70 80 90 100

ga
in

of
 B

TZ
_d

_m
ax

 a
ga

ins
t C

hie
n

m
et

ho
d

(%
)

polynomial degree t

d_max=2 d_max=3 d_max=4 d_max=5 d_max=6

Fig. 2. BTZdmax vs. Chien; m = 11; K(+) = 1; K(×) = m; with time-memory tradeoff

References

[Ber71] E. R. Berlekamp. Factoring polynomials over large finite fields. In SYMSAC
’71 - Proceedings of the second ACM symposium on Symbolic and algebraic
manipulation, page 223, New York, USA, 1971. ACM.

[BRS67] E. R. Berlekamp, H. Rumsey, and G. Solomon. On the solution of algebraic
equations over finite fields. In Information and Control, volume 10, pages
553–564, June 1967.

[BS08] Bhaskar Biswas and Nicolas Sendrier. McEliece cryptosystem implementa-
tion: Theory and Practice. In PQCrypto, pages 47–62, 2008.

[Chi64] R. T. Chien. Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem
codes. In IEEE Transactions on Information Theory, volume 10, pages 357–
363, 1964.

[FTC03] S. Fedorenko, P. Trifonov, and E. Costa. Improved hybrid algorithm for
finding roots of error-locator polynomials. In European Transactions on
Telecommunications, volume 14, pages 411–416, 2003.

[Gop70] V.D. Goppa. A new class of linear error-correcting codes. In Probl. Inform.
Transm., volume 6, pages 207–212, 1970.

[Hub02] K. Huber. Note on decoding binary Goppa codes. In Electronics Letters,
volume 32, pages 102–103, August 2002.

[LN96] Rudolf Lidl and Harald Niederreiter. Finite Fields (Encyclopedia of Math-
ematics and its Applications). Cambridge University Press, October 1996.

[McE78] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory.
Technical Report DSN 42-44, JPL, Pasadena, 1978.

[MS83] F. J. Macwilliams and N. J. A. Sloane. The Theory of Error-Correcting
Codes (North-Holland Mathematical Library). North Holland, January 1983.

[MvOV88] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Some com-
putational aspects of root finding in GF(qm). In ISSAC, pages 259–270,
1988.

[Pat75] N. Patterson. The algebraic decoding of Goppa codes. In Information
Theory, IEEE Transactions on, volume 21, pages 203–207, 1975.

[vzGG03] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
Univ. Press, 2003.

[Zin96] V.A. Zinoviev. On the solution of equations of degree ≤ 10 over finite fields
GF(2q). In Rapport de recherche INRIA no 2829, 1996.

z

A Description of Classical McEliece Cryptosystem (1978)

Public key: A binary linear [n,k] code C, i.e. a k-dimensional linear
F2-subspace of Fn

2 , described by a generator matrix G.
Private key: An efficient decoding algorithm for C up to the error cor-

recting capacity t.

Encryption: Map the k bits plaintext x to the codeword x.G, add e,
an uniformly random error of length n and weight t to obtain the
cyphertext y.

Decryption: Correct the t errors, unmap to get the message. This pro-
cess is also called decoding.

B Description of Binary Goppa Codes (1970)

Let m > 0, n ≤ 2m and a = (a1, ..., an) ∈ Fn
2 .

The n-length binary Goppa code Γ (L, g) is defined by:

– Support L = (α1, ..., αn) n-tuple of distinct elements of F2m ;
– Goppa polynomial g(z) ∈ F2m [z], square-free, monic of degree t > 0

with no root in L.

In practice, g is chosen irreducible over F2m and n = 2m.
Γ (L, g) is a subfield subcode over F2 (i.e. the subcode that contains all the
codewords whose coordinates are in F2) of a particular Goppa geometric
code over the binary field F2m .
We have a ∈ Γ (L, g) if and only if:

Ra(z) :=
n∑

i=1

ai

z − αi
= 0 over F2m [z]/(g(z)).

Ra is called the syndrome of the word a. Note that Ra is F2-linear in a.
Binary Goppa codes have an error correction capacity of at least t errors.
We present a polynomial-time algorithm for decoding these codes that
corrects up to t errors.

Algebraic Decoding Algorithm

Let e, x, y be n-length binary vectors. We have to find x, the sent code-
word from y = x + e where y is the received word and e, the error word.

Algebraic decoding is carried out in three steps:

1. Syndrome computation of the received word

Ry(z) = Re(z) =
n∑

i=1

ei

z − αi
over F2m [z]/(g(z)).

2. Solving the key equation to obtain the error locator polynomial σe

with the Patterson algorithm [Pat75].

Re(z) · σe(z) = σ′e(z) over F2m [z]/(g(z)).

Notation: σ′e denotes the formal derivative of σe.
3. Error locator polynomial root finding

σe(z) :=
n∏

i=1

(z − αi)ei ; ei 6= 0 ⇔ σe(αi) = 0.

We stress on the fact that the degree of σe is also the Hamming weight
of e, that is to say, the number of errors to correct. The algorithm can
correct up to t errors so the degree of σe is less than or equal to t.

C Description of Chien Procedure (1964)

Chien search is a recursive algorithm. It is a clever exhaustive search. Let
f(x) = a0 + a1 · x + · · ·+ at · xt be a polynomial over F2m and let α be a
generator of the multiplicative group F∗2m .

f(αi) = a0 + a1 · αi + · · ·+ at · (αi)t

f(αi+1) = a0 + a1 · αi+1 + · · ·+ at · (αi+1)t

= a0 + a1 · αi · α + · · ·+ at · (αi)t · αt

Set ai,j = aj(αi)j . It is easy to obtain f(αi+1) from f(αi) since we
have that ai+1,j = ai,j · αj . Moreover, if

∑t
j=0 ai,j = 0, then αi is a root

of f .

D Finding Roots of an Affine Polynomial

Let us have an affine polynomial A(z) = L(z) + c =
∑m−1

i=0 li · z2i
+ c.

Consider (α1, · · · , αm) is a F2-basis of F2m , (li)1≤i≤m, c and x are elements
of F2m . Guess x = (x1, · · · , xm) is a root of A. Finding zeroes of an affine
polynomial is equivalent to solving a linear system. Indeed, we have:

A(x) = 0⇔ L(x) = c

⇔
m∑

i=1

xi · L(αi) =
m∑

i=1

ci · αi (using linearity of L)

⇔
m∑

i=1

m∑

j=1

xi li,j · αi =
m∑

i=1

ci · αi (linear system in xi).

E BTZdmax vs. BTA for m = 11, 30 ≤ t ≤ 300

 15

 20

 25

 30

 35

 40

 45

 50

 50 100 150 200 250 300

ga
in

 o
f B

T
Z

_d
_m

ax
 a

ga
in

st
 B

T
A

 (
%

)

polynomial degree t

d_max=5 d_max=6 d_max=7 d_max=8 d_max=9

Fig. 3. BTZdmax vs. BTA; m = 11; K(+) = 1; K(×) = m; with time-memory tradeoff

F Pseudocodes of BTZ

Some notations:

– σe is the error locator polynomial of the error word e.
– dmax is the maximum degree up to which we use Zinoviev procedures.
– DZin is the set of degrees for which we apply Zinoviev procedures.
– (β1, · · · , βm)=(α, α2, · · · , αm) is a fixed polynomial basis of F2m over
F2 where α is a primitive element of F2m .

Algorithm 1 simplified BTZ without precomputation - BTZ(f, d, i)
First call: f ← σe; d← dmax ∈ {2, . . . , 10}; i← 1.
if degree(f) ≤ d then

return ZINOVIEV(f, d);
else

g ← gcd(f, Tr(βi · z));
h← f/g;
return BTZ(g, d, i + 1) ∪ BTZ(h, d, i + 1);

end if

Algorithm 2 BTZ with precomputation - BTZ(f, D, i)
First call: f ← σe; D ← DZin ⊂ {2, . . . , 10}; i← 1.
{precomputation phase}
for 1 ≤ i ≤ m do

Ti ← Tr(βi · z)) mod f ;
end for
i← 1;
{computation phase}
if degree(f) ∈ D then

return ZINOVIEV(f, d);
else

T ← Ti mod f ;
g ← gcd(f, T);
h← f/g;
i← i + 1;
return BTZ(g, d, T) ∪ BTZ(h, d, T);

end if

