Motion estimation using Data Assimilation in a reduced order model

Karim Drifi

January the 17th 2012

École des Ponts ParisTech

1/20

A few words about **CLIME**

Two main topics of the team

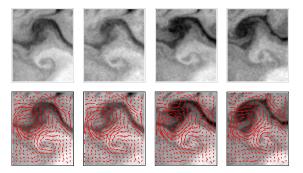
- Image assimilation,
- Air quality modelling.

The common part for both topics is **DATA ASSIMILATION**.

A possible definition

Data assimilation is about making a **Compromise** between a **Model** and **Observations**.

Objective of Image Assimilation for Oceanography Estimation of motion fields (surface flow) using satellite temperature image sequence.

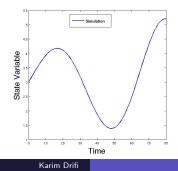


Satellite data acquired over the Black Sea and motion result

Simulation

X(t), a state vector, defined on t ∈ [0, T]
Find X(t):

$$\frac{dX}{dt}(t) + M(X)(t) = 0$$
(1)
 $X(0) = X_0$ (2)

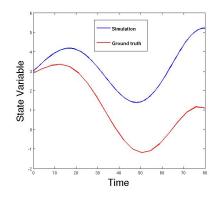


Data Assimilation

Butterfly effect But the initial condition X_0 is not perfectly known :

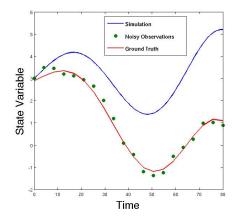
$$X(0) = X_0 + \mathcal{E}_b, \qquad (3)$$

 \mathcal{E}_b being the background error.



Need to Assimilate (Noisy) Observations

 $Y(t) = \mathbb{H}(X(t)) + \mathcal{E}_o(t), \quad \mathcal{E}_o(t)$ being the observation error



Minimizing the errors

• System to be solved, find X:

$$\frac{dX}{dt}(t) + \mathbb{M}(X)(t) = 0 \tag{4}$$

$$X(0) = X_0 + \mathcal{E}_b \tag{5}$$

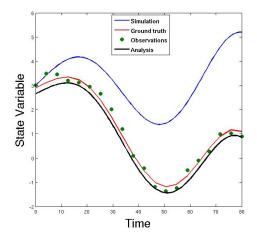
$$Y(t) = IH(X(t)) + \mathcal{E}_o(t)$$
(6)

• Minimizing the errors $\|\mathcal{E}_b\| + \|\mathcal{E}_o\|$,

• Variational formulation \rightarrow 4D-Var algorithm.

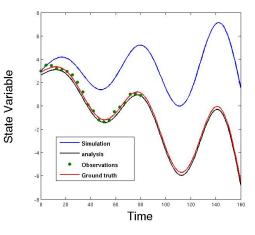
6/20

Analysis (result) fits observations



informatics mathematics

Better Forecast

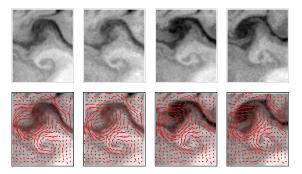


Invia mathematics

Objective Image assimilation Twin experiment

Back to Image assimilation

Estimation of motion $\mathbf{w}(\mathbf{x}, t)$ on an image sequence $T(\mathbf{x}, t_k)$. Domain : $(\mathbf{x}, t) \in A = \Omega \times [0, \mathbf{T}]$.



Satellite data acquired over the Black Sea and motion result

informatics mathematics

Objective Image assimilation Twin experiment

Image assimilation

• State Vector defined on $(\mathbf{x}, t) \in A = \Omega \times [0, \mathbf{T}]$:

$$\mathbf{X}(\mathbf{x},t) = \begin{pmatrix} \mathbf{w}(\mathbf{x},t) \\ T_s(\mathbf{x},t) \end{pmatrix}$$

Model equation

$$\frac{\partial \mathbf{X}}{\partial t}(\mathbf{x},t) + \mathbf{M}(\mathbf{X})(\mathbf{x},t) = 0$$
(7)

Background Equation:

$$\mathbf{X}(\mathbf{x},0) = \mathbf{X}_b(\mathbf{x}) + \mathcal{E}_b(\mathbf{x})$$
 $\mathbf{X}_b(\mathbf{x}) = \begin{pmatrix} 0 \\ T(\mathbf{x},t_1) \end{pmatrix}$

• Observation Equation:

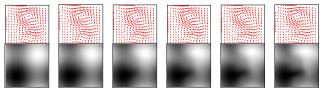
$$T^{obs}(\mathbf{x},t) = T_s(\mathbf{x},t) + \mathcal{E}_o(\mathbf{x},t)$$

10/20

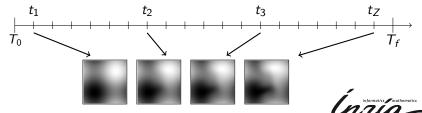
Objective Image assimilation Twin experiment

Twin experiment

• Synthetic data : Simulation of \mathbb{M} from initial conditions $(\mathbf{w}_0(\mathbf{x}), \mathcal{T}_0(\mathbf{x})) \rightarrow (\mathbf{w}(\mathbf{x}, t), \mathcal{T}_s(\mathbf{x}, t))$:



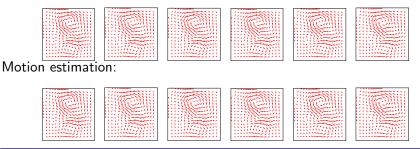
• Choice of observation dates t_z :



Objective Image assimilation Twin experiment

Results

Ground-truth:



Drawbacks

- Data size : 8192 variables in our experiment (about 10⁸ variables for real data).
- Computation time : Huge !!!

NUM

Galerkin projection Twin experiment Sliding windows

Reduction Twin experiment

Tool

Estimate a small subspace, the solution should be close to the subspace. Define a **reduced model** \mathbb{M}_R by the Galerkin projection of **the full model** \mathbb{M} on the subspace.

- Base Ψ = {ψ_j(x)}_{j=1...L} is obtained by applying POD to the image sequence T(x, t_k).
- Base Φ = {φ_i(x)}_{i=1...K} is obtained by applying POD to the motion sequence.
- It comes:

$$\mathbf{w}(\mathbf{x},t) pprox \sum_{i=1}^{K} a_i(t) \phi_i(\mathbf{x})$$
 $T_s(\mathbf{x},t) pprox \sum_{j=1}^{L} b_j(t) \psi_j(\mathbf{x})$

Galerkin projection Twin experiment Sliding windows

Reduced Model

•
$$a(t) = (a_1(t), \dots, a_K(t))^T, \ b(t) = (b_1(t), \dots, b_L(t))^T$$

- A reduced state vector: $\mathbf{X}_{R}(t) = \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} K + L$ components, less than 10 in our experiment.
- A reduced model \mathbb{M}_R derived from \mathbb{M} :

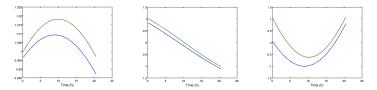
$$\frac{d\mathbf{X}_R}{dt}(t) + \mathbf{M}_R(\mathbf{X}_R)(t) = 0.$$
(8)

Assimilation in the reduced model

The image data $T(\mathbf{x}, t_k)$ are projected on Ψ with coefficients $b_j^{obs}(t_k)$. The observations $b_j^{obs}(t_k)$ are assimilated in the reduced model \mathbb{M}_R to estimate the coefficients $a_i(t)$.

Galerkin projection Twin experiment Sliding windows

Results



Motion coefficients - Ground-truth (green) - assimilation results (blue).

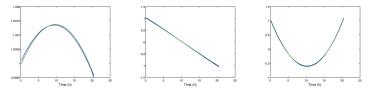
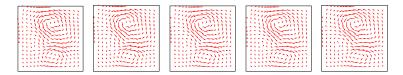


Image coefficients – Ground-truth (green) – assimilation results (blue).

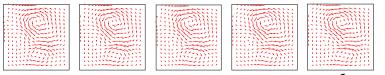
Galerkin projection Twin experiment Sliding windows

Results

Ground-truth:



Estimation of motion by the reduced model:



informatics mathematics

Galerkin projection Twin experiment Sliding windows

Problem – Solution

Ψ et Φ

In the twin experiment: $(\mathbf{w}_0(\mathbf{x}), \mathcal{T}_0(\mathbf{x})) \rightarrow \text{Simulation} (\mathbf{w}(\mathbf{x}, t), \mathcal{T}_s(\mathbf{x}, t)) \rightarrow \text{POD} \rightarrow \Phi, \Psi$ which defines the subspaces Real case:

- Ψ is obtained by applying POD to the image sequence.
- Computation of Φ requires an initial motion field $w_0(x)$. This defines the admissible subspace.

How to get \mathbf{w}_0 ?

Sliding temporal windows : Coupling full and reduced models.

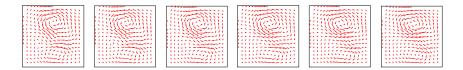
Sliding windows Observation dates t₁ t2 t₃ t₄ t5 t₆ t7 t₈ tα Assimilation with ${ m M}$ Assimilation with \mathbb{M}_R \mathbf{W}_0 Assimilation with M_R Wn

- In the first temporal window: assimilation in the full model.
- $\bullet~ \boldsymbol{w}_0$ is used to define the reduced model in the second window.
- Assimilation in the reduced model (second window)
- Iteration of the process: 6 consecutive windows for the reduced model.

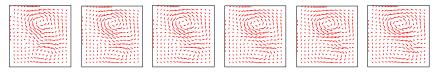
Galerkin projection Twin experiment Sliding windows

Results

Ground-truth:



Results of the reduced model on the first frame of windows 1 to 6:



informatics mathematics

Conclusions and perspectives on model reduction

- The main objective was to reduce computation time and memory size:
 - Computation time: Full model: 4 h for 1 temporal window of 20 h. Reduced model: $<1\,$ min for 6 temporal windows corresponding to 60 h.
 - State vector: Full model: 8192 components. Reduced model: 6 components.
- Next step: robust POD?