
EFFICIENT ROOT FINDING OF POLYNOMIALS
OVER FIELDS OF CHARACTERISTIC 2

Vincent Herbert (Joint work with Bhaskar Biswas)

WEWoRC 2009

INRIA Paris Rocquencourt

V. Herbert (WEWoRC 2009) SECRET Project Team # 1



Agenda

1 Motivation for code-based cryptography

2 Algorithms & Complexities

3 Speed Up McEliece Decryption

4 Results & Analysis

V. Herbert (WEWoRC 2009) SECRET Project Team # 2



Motivation for code-based cryptography

Why do we study Polynomial Root Finding ?

We face this problem in code-based cryptography.

Indeed, McEliece-type cryptosystems are often based on Binary Goppa
codes.

Root finding is the most time-consuming step, in the implementation of
algebraic decoding of Binary Goppa codes.

R.J. McEliece. A public-key cryptosystem based on algebraic coding theory.
JPL DSN Progress Report, pages 114 - 116, 1978.

V. Herbert (WEWoRC 2009) SECRET Project Team # 3



Motivation for code-based cryptography

What is McEliece Public Key Cryptosystem ?

Let us have an insight of the original version of McEliece.

Public key : A binary linear [n,k] code C , i.e. a k-dimensional linear
F2-subspace of Fn

2, described by a generator matrix G .
Private key : An efficient decoding algorithm for C up to the error
correcting capacity t.

Encryption : Map the k bits plaintext x to the codeword x .G , add e, an
uniformly random error of length n and weight t.
Decryption : Correct the t errors, unmap to get the message. This process
is also called decoding.

V. Herbert (WEWoRC 2009) SECRET Project Team # 4



Motivation for code-based cryptography

What is a Binary Goppa Code ?

Let m > 0, n ≤ 2m and a = (a1, ..., an) ∈ Fn
2.

The n-length binary Goppa code Γ(L, g) is defined by :
Support L = (α1, ..., αn) n-tuple of distinct elements of F2m ;
Goppa polynomial g(z) ∈ F2m [z ], square-free, monic of degree t > 0
with no root in L.

Γ(L, g) is a subfield subcode over F2 of a particular Goppa code over the
binary field F2m .

We have a ∈ Γ(L, g) if and only if :

Ra(z) :=
n∑

i=1

ai

z − αi
= 0 over F2m [z ]/(g(z)).

V. Herbert (WEWoRC 2009) SECRET Project Team # 5



Algorithms & Complexities

How to decode Binary Goppa Codes ?

Let e, x , y be n-length binary vectors. We have to find x , the sent
codeword knowing y = x + e where y is the received word and e the error
word. We can correct up to t errors.

Algebraic decoding is carried out in three steps :

1 Syndrome computation

Ry (z) = Re(z) =
n∑

i=1

ei

z − αi
over F2m [z ]/(g(z)).

2 Solving the Key Equation to obtain the error locator polynomial

Re(z) · σe(z) = σ′e(z) over F2m [z ]/(g(z)).

3 Error Locator Polynomial Root Finding

σe(z) :=
n∏

i=1

(z − αi )
ei ; σe(αi ) = 0⇔ ei 6= 0.

V. Herbert (WEWoRC 2009) SECRET Project Team # 6



Algorithms & Complexities

How to find the roots efficiently ?

Several approaches are possible, their efficiency depends on the size of
parameters m and t.

Chien search computes roots by evaluating artfully the polynomial in
all points of L. This method is recommended for hardware
implementations and coding theory applications in which m is small.
BTA is a recursive algorithm using trace function properties. It is a
faster method for secure parameters in McEliece-type cryptosystems.

V. Herbert (WEWoRC 2009) SECRET Project Team # 7



Algorithms & Complexities

What is the cost of the decryption ?

Let us recall, in practice, n = 2m and mt ≤ n.

Theoretical Complexity = number of binary operations required to decrypt
in the worst case.

Syndrome computation O(mnt)
Key Equation Solving (w/ Patterson algorithm) O(mt2)

Error Locator Polynomial Root Finding
• Chien search O(mnt)
• Berlekamp Trace Algorithm (abbr. BTA) O(m2t2)

Experimental Complexity = average running time for the decryption.

For recommended parameters (i.e. m = 11, t = 32), root finding with BTA
(resp. Chien search) takes 72% (resp. 86%) of the total decryption time.

V. Herbert (WEWoRC 2009) SECRET Project Team # 8



Algorithms & Complexities

How does BTA work ?

Trace function Tr(·) : F2m → F2

Tr(z) := z + z2 + z22
+ . . . + z2m−1

.

The function Tr(·) is F2-linear and onto.

We know that :

∀i ∈ F2 , Tr(z)− i =
∏

γ s.t. Tr(γ)=i

(z − γ).

Moreover, we have : z2m − z = Tr(z) · (Tr(z)− 1).

V. Herbert (WEWoRC 2009) SECRET Project Team # 9



Algorithms & Complexities

How does BTA work ? (contd)

Let B = (β1, . . . , βm) a basis of F2m over F2.

Every α ∈ F2m is uniquely represented by the m-tuple :

(Tr(β1 · α), . . . , Tr(βm · α)).

BTA splits any f ∈ F2m [z ] s.t. f (z)|(z2m − z) into linear factors by
computing iteratively on β ∈ B and recursively on f :

g(z) := gcd(f (z), Tr(β · z)) and h(z) :=
f (z)

g(z)
.

BTA always successfully returns the linear factors of f .

First call : f = σe and β = β1.

V. Herbert (WEWoRC 2009) SECRET Project Team # 10



Speed Up McEliece Decryption

How to reduce time complexity ?

The drawback of BTA is the large number of recursive calls when the
system parameters grow.

We reduce it by mixing BTA and Zinoviev’s algorithms which are ad-hoc
methods for finding roots of polynomials of degree ≤ 10 over F2m .

We call this process BTZ in the following.

BTZ depends on a parameter dmax which is the maximum degree up to
which we use Zinoviev’s methods.

V.A. Zinoviev, On the solution of equations of degree ≤ 10 over finite fields
GF(2m), Research Report INRIA n◦ 2829, 1996

V. Herbert (WEWoRC 2009) SECRET Project Team # 11



Speed Up McEliece Decryption

Pseudocode of a simplified version of BTZ

Algorithm 1 - BTZ(f , d , i)
First call : f ← σe ; d ← dmax ∈ {2, . . . , 10} ; i ← 1.
if degree(f ) ≤ d then

return ZINOVIEV(f , d);
else

g ← gcd(f , Tr(βi · z));
h← f /g ;
return BTZ(g , d , i + 1) ∪ BTZ(h, d , i + 1) ;

end if

V. Herbert (WEWoRC 2009) SECRET Project Team # 12



Speed Up McEliece Decryption

What are Zinoviev’s algorithms ?

Zinoviev’s methods find an affine multiple of any polynomial of degree ≤
10 over F2m . The methods differ according to this degree.

Affine Polynomial

A(z) = L(z) + c where L is a linearized polynomial, c ∈ Fqm .

Linearized Polynomial

L(z) =
n∑

i=0

li · zqi

with q a prime power, li ∈ Fqm and ln = 1. In our case, q = 2.

After that, finding roots of affine polynomial is easier than in the general
case.

V. Herbert (WEWoRC 2009) SECRET Project Team # 13



Speed Up McEliece Decryption

Get an affine multiple of a polynomial of degree 2 or 3

Let us have an equation : z2 + αz + β = 0, α, β ∈ F2m .

Notice z2 + αz is already a linearized polynomial. Nothing to do here.

Now consider the equation : z3 + az2 + bz + c = 0, a, b, c ∈ F2m

We have to decimate the non-linear terms.

For this, we add one particular root by multiplying the left side by (z + a).

We obtain z4 + dz2 + ez + f = 0 with d = a2 + b, e = ab + c, f = ac.

We get what we want, an affine multiple of a polynomial of degree 3.

V. Herbert (WEWoRC 2009) SECRET Project Team # 14



Results & Analysis

What results do we obtain ?

We specify a recurrence complexity formula for BTZ.

We then use dynamic programming to estimate its theoretical complexity
in the worst case.

We thus determine the best dmax to use to have the optimal efficiency on
the following range of parameters :

m = 8, 11, 12, 13, 14, 15, 16, 20, 30, 40 ; t = 10..300 ; dmax = 2..10.

Let K be the cost function of any operation over F2m .
We take K (+) = 1 ; K (×) = 1 or K (×) = m.

V. Herbert (WEWoRC 2009) SECRET Project Team # 15



Results & Analysis

Conclusions & Perspectives

For m = 11, t = 32, theory recommends dmax = 5.

Theoretical gain, in terms of number of operations over F2m , of BTZ with
dmax = 5 over BTA is 46%, the one over Chien method is 93%.

The higher is t, the higher is the optimal dmax , according to the theory.

Practice confirms theory up to degree 3 at least.

For instance with m = 11, t = 32 and dmax = 2, BTZ takes 65% of the
total time decryption against 72% for BTA and 86% for Chien.

Implementation is in progress for greater parameters dmax .

V. Herbert (WEWoRC 2009) SECRET Project Team # 16



Danke schön WEWoRC 2009 !

Any questions or comments ?

Any further remarks or suggestions can be adressed at :

Vincent.Herbert@inria.fr

Slides will be available in a short time on :

http://www-roc.inria.fr/secret/Vincent.Herbert/

V. Herbert (WEWoRC 2009) SECRET Project Team # 17

http://2009.weworc.org/
mailto:Vincent.Herbert@inria.fr
http://www-roc.inria.fr/secret/Vincent.Herbert/


Bonus Slides

Why is it easier to find roots of an affine polynomial ?

Let us have an affine polynomial A(z) = L(z) + c =
∑m−1

i=0 li · z2i
+ c.

Consider (α1, · · · , αm) is a F2-basis of F2m , (li )1≤i≤m, c and x are
elements of F2m .

Guess x is a root of A.

A(x) = 0 ⇔ L(x) = c

⇔
m∑

i=1

xi · L(αi ) =
m∑

i=1

ci · αi (using linearity of L)

⇔
m∑

i=1

m∑
j=1

xi li ,j · αi =
m∑

i=1

ci · αi (linear system in xi )

V. Herbert (WEWoRC 2009) SECRET Project Team # 18



Bonus Slides

How does Chien search operate ?

Chien search is a recursive algorithm. We can say it’s a clever exhaustive
search.

Let α be a generator of F∗2m and let f (x) = a0 + a1 · x + · · ·+ at · x t be a
polynomial over F2m .

f (αi ) = a0 + a1 · αi + · · ·+ at · (αi )
t

f (αi+1) = a0 + a1 · αi+1 + · · ·+ at · (αi+1)
t

= a0 + a1 · αi · α + · · ·+ at · (αi )
t · αt

Set ai ,j = aj(α
i )

j . It is easy to obtain f (αi+1) from f (αi ) since we have
that ai+1,j = ai ,j · αj .

Moreover, if
∑t

j=0 ai ,j = 0, then αi is a root of f .

V. Herbert (WEWoRC 2009) SECRET Project Team # 19



Bonus Slides

Second description of a Binary Goppa Code

Let m > 0 and n ≤ 2m.

The n-length binary Goppa code Γ(L, g) is defined by :
Support L = (α1, ..., αn) n-tuple of distinct elements of F2m ;
Goppa polynomial g(z) ∈ F2m [z ], square-free, monic of degree t > 0
with no roots in L ;

Γ(L, g) is a subfield subcode over F2 of a particular Goppa code over
binary field F2m which have parity-check matrix H.

H :=


1

g(α1)
α1

g(α1)
αt−1

1
g(α1)

1
g(α2)

α2
g(α2)

αt−1
2

g(α2)
...

...
...

1
g(αn)

αn
g(αn)

αt−1
n

g(αn)

 ∈Mn,t(F2m).

Thus, we have a ∈ Γ(L, g) if and only if a.H = 0 and a ∈ Fn
2.

V. Herbert (WEWoRC 2009) SECRET Project Team # 20


	Motivation for code-based cryptography
	Algorithms & Complexities
	Speed Up McEliece Decryption
	Results & Analysis
	
	Bonus Slides

