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0. DATA EXPLOSION

I 340 million Tweets a day, 294 billion emails a day
I 35 hours of video uploaded to YouTube per minute
I one human genome: 3.2 billion letters
I NSA wants to build 150 Petabytes (150 million GB) to store

personal data on people

Moore’s law: processing power doubles every 18 months

Sedgewick’s principle: Volumes and complexity of data increase faster
than processing speed. We need ever better algorithms to keep pace.

2/17



Google’s search data

I April 2012: Google’s index contains 55 billion pages
I Google processes 24 petabytes every day
I = only fraction of 1 trillion existing web pages (in 2008)
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data stream model

Stream: a (very large) sequence S over (also very large) domain D
S = s1 s2 s3 · · · s`, sj ∈ D

consider S as a multiset

M = m1
f1 m2

f2 · · · mn
fn

Ex.: S = run sally run see sally run ⇒ M = run3 sally2 see1

Interested in estimating the following quantitive statistics:
— A. Length := `
— B. Cardinality := card(mi ) ≡ n (distinct values)
— C. Icebergs := # elem. with relative frequency fv/` > θ

[ where θ is any fixed threshold, like 50% ]

Constraints:
I very little processing memory
I on the fly (single pass + simple main loop)
I no statistical hypothesis
I accuracy within a few percentiles
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Prelude: you need log2 N bits to count up to N

bit: smallest unit of information, either 0 or 1

with 10 fingers/bits you can count up to 210 − 1 = 512 + 256 + . . .+ 1
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1 + 8 + 16 = 25
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1. Approximate Counting (count length `)

With 8 bits, can count up to 28 − 1 = 255 elements.

Question: is it possible to count more??
⇒ YES, with coin flips!

First idea: increment every other time

I Initialize: C := 0
I Increment: with probability 1/2, C := C + 1
I Output: 2 · C

E[2 · C ] = n and only 3% error

Limitation: only save 1 bit (with 8 bits count to 28+1 - 1 = 511)
[ not very interesting, be honest! ]
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Second idea: generalize, and increment 1 out of 2k

[ prob 1/2k = flip k coins, and all equal to 1 ]

I Initialize: C := 0
I Increment: with probability 1/2k , C := C + 1
I Output: 2k · C

better: saves k bits, i.e., count up to 28+k with 8 bits

Limitations:
I only saves linear number of bits
I for k = 8, error is 55%
I worst: always inaccurate for small values < 2k

[ because smallest value returned is 2k · C ]

8/17



the GOOD idea

Third idea: probability of increment depends on value of counter C

I Initialize: C := 0
I Increment: with probability 1/2C , C := C + 1
I Output: 2C − 1

Gets “harder” to increment:

Finally:
I accurate for small values
I with 8 bits count up to 216 with 15% error

Morris 1978, Flajolet 1985
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application to genetics: finding patterns in genomes

Genome: long sequence of letters {A,C ,G ,T}
count occurrences of all subwords of size k

[ interested in non-occurring words + very frequent words ]

Example: A A C T A A C G T A A A for k = 2

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT
4 3 - - - - 1 1 - - - 1 2 - - -

I AA occurs 4 times
I ...
I GA is absent, and is called a nullomer (as are AG, AT, etc.)

[ significant: because in total randomness all patterns would appear ]

Limitations of exact count:
I for k = 13, requires 2 GB of memory
I k > 14 requires Approx. Counting!
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patterns in anthrax bacteria genome (5.23 M)

distribution of sequences of nucleotides of size k = 7, 8, 9, 10 source:
Csűrös 2007, http://www.iro.umontreal.ca/~csuros/spectrum/
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patterns in anthrax bacteria genome (5.23 M)

distribution of 5.23 M random strings
distribution of sequences of nucleotides of size k = 7, 8, 9, 10 source:
Csűrös 2007, http://www.iro.umontreal.ca/~csuros/spectrum/
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2. DISTINCT elements

Back to our stream:

S = s1 s2 s3 · · · s`, sj ∈ D

We want the number n of distinct elements used.

Ex.: S = run sally run see sally run (3 distinct elements)

I idea 1: sort data; then same elements next to each other; scan
sorted data and count distinct elements

I idea 2: have bag, for each sj , if not in bag, add it; then count
number of elements in bag

Bad ideas: too much memory is used; at minimum O(n).
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A weird way to use hash functions!!

Definition: a hash function h is defined as

h : A∗ → [0, 1].

Main idea. With “good enough” hash functions, our data is uniformized.
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Two neat things about the minimum

Fact 1: the minimum not sensitive to repetitions

min{0.83, 0.32, 0.83, 0.83, 0.95, 0.74} = min{0.83, 0.32, 0.95, 0.74} = 0.32

Fact 2: n uniform random variables in [0, 1] have min. M≈ 1/(n + 1)

En[M] =

∫ 1

0
x · n(1− x)n−1dx =

1
n + 1

.

Minimum-counting algorithm (Bar-Yossef et al. 2002, L. 2010):
I hash elements of stream to [0, 1] values
I take the minimum M
I return 1/M − 1

With some optimizations, you can obtain 3% error with only 4kB!
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AltaVista: remove near-duplicates

Broder (1997) uses similarity measure

S(A,B) =
|A ∩ B|
|A ∪ B|

S(A,B) = 0 : sets disjoint
S(A,B) = 1 : sets overlap

if S(A,B) > 0.99, consider docu-
ments A and B are same

⇒ eliminate near duplicates!
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with Minimum-counting algorithm... easy

S(A,B) =
|A ∩ B|
|A ∪ B|

=
|A ∪ B| − |A| − |B|

|A ∪ B|

and, if you note h(A) and h(B) the streams where you apply the hash
function h to A and B,

I |A| = 1/min(h(A))− 1
I |B| = 1/min(h(B))− 1
I |A ∪ B| = 1/min(h(A), h(B))− 1

so only need to keep the minimum for each document, then only O(1)
operations to compare to documents!

compare 105 documents of size 105 with each-other in only minutes
instead of days
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3. EPILOGUE

Many other applications:

I Network security:
detect attacks (denial of service), or the spreading of worms/spam,...
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I Data mining: document classification, ...
I Databases: query optimization
I Distributed: censor networks
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