Real-time control of gene expression

Jannis Uhlendorf

CONTRAINTES Team - INRIA Rocquencourt
MSC Laboratory - Paris Diderot
Frontières du Vivant Graduate School

INRIA Junior Seminar
What is gene expression?

Promoter Coding sequence Terminator

DNA

transcription

mRNA

translation

Protein
What is gene expression?

Promoter → Coding sequence → Terminator

DNA → transcription → mRNA → translation → Protein
What is gene expression?
What is gene expression?

DNA → transcription → mRNA → translation → Protein

- Promoter
- Coding sequence
- Terminator
- RNA polymerase
- transcription factor
What is gene expression?
What is gene expression?

Promoter → Coding sequence → Terminator

DNA → transcription → mRNA → translation → Protein
What is gene expression?

- Promoter
- Coding sequence
- Terminator

DNA ➔ transcription ➔ mRNA ➔ translation ➔ Protein

transcription factor

RNA polymerase
What is gene expression?

- Promoter
- Coding sequence
- Terminator

DNA → transcription → mRNA → translation → Protein
Regulational steps in gene expression

Regulated steps:
- transcription
- mRNA degradation
- protein stability
- DNA accessibility
- translation rate
Regulational steps in gene expression

- gene expression is a very complex process with many regulatory steps
- not an easy control problem
Motivation

- Classical approach to understand the dynamics of a cellular process
 - perturb the system (e.g. protein level) and monitor time response to perturbation
- Current methods for applying protein perturbations are very limited
 - remove protein, over-express protein
- Need for precise and time varying perturbations

- Goal: control precisely the level of a given protein over time
- Solution: develop integrated experimental platform for closed-loop control
Motivation

- Classical approach to understand the dynamics of a cellular process
 - perturb the system (e.g. protein level) and monitor time response to perturbation
- Current methods for applying protein perturbations are very limited
 - remove protein, over-express protein
- Need for precise and time varying perturbations

- **Goal:** control precisely the level of a given protein over time
- **Solution:** develop integrated experimental platform for closed-loop control
Motivation

- Classical approach to understand the dynamics of a cellular process
 - perturb the system (e.g. protein level) and monitor time response to perturbation
- Current methods for applying protein perturbations are very limited
 - remove protein, over-express protein
- Need for precise and time varying perturbations

- **Goal**: control precisely the level of a given protein over time
- **Solution**: develop integrated experimental platform for closed-loop control
A closed loop control platform

Main features

1. real-time observation
2. real-time change of cellular stimulus
3. real-time control
Saccharomyces Cerevisiae

- Yeast used for baking and brewing
- Very simple eucaryotic organism
- Model organism in biology
 - easy and fast to grow
 - not toxic
 - simple genetic modification
Fluorescent proteins

- Green fluorescent protein (GFP)
 - isolated from jellyfish (*Aequoria victoria*) in 1962
 - exhibits green fluorescence when exposed to UV light
- Can be used to observe proteins in live cells
 - quantification and localization
Green fluorescent protein (GFP)
- isolated from jellyfish (*Aequoria victoria*) in 1962
- exhibits green fluorescence when exposed to UV light

Can be used to observe proteins in live cells
- quantification and localization

promoter coding sequence **terminator**

protein
Fluorescent proteins

- Green fluorescent protein (GFP)
 - isolated from jellyfish (*Aequoria victoria*) in 1962
 - exhibits green fluorescence when exposed to UV light
- Can be used to observe proteins in live cells
 - quantification and localization
Fluorescent proteins

- Green fluorescent protein (GFP)
 - isolated from jellyfish (*Aequorea victoria*) in 1962
 - exhibits green fluorescence when exposed to UV light
- Can be used to observe proteins in live cells
 - quantification and localization
Activation of gene expression

- Cells respond to external conditions
 - crucial for survival (e.g. nutrient change, osmotic shock)

![Diagram of signal transduction]

- Example: increase in osmolarity
Activation of gene expression

- Cells respond to external conditions
 - crucial for survival (e.g. nutrient change, osmotic shock)

Example: increase in osmolarity

- osmotic balance
- osmotic shock
Activation of gene expression

- Osmolarity triggers high osmolarity glycerol (HOG) pathway
 - activation of osmotic stress genes
 - increased production of glycerol

- One of the best studied signaling pathways

- Challenging to control
 - feedback mechanisms (step shock leads to transient protein expression)
 - solution: repeated short pulses separated by at least 20 minutes
Activation of gene expression

- Osmolarity triggers high osmolarity glycerol (HOG) pathway
 - activation of osmotic stress genes
 - increased production of glycerol

- One of the best studied signaling pathways

- Challenging to control
 - feedback mechanisms (step shock leads to transient protein expression)
 - solution: repeated short pulses separated by at least 20 minutes

![Gene expression response to osmotic shock](image-url)
Activation of gene expression

- Osmolarity triggers high osmolarity glycerol (HOG) pathway
 - activation of osmotic stress genes
 - increased production of glycerol

- One of the best studied signaling pathways

- Challenging to control
 - feedback mechanisms (step shock leads to transient protein expression)
 - solution: repeated short pulses separated by at least 20 minutes
Main features

1. real-time observation (fluorescent protein)
2. real-time change of cellular stimulus (osmolarity)
3. real-time control (computer)
Model predictive control (MPC)

- MPC finds optimal input by simulating a model of the system
 1. search for control minimizing deviation between model prediction and target profile
 2. apply found control strategy for a short while
 3. observer systems response
 4. GOTO 1
Model predictive control (MPC)

- MPC finds optimal input by simulating a model of the system
- Search for control minimizing deviation between model prediction and target profile
- Apply found control strategy for a short while
- Observer systems response
- GOTO 1
Model predictive control (MPC)

- MPC finds optimal input by simulating a model of the system
- Search for control minimizing deviation between model prediction and target profile
- Apply found control strategy for a short while
- Observer system's response
- GOTO 1
Model predictive control (MPC)

- MPC finds optimal input by simulating a model of the system

1. search for control minimizing deviation between model prediction and target profile
2. apply found control strategy for a short while
3. observer systems response
4. GOTO 1
Model predictive control (MPC)

- Requirement: mathematical model of the controlled system
 - state estimation problem: extended Kalman filter

- Simple integration of constraints
 - osmotic shock length limited (5-8 min)
 - minimum 20 minutes between successive pulses
Modeling

- Requirements for a model:
 - predict gene expression response for different inputs
 - simple (allows for state estimation)
- Different models of the Hog1 pathway have been published
 - but not suited for controlling purposes
 (too complex or do not consider gene expression)
- We propose a simple two dimensional ODE model

Model equations

\[
\begin{align*}
\frac{dx_1}{dt} &= u(t - \tau) - \gamma_1 x_1(t) \\
\frac{dx_2}{dt} &= k_1 x_1(t) - \gamma_2 \frac{x_2(t)}{K + x_2(t)}
\end{align*}
\]
Results

- Apply the MPC controller to real cells
 1. constant target value
 2. varying target value
 3. control single cells
Results - constant target

Jannis Uhlendorf (INRIA)

February 14, 2012 15 / 18
Results - varying target

[pSTL1-YFP [a.u.]]

0 200 400 600 800
0 2000 4000 6000 8000

pSTL1-YFP [a.u.]

0 200 400 600 800
0 2000 4000 6000 8000

mean all cells
std all cells
MPC predictions

Jannis Uhlendorf (INRIA)
February 14, 2012
Conclusions and applications

- We can control gene expression in living cells!
 - works well although feedback in controlled system
 - works even well for single cells

- Control targets can vary with time

Applications

- understand biology by perturbing cells (reverse engineering)
- control the mass production of biomolecules
- alternative to synthetic biology
 (external rather than internal implementation of functionality)