
Analytic Knowledge Discovery Models

for Information Retrieval and Text Summarization

Pawan Goyal

Team Sanskrit
INRIA Paris Rocquencourt

Pawan Goyal (http://www.inria.fr/) Analytic Knowledge Discovery Models March 20, 2012 1 / 23



Outline

1 Ad-Hoc Information Retrieval

2 Text Summarization

3 Research Problems

4 Query Representation Model

5 Neighborhood Based Document Smoothing Model

6 A Context Based Word Indexing Model

7 Results

8 Conclusions

Pawan Goyal (http://www.inria.fr/) Analytic Knowledge Discovery Models March 20, 2012 2 / 23



Ad-Hoc Information Retrieval

  

   Matching
 

Representation Representation
     Function       Function

    Function

 Results

Text Documents’

Query
 User

Inverted
  Index

     collelction

An Ad-Hoc Information Retrieval System

Pawan Goyal (http://www.inria.fr/) Analytic Knowledge Discovery Models March 20, 2012 3 / 23



Information Retrieval: Datasets and Evaluation Criteria

TREC Dataset: Dataset used in Text REtrieval Conferences

741,686 documents, query topics 101-150 (TREC-2) and 151-200 (TREC-3).

524,000 documents, query topics 351-400 (TREC-7).

Query example:Topic 169: cost of garbage trash removal.

Evaluation Criteria

Precision at various points are computed.
✞

✝

☎

✆
P5= NRel(5)

5

NRel(x): Number of relevant documents in the topx documents returned by the
system.

Mean Averaged Precision (MAP) is the mean of the precision value at all recall
points.

Student’s t-test is used to compare if the difference in results is statistically
significant. (* :p< 0.05, ** : p< 0.01)
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Ad-Hoc Information Retrieval

Problems that Ad-Hoc Information Retrieval addresses:
Document and Query indexing: How to best represent their contents?
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Ad-Hoc Information Retrieval

Problems that Ad-Hoc Information Retrieval addresses:
Document and Query indexing: How to best represent their contents?
→ The representation allows real time search to be computationally efficient.
→ The representation minimizes the information loss.

Relevance measure: To what extent a document is relevant to a query?

System evaluation: To what degree does the relevance measure reflect
the human judgment?

Most Widely Used Approaches:

Keyword based indexing to represent a document and a query

Similarity measures such as Cosine similarity for relevance measures

Precision and Recall measures for system evaluation
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Information Retrieval

Essential factors for Keyword-based Indexing functionF

Term frequency (fij ): How many times a term appear in a document?
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Information Retrieval: An Example

Result of indexing

Indexing:D1 →{(computation,0.3),(information,0.4), . . .},
D2 →{(formal,0.5),(computation,0.4), . . .}, . . .
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Information Retrieval: An Example

Result of indexing

Indexing:D1 →{(computation,0.3),(information,0.4), . . .},
D2 →{(formal,0.5),(computation,0.4), . . .}, . . .
Inverted Index:computation→{(D1,0.3),(D2,0.4), . . .}
User query, weighted by the system:
q→{(computation,1),(information,1),(processing,1)}
Sim(D1,q)> Sim(D2,q)

Evaluation
Let D1 be relevant toq andD2 be non-relevant as per human judgment.

P1= 1.0, P2= 0.5, MAP= 1.0
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Text Summarization

Why Text Summarization?
Information Retrieval gives a list of documents, assumed to be relevant
to the user query.

There is still a vast volume of information in the retrieved documents.
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Information Retrieval gives a list of documents, assumed to be relevant
to the user query.

There is still a vast volume of information in the retrieved documents.

Text summarization reduces this information into a short set of words or
paragraph.

Genres of Summary
Extract vs. Abstract
. . .lists fragments of text vs. re-phrases content coherently.

Single document v/s Multi-document
. . .based on one text vs. fuses together many texts.

Generic v/s Query-oriented
. . .provides author’s view vs. reflects user’s interest.
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Text Summarization

Generic Single document Extractive Summary
Document is indexed along the same lines as for Information Retrieval.

Similarity between sentences is represented using Cosine similarity.

Important sentences are selected using PageRank based
algorithm/eigen-values.
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Text Summarization

Generic Single document Extractive Summary
Document is indexed along the same lines as for Information Retrieval.

Similarity between sentences is represented using Cosine similarity.

Important sentences are selected using PageRank based
algorithm/eigen-values.

Evaluation Criteria
DUC datasets: Various news articles used in Document Understanding
Conferences.

Manually created summaries are provided for each document.

System generated summary is compared to the manually created
summary.

ROGUE toolkit is used for the evaluation.☛

✡

✟

✠
ROGUE−N =

∑S∈{RefSum} ∑n−gram∈SCountmatch(n−gram)

∑S∈{RefSum} ∑n−gram∈SCount(n−gram)
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Text Summarization: Example

Sentence Graph

S2

S3 S4

S5

S1 
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Text Summarization: Example

Sentence Graph

S2

S3 S4

S5

 S1
M12

M34

M̃ =













0.0 0.5 0.0 0.4 0.1
0.5 0.0 0.5 0.0 0.0
0.0 0.5 0.0 0.5 0.0
0.4 0.0 0.4 0.0 0.2
0.3 0.0 0.0 0.7 0.0
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 S1
M12
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0.0 0.5 0.0 0.4 0.1
0.5 0.0 0.5 0.0 0.0
0.0 0.5 0.0 0.5 0.0
0.4 0.0 0.4 0.0 0.2
0.3 0.0 0.0 0.7 0.0













Solving using Page-Rank based algorithm iteratively for sentence centrality vectorI :

I j = µ· ∑
∀k6=j

Ik · M̃j,k+
1−µ
|S|

I =
[

0.22 0.18 0.2 0.3 0.1
]
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Research Problems

Term Mismatch
Stems from the word independence assumption

User query:insurance cover which pays for long term care.

A relevant document may contain terms different from the actual user
query.

Some relevant words concerning this query:
{medicare,premiums, insurers}
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Term Mismatch
Stems from the word independence assumption

User query:insurance cover which pays for long term care.

A relevant document may contain terms different from the actual user
query.

Some relevant words concerning this query:
{medicare,premiums, insurers}

Existing Solutions
Manually constructed ontologies such as Wordnet

Relevance feedback

Co-occurrence models such as mutual information
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Research Problems

Context Independent Word Indexing
Information Retrieval

D1 = {robot, healthcare, mobile, autonomous, research}
D2 = {fifa, soccer, germany, played,robot}
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D1 = {robot, healthcare, mobile, autonomous, research}
D2 = {fifa, soccer, germany, played,robot}

Sentence Extraction
D1 : S11 = {started, career,engineering}

: S12 = {shifted,engineering, humanities}
D2 : S21 = {engineering, application, scientific, principles}

: S22 = {engineering, design, build, machines}

Existing Solutions
Document Clustering

Latent Semantic Analysis
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Knowledge Discovery: A Potential solution
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Knowledge Discovery: A Potential solution

Distributional Hypothesis
“You know a word by the company it keeps.” (Firth, 1957)

“Words that occur in the same contexts tend to have similar
meanings.” (Zellig Harris, 1968)

→ Semantically similar words tend to have similar distributional patterns.

My Approach: Specific Objectives
Using distributional hypothesis to analyze the research problems from a
theoretical perspective.

To empirically evaluate the proposed analytic knowledge discovery
models with respect to the existing approaches.
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Query Representation Model: Basic Idea

Distributional Hypothesis
Words are not independent of each other

‘computation’ provides more information about ‘algorithm’ and
‘programming’ than about ‘petroleum’ or ‘environment’.
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Query Representation Model: Basic Idea

Distributional Hypothesis
Words are not independent of each other

‘computation’ provides more information about ‘algorithm’ and
‘programming’ than about ‘petroleum’ or ‘environment’.

→ Distributional pattern of terms is used to find the terms, related to the query
words.

Compositional Model
Problem of ‘polysemy’

‘mouse’ can provide information about{keyboard,monitor} in one context and
about{animals, food} in other context.

→ Combined effect of all query terms is used to avoid ‘polysemy’:
{mouse,wireless} can disambiguate the two usages of mouse.
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Query Representation Model for ‘Term Mismatch’ problem

The parametric model
A: Matrix that captures the distributional pattern

Let a user query be represented asQ= q.A
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Query Representation Model for ‘Term Mismatch’ problem

The parametric model
A: Matrix that captures the distributional pattern

Let a user query be represented asQ= q.A

→ What choice of Aij will give an enhanced retrieval performance?
☛

✡

✟

✠
Aij = f

(

∑i ∑j tij ·∑k(δkitkj)

∑k tki·∑k tkj

)

: Derived using system relevance criteria and an

empirical evidence from user relevance criteria.
✞

✝

☎

✆f = log(x+0.05) : Fixed through sensitivity analysis.
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Query Representation Model for ‘Term Mismatch’ problem

The parametric model
A: Matrix that captures the distributional pattern

Let a user query be represented asQ= q.A

→ What choice of Aij will give an enhanced retrieval performance?
☛

✡

✟

✠
Aij = f

(

∑i ∑j tij ·∑k(δkitkj)

∑k tki·∑k tkj

)

: Derived using system relevance criteria and an

empirical evidence from user relevance criteria.
✞

✝

☎

✆f = log(x+0.05) : Fixed through sensitivity analysis.

The only query expansion model with a relevance based justification.
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Results

TREC Topic 104: catastrophic health insurance
Query Representation:surtax:1.0 hcfa:0.97 medicare:0.93 hmos:0.83
medicaid:0.8 hmo:0.78 beneficiaries:0.75 ambulatory:0.72 premiums:0.72
hospitalization:0.71 hhs:0.7 reimbursable:0.7 deductible:0.69
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Specific domain terms:HCFA (Health Care Financing Administration),HMO
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TREC Topic 355: ocean remote sensing
Query Representation:radiometer:1.0 landsat:0.97 ionosphere:0.94
cnes:0.84 altimeter:0.83 nasda:0.81 meterology:0.81 cartography:0.78
geostationary:0.78 doppler:0.78 oceanographic:0.76
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TREC Topic 104: catastrophic health insurance
Query Representation:surtax:1.0 hcfa:0.97 medicare:0.93 hmos:0.83
medicaid:0.8 hmo:0.78 beneficiaries:0.75 ambulatory:0.72 premiums:0.72
hospitalization:0.71 hhs:0.7 reimbursable:0.7 deductible:0.69

Broad expansion terms:medicare, beneficiaries, premiums. . .

Specific domain terms:HCFA (Health Care Financing Administration),HMO
(Health Maintenance Organization),HHS (Health and Human Services)

TREC Topic 355: ocean remote sensing
Query Representation:radiometer:1.0 landsat:0.97 ionosphere:0.94
cnes:0.84 altimeter:0.83 nasda:0.81 meterology:0.81 cartography:0.78
geostationary:0.78 doppler:0.78 oceanographic:0.76

Broad expansion terms:radiometer, landsat, ionosphere. . .

Specific domain terms:CNES (Centre National dÉtudes Spatiales) and
NASDA (National Space Development Agency of Japan)
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Neighborhood Based Document Smoothing (NBDS) Model

Context Sensitive Document Indexing
D1 = {robot, healthcare, mobile, autonomous, research}
D2 = {fifa, soccer, germany, played,robot}

Content-carrying (Topical) terms should be given higher weights than the
background terms.

Topical terms are supposed to have higher association with each other, when
computed on a large corpora.
✞

✝

☎

✆
tij N = βtij + γ∑k(Ajktik) : Proposed model to redistribute the indexing weights.
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Context Sensitive Document Indexing
D1 = {robot, healthcare, mobile, autonomous, research}
D2 = {fifa, soccer, germany, played,robot}

Content-carrying (Topical) terms should be given higher weights than the
background terms.

Topical terms are supposed to have higher association with each other, when
computed on a large corpora.
✞

✝

☎

✆
tij N = βtij + γ∑k(Ajktik) : Proposed model to redistribute the indexing weights.

NBDS Model: Main Features

The model does not cause any extra computational burden at run-time.

The only model which provides a mathematical framework witha
relevance-based justification.
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A Context Based Word Indexing Model for Text
summarization

Bernoulli model of co-occurrence for lexical association
Consider the distribution of termsti andtj in a corpus ofN documents.

Ni , Nj : Number of documents in whichti andtj occur respectively.

Nij : Number of documents in whichti andtj co-occur.

Probabilitypi of the termti appearing in an arbitrary document:
✞

✝

☎

✆
pi =

Ni
N

Termti occurs inNij documents out of theseNj documents and does not occur
in Nj −Nij documents.

Using Bernoulli distribution:
☛

✡

✟

✠
p(Nij ) =

(Nj
Nij

)

pi
Nij qi

Nj−Nij

Using Shannon’s self-information notion:
✞

✝

☎

✆
Inf (Nij ) =−log2(p(Nij ))

Stirling’s approximation:
✞

✝

☎

✆
n! =

√
2πn

(

n
e

)n

Inf (Nij ) is used to modify the indexing weights iteratively.
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Results

Comparison of Query Representation over the Language Model

Dataset LM CQE MCTM QR (Improvements %)

TREC-2
MAP 0.183 0.192 0.185 0.203 (+10.9**,+5.7,+9.7*)
P30 0.386 0.393 0.392 0.415 (+7.5,+5.6,+5.9)

TREC-7
MAP 0.179 0.184 0.184 0.2 (+11.7**,+8.7**,+8.7*)
P30 0.289 0.284 0.291 0.315 (+9.0**,+10.9*,+8.2*)

Comparison of NBDS Model applied to the Language model

Dataset LM LM+NBDS Improvement (%)

TREC 2
MAP 0.183 0.199 +8.7**
P10 0.448 0.462 +3.1

TREC 3
MAP 0.197 0.212 +7.6**
P10 0.474 0.53 +11.8**
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Results

Sentence Extraction Experiments

System
DUC01 DUC02

ROGUE-1 ROGUE-2 ROGUE-1 ROGUE-2
IntraLink 0.439 0.172 0.45 0.19
IntraLink+bern 0.447 0.184 0.461 0.202
UniformLink 0.438 0.173 0.458 0.199
UniformLink+bern 0.443 0.183 0.462 0.205
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Conclusions

The problems of ‘term mismatch’ and ‘context independent document
indexing’ have been addressed using distributional hypothesis.

A proper mathematical framework has been provided to the query expansion
and document smoothing techniques.

The proposed knowledge discovery models have been shown to perform
significantly superior to the traditional retrieval frameworks.

Being developed in the generalized retrieval framework, these models are
applicable to all of the retrieval frameworks.

The proposed models for document smoothing do not cause any extra
computational burden at run-time.
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Questions?
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