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Information Retrieval: Datasets and Evaluation Criteria

TREC Dataset: Dataset used in Text REtrieval Conferences
@ 741,686 documents, query topics 101-150 (TREC-2) and 151-2BE-3).
@ 524,000 documents, query topics 351-400 (TREC-7).

@ Query exampleTopic 169: cost of garbage trash removal.

Evaluation Criteria

@ Precision at various points are computeeb = NReT'(s)

@ Ngel(X): Number of relevant documents in the todocuments returned by the
system.

@ Mean Averaged Precision (MAP) is the mean of the precisidmevat all recall
points.

@ Student’s t-test is used to compare if the difference inltessistatistically
significant. (* :p < 0.05, **: p< 0.01)
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Ad-Hoc Information Retrieval

Problems that Ad-Hoc Information Retrieval addresses:
o Document and Query indexing: How to best represent their contents
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Ad-Hoc Information Retrieval

Problems that Ad-Hoc Information Retrieval addresses:

o Document and Query indexing: How to best represent their contents”
— The representation allows real time search to be computdtjoefficient.
— The representation minimizes the information loss.

@ Relevance measure: To what extent a document is relevant to a que

s §

@ System evaluation: To what degree does the relevance measure refle
the human judgment?

Most Widely Used Approaches:
o Keyword based indexing to represent a document and a query
o Similarity measures such as Cosine similarity for relevance measure:s
@ Precision and Recall measures for system evaluation
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Information Retrieval

Essential factors for Keyword-based Indexing function
o Term frequency (fj): How many times a term appear in a document?
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Information Retrieval: An Example

Result of indexing

@ Indexing:D; — {(computation0.3), (information0.4),...},
D, — {(formal,0.5), (computation0.4),...},...
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Result of indexing
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Result of indexing

@ Indexing:D; — {(computation0.3), (information0.4),...},
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o Inverted Indexcomputation— {(D1,0.3),(D2,0.4),...}

o User query, weighted by the system:
g — {(computationl), (information 1), (processingl) }

@ SimDy,q) > SimDa,q)
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Information Retrieval: An Example

Result of indexing

@ Indexing:D; — {(computation0.3), (information0.4),...},
D, — {(formal,0.5), (computation0.4),...},...

o Inverted Indexcomputation— {(D1,0.3),(D2,0.4),...}

o User query, weighted by the system:
g — {(computationl), (information 1), (processingl) }

@ SimDy,q) > SimDa,q)

Evaluation
@ Let D1 be relevant tag andD, be non-relevant as per human judgment.
e PL=10,P2=0.5 MAP=10
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Text Summarization

Why Text Summarization?

o Information Retrieval gives a list of documents, assumed to be releva
to the user query.

@ There is still a vast volume of information in the retrieved documents.
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Why Text Summarization?

o Information Retrieval gives a list of documents, assumed to be releva

to the user query.

@ There is still a vast volume of information in the retrieved documents.

@ Text summarization reduces this information into a short set of word
paragraph.

Genres of Summary

@ Extract vs. Abstract
... lists fragments of text vs. re-phrases content coherently.

@ Single document v/s Multi-document
...based on one text vs. fuses together many texts.

@ Generic v/s Query-oriented

o

...provides author’s view vs. reflects user’s interest.
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Generic Single document Extractive Summary

@ Document is indexed along the same lines as for Information Retrie
@ Similarity between sentences is represented using Cosine similarity

@ Important sentences are selected using PageRank based

algorithm/eigen-values.

Text Summarization

fal)

9/23

Pawan Goyal (http://iwww.inria.fr/) Analytic Knowledge Discovery Models

March 20, 2012



Text Summarization

Generic Single document Extractive Summary
@ Document is indexed along the same lines as for Information Retrie

fal)

@ Similarity between sentences is represented using Cosine similarity

@ Important sentences are selected using PageRank based
algorithm/eigen-values.

Evaluation Criteria

o DUC datasets: Various news articles used in Document Understandi
Conferences.

—

@ Manually created summaries are provided for each document.

@ System generated summary is compared to the manually created
summary.

o ROGUE toolkit is used for the evaluation.
° (ROGUE_ N = 2 sc{RefSurh anran\escounha{ck{ngram)}

Y sc{Refsum 2 n—grames Coun{n—gram)

- _________________________________________________________/
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Text Summarization: Example

Sentence Graph
©y, ©
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Text Summarization: Example

Sentence Graph

00 05 00 04 01
05 00 05 00 00
00 05 00 05 00
04 00 04 00 02
03 00 00 07 00
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Text Summarization: Example

Sentence Graph

s1 s2

00 05 00 04 O1
_ 05 00 05 00 00
M=| 0.0 05 00 05 00

04 00 04 00 02
03 00 00 07 00

Solving using Page-Rank based algorithm iteratively fotesece centrality vectdr.

& 1-u
lj =p- Ik Mjk+—=—
=g et T

|=[ 022 018 02 03 01]
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Term Mismatch
o Stems from the word independence assumption

@ User queryinsurance cover which pays for long term care.

@ A relevant document may contain terms different from the actual use

query.
@ Some relevant words concerning this query:
{medicarepremiumsinsurers

Research Problems

—
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Research Problems

Term Mismatch
o Stems from the word independence assumption
@ User queryinsurance cover which pays for long term care.
@ A relevant document may contain terms different from the actual use
query.
@ Some relevant words concerning this query:
{medicarepremiumsinsurers

—

Existing Solutions
@ Manually constructed ontologies such as Wordnet
o Relevance feedback

@ Co-occurrence models such as mutual information
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Research Problems

Context Independent Word Indexing

Information Retrieval
D; = {robot healthcare, mobile, autonomous, resefrch
D, = ({fifa, soccer, germany, playedbot}
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Sentence Extraction
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Research Problems

Context Independent Word Indexing
Information Retrieval

D; = {robot healthcare, mobile, autonomous, research
D, = ({fifa, soccer, germany, playedbot}
Sentence Extraction
D; : $S1={started, careegngineering
Si2 = {shifted,engineeringhumanitie$
D, : $s1={engineeringapplication, scientific, principlés

S = {engineeringdesign, build, machinés

Existing Solutions
@ Document Clustering
o Latent Semantic Analysis
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Knowledge Discovery: A Potential solution
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Knowledge Discovery: A Potential solution

Distributional Hypothesis
“You know a word by the company it keeps.” (Firth, 1957)

“Words that occur in the same contexts tend to have similar
meanings.” (Zellig Harris, 1968)

— Semantically similar words tend to have similar distributional patterns

My Approach: Specific Objectives

@ Using distributional hypothesis to analyze the research problems fro

theoretical perspective.

@ To empirically evaluate the proposed analytic knowledge discov

models with respect to the existing approaches.

v
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13/23

Pawan Goyal (http://iwww.inria.fr/) Analytic Knowledge Discovery Models



Query Representation Model: Basic Idea

Distributional Hypothesis

Words are not independent of each other
‘computation’ provides more information about ‘algorithm’ a
‘programming’ than about ‘petroleum’ or ‘environment’.

S
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Query Representation Model: Basic Idea

Distributional Hypothesis
Words are not independent of each other
‘computation’ provides more information about ‘algorithm’ an
‘programming’ than about ‘petroleum’ or ‘environment’.
— Distributional pattern of terms is used to find the terms, related to the qu

words.

Compositional Model

Problem of ‘polysemy’
‘mouse’ can provide information abo{iteyboardmonitor} in one context and
about{animalsfood} in other context.
— Combined effect of all query terms is used to avoid ‘polyse
{mousewirelesg can disambiguate the two usages of mouse.

March 20, 2012 14723

Analytic Knowledge Discovery Models

Pawan Goyal (http://iwww.inria.fr/)



Query Representation Model for ‘Term Mismatch’ proble

The parametric model
o A: Matrix that captures the distributional pattern
@ Let a user query be representedas g.A
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Query Representation Model for ‘Term Mismatch’ proble

The parametric model
o A: Matrix that captures the distributional pattern
@ Let a user query be representedas q.A
— What choice of Awill give an enhanced retrieval performance?

—~

Yk Yk b
empirical evidence from user relevance criteria.

° [Aij =f (M)J Derived using system relevance criteria and

° [f = log(x+ 0.05)]: Fixed through sensitivity analysis.
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Query Representation Model for ‘Term Mismatch’ proble

The parametric model
o A: Matrix that captures the distributional pattern
@ Let a user query be representedas q.A
— What choice of Awill give an enhanced retrieval performance?

Yk Yk b
empirical evidence from user relevance criteria.

° [f = Iog(x+0.05)]: Fixed through sensitivity analysis.

° [Aij =f (M) : Derived using system relevance criteria and «

The only query expansion model with a relevance based justification.

'~
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TREC Topic 104: catastrophic health insurance

Query Representation: surtax:1.0 hcfa:0.97 medicare:0.93 hmos:0.83
medicaid:0.8 hmo:0.78 beneficiaries:0.75 ambulatory:0.72 premiums:0.7
hospitalization:0.71 hhs:0.7 reimbursable:0.7 deductible:0.69
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medicaid:0.8 hmo:0.78 beneficiaries:0.75 ambulatory:0.72 premiums:0.7
hospitalization:0.71 hhs:0.7 reimbursable:0.7 deductible:0.69

Ny

@ Broad expansion termsnedicare, beneficiaries, premiums..

@ Specific domain term3dCFA (Health Care Financing AdministratiofMO
(Health Maintenance OrganizatiomtjHS (Health and Human Services)
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TREC Topic 104: catastrophic health insurance

Query Representation: surtax:1.0 hcfa:0.97 medicare:0.93 hmos:0.83
medicaid:0.8 hmo:0.78 beneficiaries:0.75 ambulatory:0.72 premiums:0.72
hospitalization:0.71 hhs:0.7 reimbursable:0.7 deductible:0.69

@ Broad expansion termsnedicare, beneficiaries, premiums..

N

@ Specific domain term3dCFA (Health Care Financing AdministratiofMO
(Health Maintenance OrganizatiomtjHS (Health and Human Services)

TREC Topic 355: ocean remote sensing

Query Representation: radiometer:1.0 landsat:0.97 ionosphere:0.94
cnes:0.84 altimeter:0.83 nasda:0.81 meterology:0.81 cartography:0.78
geostationary:0.78 doppler:0.78 oceanographic:0.76
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TREC Topic 104: catastrophic health insurance

Query Representation: surtax:1.0 hcfa:0.97 medicare:0.93 hmos:0.83
medicaid:0.8 hmo:0.78 beneficiaries:0.75 ambulatory:0.72 premiums:0.72
hospitalization:0.71 hhs:0.7 reimbursable:0.7 deductible:0.69

@ Broad expansion termsnedicare, beneficiaries, premiums..

N

@ Specific domain term3dCFA (Health Care Financing AdministratiofMO
(Health Maintenance OrganizatiomjHS (Health and Human Services)

TREC Topic 355: ocean remote sensing

Query Representation: radiometer:1.0 landsat:0.97 ionosphere:0.94
cnes:0.84 altimeter:0.83 nasda:0.81 meterology:0.81 cartography:0.78
geostationary:0.78 doppler:0.78 oceanographic:0.76

@ Broad expansion termsadiometer, landsat, ionosphere ..

@ Specific domain termsCNES (Centre National dEtudes Spatiales) and
NASDA (National Space Development Agency of Japan)
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Neighborhood Based Document Smoothing (NBDS) Mo

Context Sensitive Document Indexing

D1 = {robot, healthcare, mobile, autonomous, resefrch
D, = {fifa, soccer, germany, playeahbot}

@ Content-carrying (Topical) terms should be given higherights than the
background terms.

@ Topical terms are supposed to have higher association with ether, when
computed on a large corpora.

@ [tijN = Bt +yzk(A,-ktik)J: Proposed model to redistribute the indexing weight

v
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Context Sensitive Document Indexing

D1 = {robot, healthcare, mobile, autonomous, resefrch
D, = {fifa, soccer, germany, playeabot }

@ Content-carrying (Topical) terms should be given higherights than the
background terms.

@ Topical terms are supposed to have higher association with ether, when
computed on a large corpora.

° [tijN = Bt +yzk(A,-ktik)J: Proposed model to redistribute the indexing weight

v

NBDS Model: Main Features

@ The model does not cause any extra computational burden-inne.

@ The only model which provides a mathematical framework \&ith
relevance-based justification.
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A Context Based Word Indexing Model for Text

summarization

Bernoulli model of co-occurrence for lexical association

)
4
)

Consider the distribution of terntsandt;j in a corpus olN documents.
Ni, Nj: Number of documents in whidhandt; occur respectively.
Nj: Number of documents in whidhandt; co-occur.

Probabilityp; of the termt; appearing in an arbitrary docume

Termt; occurs inN;; documents out of thedd documents and does not occu
in Nj — Nj documents.

Using Bernoulli distribution[p(Nij) = (,f‘lll])p, Ni Ni*Nii]

Using Shannon'’s self-information notioﬁnf(Nij) = —Iogz(p(Nij))]

Stirling’s approximation; n! = v/2rm(1)"

Inf (Nj) is used to modify the indexing weights iteratively.

Pawan Goyal (http://iwww.inria.fr/) Analytic Knowledge Discovery Models March 20, 2012 18/23



Comparison of Query Representation over the Language Model

Dataset LM CQE MCTM QR (Improvements %)

TREC-2 MAP | 0.183 0.192 0.185 0.203 (+10.9**,+5.7,+9.7%)
P30 | 0.386 0.393 0.392 0.415 (+7.5,+5.6,+5.9)

TREC-7 MAP | 0.179 0.184 0.184 0.2 (+11.7**+8.7**,+8.7%)
P30 | 0.289 0.284 0.291 0.315 (+9.0**,+10.9*,+8.2%)

Comparison of NBDS Model applied to the Language model

Dataset LM  LM+NBDS | Improvement (%)
MAP | 0.183 0.199 +8.7%*
TREC 2 P10 | 0.448 0.462 +3.1
MAP | 0.197 0.212 +7.6%*
TREC3 P10 | 0.474 0.53 +11.8**
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Sentence Extraction Experiments

System DuCO01 DUCO02
ROGUE-1 ROGUE-2| ROGUE-1 ROGUE-2
IntraLink 0.439 0.172 0.45 0.19
IntraLink+bern 0.447 0.184 0.461 0.202
UniformLink 0.438 0.173 0.458 0.199
UniformLink+bern 0.443 0.183 0.462 0.205

March 20, 2012
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Conclusions

The problems of ‘term mismatch’ and ‘context independent docum
indexing’ have been addressed using distributional hypothesis.

o A proper mathematical framework has been provided to the query exp:
and document smoothing techniques.

@ The proposed knowledge discovery models have been shown tormper
significantly superior to the traditional retrieval frameworks.

@ Being developed in the generalized retrieval framework, these models
applicable to all of the retrieval frameworks.

o The proposed models for document smoothing do not cause any e
computational burden at run-time.
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