Real-time control of gene expression
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Regulational steps in gene expression
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@ DNA accessibility

Regulated steps:

@ transcription

@ mRNA degradation

. . @ translation rate
@ protein stability
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Regulational steps in gene expression
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@ gene expression is a very complex process with many regulatory steps

@ not an easy control problem
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Motivation

@ Classical approach to understand the dynamics of a cellular process

> perturb the system (e.g. protein level) and monitor time response to
perturbation

@ Current methods for applying protein perturbations are very limited
> remove protein, over-express protein

@ Need for precise and time varying perturbations
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Motivation

@ Classical approach to understand the dynamics of a cellular process

» perturb the system (e.g. protein level) and monitor time response to
perturbation

@ Current methods for applying protein perturbations are very limited
> remove protein, over-express protein

@ Need for precise and time varying perturbations

@ Goal: control precisely the level of a given protein over time

@ Solution: develop integrated experimental platform for

closed-loop control
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A closed loop control platform
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@ Main features

@ real-time observation
@ real-time change of cellular stimulus
© real-time control
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Saccharomyces Cerevisiae

@ Yeast used for baking and brewing
@ Very simple eucaryotic organism

@ Model organism in biology

» easy and fast to grow
> not toxic
» simple genetic modification
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Fluorescent proteins

@ Green fluorescent protein (GFP)

» isolated from jellyfish (Aequoria victoria) in 1962
» exhibits green fluorescence when exposed to UV light

@ Can be used to observe proteins in live cells
» quantification and localization
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Fluorescent proteins

@ Green fluorescent protein (GFP)

» isolated from jellyfish (Aequoria victoria) in 1962
» exhibits green fluorescence when exposed to UV light

@ Can be used to observe proteins in live cells
» quantification and localization

Cells Hog1-GFP| | Htb2-RFP Colocaliz.
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Activation of gene expression

@ Cells respond to external conditions
» crucial for survival (e.g. nutrient change, osmotic shock)

signalﬁ
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Activation of gene expression

@ Cells respond to external conditions
» crucial for survival (e.g. nutrient change, osmotic shock)

signalﬁ

@ Example: increase in osmolarity

osmotic balance osmotic shock
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Activation of gene expression

e Osmolarity triggers high osmolarity glycerol (HOG) pathway

> activation of osmotic stress genes
> increased production of glycerol

@ One of the best studied signaling pathways
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Activation of gene expression

e Osmolarity triggers high osmolarity glycerol (HOG) pathway

> activation of osmotic stress genes
> increased production of glycerol

@ One of the best studied signaling pathways

@ Challenging to control
» feedback mechanisms (step shock leads to transient protein expression)
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Activation of gene expression

e Osmolarity triggers high osmolarity glycerol (HOG) pathway
> activation of osmotic stress genes
» increased production of glycerol

@ One of the best studied signaling pathways

@ Challenging to control

» feedback mechanisms (step shock leads to transient protein expression)
» solution: repeated short pulses separated by at least 20 minutes
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A closed loop control platform
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@ Main features

@ real-time observation (fluorescent protein)
@ real-time change of cellular stimulus (osmolarity)
© real-time control (computer)

Jannis Uhlendorf (INRIA) February 14, 2012 10 / 18



Model predictive control (MPC)

e MPC finds optimal input by simulating a model of the system
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Model predictive control (MPC)

e MPC finds optimal input by simulating a model of the system

model predictions
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@ search for control minimizing deviation between model prediction and
target profile
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Model predictive control (MPC)
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@ search for control minimizing deviation between model prediction and

target profile
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Model predictive control (MPC)

e MPC finds optimal input by simulating a model of the system

model predictions
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@ search for control minimizing deviation between model prediction and
target profile

@ apply found control strategy for a short while

© observer systems response
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Model predictive control (MPC)

@ Requirement: mathematical model of the controlled system
> state estimation problem: extended Kalman filter

@ Simple integration of constraints

» osmotic shock length limited (5-8 min)
» minimum 20 minutes between successive pulses
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Modeling

@ Requirements for a model:

» predict gene expression response for different inputs
» simple (allows for state estimation)

o Different models of the Hogl pathway have been published
» but not suited for controlling purposes

(too complex or do not consider gene expression)

@ We propose a simple two dimensional ODE model

Model equations

G =u(t —7) —yx(t)
2o = kpx(t) — 22l

K+X2(t)
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Results

@ Apply the MPC controller to real cells

@ constant target value
@ varying target value
@ control single cells
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Results - constant target
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Results - varying target
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Results - single cell control
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Conclusions and applications

@ We can control gene expression in living cells!
» works well although feedback in controlled system
» works even well for single cells

o Control targets can vary with time

@ Applications
» understand biology by perturbing cells (reverse engineering)
» control the mass production of biomolecules
» alternative to synthetic biology
(external rather than internal implementation of functionality)

Jannis Uhlendorf (INRIA) February 14, 2012 18 / 18



