Some inverse scattering problems on star-shaped graphs: application to fault detection on electrical transmission line networks

Filippo Visco Comandini

Projet SISYPHE- INRIA Rocquencourt

26 juin 2012

- Introduction
 - Mathematical seminar
- Industrial motivation
 - Fault detection and reflectometry
- Engineering point of view
 - Impedance Matrix
 - Scattering Matrix
- Mathematical point of view
 - Telegrapher's equations
 - Transmission line network

- Introduction
 - Mathematical seminar
- Industrial motivation
 - Fault detection and reflectometry
- Engineering point of view
 - Impedance Matrix
 - Scattering Matrix
- Mathematical point of view
 - Telegrapher's equations
 - Transmission line network

Motivation (1 min)

Mathematics (29 min)

$$\begin{cases} \partial_{x}\nu_{1j}(k,x) = +(q_{j,d}(x) - ik)\nu_{1j}(k,x) - q_{j,+}(x)\nu_{2j}(k,x), \\ \partial_{x}\nu_{2j}(k,x) = -q_{j,-}(x)\nu_{1j}(k,x) - (q_{j,d}(x) - ik)\nu_{2j}(k,x), \\ \nu_{1j}(k,l_{j}) - \rho_{j}(k)\nu_{2j}(k,l_{j}) = 0, \quad x \in [0,l_{j}]. \\ \begin{pmatrix} \nu_{1}(x,k) \\ \nu_{2}(x,k) \end{pmatrix} \sim \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{ikx} + r(k) \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-ikx}, \quad x \to -\infty. \\ \nu_{10}(k,0) + \nu_{20}(k,0) = \nu_{1j}(k,0) + \nu_{2j}(k,0) \quad \forall j \in \{1,\ldots,N\}, \\ \sum_{i=1}^{N} \nu_{1j}(k,0) - \nu_{2j}(k,0) = \nu_{10}(k,0) - \nu_{20}(k,0). \end{cases}$$

- Introduction
 - Mathematical seminar
- Industrial motivation
 - Fault detection and reflectometry
- Engineering point of view
 - Impedance Matrix
 - Scattering Matrix
- Mathematical point of view
 - Telegrapher's equations
 - Transmission line network

Diagnostic and fault-detection of critical networks

Frequency Domain Reflectometry

How can we find faults in a wire?

FDR is the most commonly used method: a signal is sent down a wire at some point and the signal reflected by the network is measured at the same point and analyzed in frequency for fault detection and location.

Constraint

Limited number of available diagnostic port plug.

Choice of subnetwork to monitor

Global architecture

Functions of fault detection modules

Choice of subnetwork to monitor

Algorithm's design

Choice of critical sub-networks

- Introduction
 - Mathematical seminar
- Industrial motivation
 - Fault detection and reflectometry
- Engineering point of view
 - Impedance Matrix
 - Scattering Matrix
- Mathematical point of view
 - Telegrapher's equations
 - Transmission line network

Impedance Matrix

- V_1 and V_2 are the *Voltages*
- I1 and I2 are the Intensities of the current

Impedance Matrix Z

$$\left(\begin{array}{c}V_1\\V_2\end{array}\right)=\left(\begin{array}{cc}z_{11}&z_{12}\\z_{21}&z_{22}\end{array}\right)\left(\begin{array}{c}I_1\\I_2\end{array}\right)$$

In matrix form:

$$V = ZI$$

Matrix representation

- Impedance Matrix Z : perfect for locating electrical faults.
- Scattering Matrix S: perfect for measures of diagnostic devices.

Characteristic impedance

Image impedance

- Impose I_1 ,
- Measure $V_1(Z_2)$,
- Compute $\mathcal{Z}_1(Z_2) = \frac{I_1}{V_1}$.

Characteristic impedance

Characteristic impedance $Z_{c,2}$ of port 1: it is the fixed point of the application

$$Z_{c,2} = \mathcal{Z}_1(Z_{c,2}).$$

- Introduction
 - Mathematical seminar
- Industrial motivation
 - Fault detection and reflectometry
- Engineering point of view
 - Impedance Matrix
 - Scattering Matrix
- Mathematical point of view
 - Telegrapher's equations
 - Transmission line network

Scattering representation

 ν_2 and ν_1 are the direct and reflected power waves

Change of variables

$$(\nu_1)_i = rac{V_i - Z_{c,i}I_i}{2\sqrt{\Re Z_{c,i}}}, \quad (\nu_2)_i = rac{V_i + Z_{c,i}I_i}{2\sqrt{\Re Z_{c,i}}}. \quad i = 1, 2.$$

Scattering Matrix

$$\left(\begin{array}{c} (\nu_1)_1 \\ (\nu_1)_2 \end{array}\right) = \left(\begin{array}{cc} r_1 & t_{12} \\ t_{21} & r_2 \end{array}\right) \left(\begin{array}{c} (\nu_2)_1 \\ (\nu_2)_2 \end{array}\right)$$

In matrix form:

$$\nu_1 = \mathbf{S} \nu_2$$

Scattering problems

Direct Scattering Problem

Useful for simulations

$$\mathbf{Z} = \left(\begin{array}{cc} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{array} \right)$$

describes the conditions of the network

$$\mathbf{S} = \left(\begin{array}{cc} r_1 & t_{12} \\ t_{21} & r_2 \end{array} \right)$$

describes the measures of the reflectometer

Industrial problems

Inverse Scattering Problems

Hard and Soft faults

HEALTHY NETWORKS

No wire fault, matched load

No wire fault, unmatched load

CORRUPTED NETWORKS

- Introduction
 - Mathematical seminar
- Industrial motivation
 - Fault detection and reflectometry
- 3 Engineering point of view
 - Impedance Matrix
 - Scattering Matrix
- Mathematical point of view
 - Telegrapher's equations
 - Transmission line network

Telegrapher's Model

Telegrapher's equations in harmonic regime

- L(z) is the inductance;
- C(z) capacitance;

- R(z) series resistance;
- G(z) shunt conductance.

Transmission line equations

$$\begin{cases} \frac{d}{dz}I(k,z) = +(ikC(z) + G(z))V(k,z) \\ \frac{d}{dz}V(k,z) = -(ikL(z) + R(z))I(k,z) \end{cases} + B.C.$$

where I(k, z) and V(k, z) are, respectively, the intensity of the current and the voltage at position z and frequency k.

From telegrapher model to Zakharov-Shabat equation

Characteristic impedance

$$Z_c^{\infty}(z) = \sqrt{\frac{L(z)}{C(z)}}$$

Power waves are used instead of I and V

$$\begin{cases} \nu_{1}(k,x) = \frac{1}{\sqrt{2}} \left[(Z_{c}^{\infty})^{-1/2}(x) V(k,x) - (Z_{c}^{\infty})^{1/2}(x) I(k,x) \right], \\ \nu_{2}(k,x) = \frac{1}{\sqrt{2}} \left[(Z_{c}^{\infty})^{-1/2}(x) V(k,x) + (Z_{c}^{\infty})^{1/2}(x) I(k,x) \right]. \end{cases}$$

Zakharov-Shabat equations

Zakharov-Shabat equations with a source on the left ($\nu_r = 0$).

$$\partial_{x}\nu_{1}(k,x) + ik\nu_{1}(k,x) = +q_{d}(x)\nu_{1}(k,x) - q_{+}(x)\nu_{2}(k,x),
\partial_{x}\nu_{2}(k,x) - ik\nu_{2}(k,x) = -q_{-}(x)\nu_{1}(k,x) - q_{d}(x)\nu_{2}(k,x),
\nu_{2}(k,x_{l}) - \rho_{l}(k)\nu_{1}(k,x_{l}) = (1 - \rho_{l}(k))\nu_{l}(k),
\nu_{1}(k,x_{r}) - \rho_{r}(k)\nu_{2}(k,x_{r}) = 0.$$

Potentials

Dissipation : $q_d(x)$

Dispertion : $q_{\pm}(x)$

Zakharov-Shabat equations

$$\frac{d}{dx} \left(\begin{array}{c} \nu_1(x,k) \\ \nu_2(x,k) \end{array} \right) = \left(\begin{array}{cc} q_d(x) - ik & -q_+(x) \\ -q_-(x) & -(q_d(x) - ik) \end{array} \right) \left(\begin{array}{c} \nu_1(x,k) \\ \nu_2(x,k) \end{array} \right).$$

Identification of potentials

$$\{q_+(x),q_-(x),q_d(x),\}\Leftrightarrow \left\{\frac{d}{dx}\log\frac{L(x)}{C(x)},\frac{R(x)}{L(x)},\frac{G(x)}{C(x)}\right\}$$

Inverse scattering problem

Reflectometry experiment

Reflectometry problem

What are the identifiable line parameters, when r(k) is known?

- Introduction
 - Mathematical seminar
- Industrial motivation
 - Fault detection and reflectometry
- 3 Engineering point of view
 - Impedance Matrix
 - Scattering Matrix
- Mathematical point of view
 - Telegrapher's equations
 - Transmission line network

Star shaped network Γ

- $\{e_1, \ldots, e_N\}$ finite lines,
- each branch e_j is parametrized by $[0, l_j]$

• $\{R_j(x), L_j(x), C_j(x), G_j(x)\}_{j=1}^N$ are the line parameters.

Zakharov-Shabat eqs on a star-shaped network Lossy case

On each branch e_i , for j = 1, ..., N

$$\left\{ \begin{array}{l} \partial_{x}\nu_{1j}(k,x) = +(q_{j,d}(x)-ik)\nu_{1j}(k,x) - q_{j,+}(x)\nu_{2j}(k,x), \\ \partial_{x}\nu_{2j}(k,x) = -q_{j,-}(x)\nu_{1j}(k,x) - (q_{j,d}(x)-ik)\nu_{2j}(k,x), \\ \nu_{1j}(k,l_{j}) - \rho_{j}(k)\nu_{2j}(k,l_{j}) = 0, \quad x \in [0,l_{j}]. \\ \begin{pmatrix} \nu_{1}(x,k) \\ \nu_{2}(x,k) \end{pmatrix} \sim \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{ikx} + r(k) \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-ikx}, \qquad x \to -\infty. \end{array} \right.$$

Boundary conditions at central node - Kirchhoff rules

$$\nu_{10}(k,0) + \nu_{20}(k,0) = \nu_{1j}(k,0) + \nu_{2j}(k,0) \quad \forall j \in \{1,\ldots,N\},$$

$$\sum_{j=1}^{N} \nu_{1j}(k,0) - \nu_{2j}(k,0) = \nu_{10}(k,0) - \nu_{20}(k,0).$$

And now?

We have shown where the equations come from. But we need to prove

Direct scattering problem

the direct scattering problem is well-posed, i.e. for q_+, q_-, q_d in certain class, there exists unique a reflection coefficient r(k).

Inverse scattering problems

- Identifiability results.
- Algorithm for retrieving potentials from the reflection coefficients.

THANK YOU!

Main (Simplified) results - Lossy case Identifiability results

Theorems

If
$$I_j \neq I_j$$
 for $i \neq j$ $r_{\mathcal{N}}(k) = r'_{\mathcal{N}}(k)$ implies for $j = 1, \dots, N$:

T4 (electrical distances) $l_i = l_i'$.

T5 (line loss factors)
$$\int_0^{l_j} q_{j,d}(s) ds = \int_0^{l_j} q'_{j,d}(s) ds$$

where
$$\int_0^{l_j} q_{j,d}(s) ds = \int_0^{l_j} \left(rac{R_j}{L_j}(s) + rac{G_j}{C_j}(s)
ight) ds$$

and
$$\int_0^{l_j} \cosh(\int_0^x (q_{j,d}(s) - q'_{j,d}(s)) ds) (q'_{j,+}(x) q'_{j,-}(x) - q_{j,-}(x) q_{j,+}(x)) dx = 0.$$

T6 $\frac{G_j}{C_j} = \frac{G'_j}{C'_j}$ and $\frac{R_j}{L_j} = \frac{R'_j}{L'_j}$ if line parameters R_j, L_j, C_j, G_j are constant.