probabilistic algorithms to process MASSIVE data

Jérémie Lumbroso INRIA Rocquencourt (Algorithms) / LIP6

April 10th, 2012

0. DATA EXPLOSION

- > 340 million Tweets a day, 294 billion emails a day
- ▶ 35 hours of video uploaded to YouTube per minute
- one human genome: 3.2 billion letters
- NSA wants to build 150 Petabytes (150 million GB) to store personal data on people

Moore's law: processing power doubles every 18 months

Sedgewick's principle: Volumes and complexity of data increase faster than processing speed. We need ever better algorithms to keep pace.

- ► April 2012: Google's index contains 55 billion pages
- Google processes 24 petabytes every day
- ▶ = only fraction of 1 trillion existing web pages (in 2008)

data stream model

Stream: a (very large) sequence S over (also very large) domain \mathcal{D}

$$S = s_1 \ s_2 \ s_3 \ \cdots \ s_\ell, \qquad s_j \in \mathcal{D}$$

consider S as a multiset

$$\mathcal{M}=m_1^{f_1} m_2^{f_2} \cdots m_n^{f_n}$$

Ex.: $S = \text{run sally run see sally run} \Rightarrow M = \text{run}^3 \text{ sally}^2 \text{ see}^1$

Interested in estimating the following quantitive statistics:

- **A.** Length $:= \ell$
- **B.** Cardinality := $card(m_i) \equiv n$ (distinct values)
- C. Icebergs := # elem. with relative frequency $f_v/\ell > \theta$

[where θ is any fixed threshold, like 50%]

Constraints:

- very little processing memory
- on the fly (single pass + simple main loop)
- no statistical hypothesis
- accuracy within a few percentiles

Prelude: you need $\log_2 N$ bits to count up to N

Prelude: you need $\log_2 N$ bits to count up to N

bit: smallest unit of information, either 0 or 1

with 10 fingers/bits you can count up to $2^{10}-1=512+256+\ldots+1$

1 + 8 + 16 = 25

1. Approximate Counting (count length ℓ)

With 8 bits, can count up to $2^8 - 1 = 255$ elements.

Question: is it possible to count more?? \Rightarrow **YES**, with coin flips!

First idea: increment every other time

- Initialize: C := 0
- Increment: with probability 1/2, C := C + 1
- Output: 2 · C

 $\mathbb{E}[2 \cdot C] = n$ and only 3% error

Limitation: only save 1 bit (with 8 bits count to $2^{8+1} - 1 = 511$) [not very interesting, be honest!]

Second idea: generalize, and increment 1 out of 2^k [prob $1/2^k$ = flip k coins, and all equal to 1]

- Initialize: C := 0
- Increment: with probability $1/2^k$, C := C + 1
- **•** Output: $2^k \cdot C$

better: saves **k** bits, i.e., count up to 2^{8+k} with 8 bits

Limitations:

- only saves linear number of bits
- for k = 8, error is 55%
- worst: always inaccurate for small values $< 2^k$

```
[ because smallest value returned is 2^k \cdot C ]
```

the GOOD idea

Third idea: probability of increment depends on value of counter C

- Initialize: C := 0
- Increment: with probability $1/2^{\mathsf{C}}$, $\mathbf{C} := \mathbf{C} + 1$
- ▶ **Output:** 2^C 1

Gets "harder" to increment:

$$\begin{array}{c} C=1 \\ \hline 1/2 \\ C=2 \\ \hline 1/4 \\ C=3 \\ \hline 1/8 \\ \hline C=4 \\ \hline 1/16 \\ C=5 \end{array}$$

Finally:

- accurate for small values
- ▶ with 8 bits count up to 2¹⁶ with **15% error**

Morris 1978, Flajolet 1985

application to genetics: finding patterns in genomes

Genome: long sequence of letters $\{A, C, G, T\}$

count occurrences of all subwords of size k

Π	AA	AC	AG	AT	CA	сс	CG	СТ	GA	GC	GG	GT	TA	тс	ΤG	ТТ
Π	4	3	-	-	-	-	1	1	-	-	-	1	2	-	-	-

AA occurs 4 times

▶ GA is absent, and is called a *nullomer* (as are AG, AT, etc.) [significant: because in total randomness all patterns would appear]

Limitations of exact count:

- for k = 13, requires **2 GB** of memory
- ▶ k > 14 requires Approx. Counting!

patterns in anthrax bacteria genome (5.23 M)

distribution of sequences of nucleotides of size k = 7, 8, 9, 10 source: Csűrös 2007, http://www.iro.umontreal.ca/~csuros/spectrum/

patterns in anthrax bacteria genome (5.23 M)

distribution of 5.23 M random strings

distribution of sequences of nucleotides of size k = 7, 8, 9, 10 source: Csűrös 2007, http://www.iro.umontreal.ca/~csuros/spectrum/

2. **DISTINCT** elements

Back to our stream:

 $S = s_1 \ s_2 \ s_3 \ \cdots \ s_\ell, \qquad s_j \in \mathcal{D}$

We want the number n of **distinct elements** used.

Ex.: S = run sally run see sally run (3 distinct elements)

- idea 1: sort data; then same elements next to each other; scan sorted data and count distinct elements
- ▶ idea 2: have bag, for each s_j, if not in bag, add it; then count number of elements in bag

Bad ideas: too much memory is used; at minimum O(n).

A weird way to use hash functions!!

Definition: a hash function h is defined as $h: \mathcal{A}^* \to [0, 1].$

Main idea. With "good enough" hash functions, our data is uniformized.

Two neat things about the minimum

Fact 1: the minimum not sensitive to repetitions

 $\min\{0.83, 0.32, 0.83, 0.83, 0.95, 0.74\} = \min\{0.83, 0.32, 0.95, 0.74\} = 0.32$

Fact 2: *n* uniform random variables in [0,1] have min. $M \approx 1/(n+1)$

$$\mathbb{E}_n[M] = \int_0^1 x \cdot n(1-x)^{n-1} \mathrm{d}x = \boxed{\frac{1}{n+1}}$$

Minimum-counting algorithm (Bar-Yossef et al. 2002, L. 2010):

- ▶ hash elements of stream to [0,1] values
- take the minimum M
- ▶ return 1/M 1

With some optimizations, you can obtain 3% error with only 4kB!

AltaVista: remove near-duplicates

Broder (1997) uses similarity measure AltaVista The most powerful and useful guide to the Net $S(A,B) = \frac{|A \cap B|}{|A \cup B|}$ Ask Alta VistaTM a question. Or enter a few words in any language Help - Advanced Search Example: Where can I download mp3 files for instrumental music? AV Family Filter - AV Photo Finder - AV Tools & Gadgets Specialty Entertainment - Health - Online Shopping - Careers - Maps Searches People Finder - Stock Quotes - Travel - Usenet - Yellow Pages S(A, B) = 0 : sets disjoint CATEGORIES NEWS BY ABCNEWS.com $\frac{Featured Sponsors}{50\% Savings!} S(A, B) = 1 : sets overlap$ Automotive Lewinsky Talks Olympic House-cleaning Business & Finance Jasper Trial Begins Quality DutyFree **Computers & Internet** al Mass Draws 1 Million Mexican Jewelry! Health & Fitness ALTAVISTA HIGHLIGHTS Great Gifts from Hobbies & Interests Search Clinton Video Footage: Home & Family New State of The Union Save on mpeachment Trial Media & Amusements bestsellers if S(A, B) > 0.99, consider docu-Clinton Testimon People & Chat everyday at ideo courtesy of C-SPAN Amazon Reference & Education ments A and B are same OTHER SERVICES Shopping & Services PC Flowers and Gifts Valentines AltaVista Discovery - Video Search Demi Society & Politics Specials FREE Email - AV Translation Services Sports & Recreation Make Us Your Homepage - Create A Card Photo Albums! - Asian Language Travel & Vacations

AltaVista Home | Help | Feedback | Advertising Info | Set your Preferences | Text-Only Version COMPAQ | Disclaimer | Privacy | Our Search Network | About AltaVista | Add a Page

Previous

 \Rightarrow eliminate near duplicates!

10

In order to show you the most relevant results, we have omitted some entries very similar to the 500 already displayed. If you like, you can <u>repeat the search with the omitted results included</u>.

< G00000000

15/17

with Minimum-counting algorithm... easy

$$S(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cup B| - |A| - |B|}{|A \cup B|}$$

and, if you note h(A) and h(B) the streams where you apply the hash function h to A and B,

▶
$$|A| = 1/\min(h(A)) - 1$$

▶
$$|B| = 1/\min(h(B)) - 1$$

►
$$|A \cup B| = 1/\min(h(A), h(B)) - 1$$

so only need to keep the minimum for each document, then only O(1) operations to compare to documents!

compare 10^5 documents of size 10^5 with each-other in only minutes instead of days

Many other applications:

Network security:

detect attacks (denial of service), or the spreading of worms/spam,...

- Data mining: document classification, ...
- Databases: query optimization
- Distributed: censor networks