Random Boolean trees.

Inria's Junior Seminar Inria Rocquencourt.

Cécile Mailler

Laboratoire de Mathématiques de Versailles Université de Versailles-Saint-Quentin

September 18, 2012

Headlines

Introduction

- What's a Boolean function?
- What's a Boolean AND/OR tree?
- Objective of the talk

- Definition
- Main result
- 3 Scketch of the proofs
 - Via analytic combinatorics
 - Via continuous time embedding

Conclusion

What's a Boolean function?

Definition

$$\begin{array}{rcl} F: & \{0,1\}^k & \rightarrow & \{0,1\} \\ & (x_1,\ldots,x_k) & \mapsto & f(x_1,\ldots,x_k) \end{array}$$

We denote by \mathcal{F}_k the set of all Boolean functions on k variables.

What's a Boolean function?

Definition

$$f: \{0,1\}^k \rightarrow \{0,1\} \\ (x_1,\ldots,x_k) \mapsto f(x_1,\ldots,x_k)$$

We denote by \mathcal{F}_k the set of all Boolean functions on k variables.

The cardinality of \mathcal{F}_k is

 $2^{2^{k}}$

What's a Boolean function?

Definition

$$\begin{array}{rccc} f: & \{0,1\}^k & \rightarrow & \{0,1\} \\ & (x_1,\ldots,x_k) & \mapsto & f(x_1,\ldots,x_k) \end{array}$$

We denote by \mathcal{F}_k the set of all Boolean functions on k variables.

The cardinality of \mathcal{F}_k is

A Boolean function can be represented by:

- a truth table
- Boolean expressions

 $2^{2^{k}}$

Some Boolean functions

- **Constants:** $((x_1, ..., x_k) \mapsto 1)$ and $((x_1, ..., x_k) \mapsto 0)$ denoted by *True* and *False*.
- Projections: $((x_1, \ldots, x_k) \mapsto x_i)$
- Negations: $((x_1, \ldots, x_k) \mapsto \overline{x_i})$

$$\overline{x_i} = 1 - x_i$$

- And: $((x_1, \ldots, x_k) \mapsto x_i \land x_j)$
- Or: $((x_1, \ldots, x_k) \mapsto \mathbf{x}_i \vee \mathbf{x}_j)$
- Xor: $((x_1, \ldots, x_k) \mapsto x_i \text{ XOR } x_j)$

$$x_i \text{ XOR } x_j = (x_i \land \overline{x_j}) \lor (\overline{x_i} \land x_j)$$

What's a Boolean AND/OR tree?

Definition

The **size** of a tree is the number of its internal nodes.

~

What's a Boolean AND/OR tree?

Boolean expression

$$[x_1 \lor (\overline{x_k} \lor x_3)] \land \overline{x_1}$$

$$\downarrow$$
Boolean function

$$(\mathbf{x}_1,\ldots,\mathbf{x}_k)\mapsto \overline{\mathbf{x}_k}\vee \mathbf{x}_3$$

Definition

The **size** of a tree is the number of its internal nodes.

Different trees can compute the same function!

 Φ : Boolean trees \rightarrow Boolean functions

The function Φ is surjective but **not injective**.

Objective of the talk:

define a probability distribution $\mathbb P$ on trees and study the distribution $\mathbb p$ induced by Φ on Boolean functions.

 Φ : Boolean trees \rightarrow Boolean functions

The function Φ is surjective but **not injective**.

Objective of the talk:

define a probability distribution $\mathbb P$ on trees and study the distribution $\mathbb p$ induced by Φ on Boolean functions.

Litterature:

- uniform distribution on \mathcal{F}_k [Shannon 1963]
- uniform distribution on the set of trees of size n, on k variables [Lefmann & Savický 1997] [Chauvin et al. 2006]
- Galton-Watson distribution on the set of trees on k variables [Chauvin et al. 2006]

We stop after the n^{th} step.

We stop after the n^{th} step.

- For each internal node, we flip a coin to choose between \land and \lor .
- For each external node, we choose uniformly at random a label in $\{x_1, \overline{x_1}, \dots, x_k, \overline{x_k}\}$.

Cécile Mailler (LMV - UVSQ)

Main result

We denote by T_n the growing tree of size *n*, and by f_n the random Boolean function it computes.

Theorem

When the size n of the growing tree tends to infinity,

$$\mathbb{P}(f_n = True) = \mathbb{P}(f_n = False) \to \frac{1}{2}.$$

Actually, we have just **flipped a coin** to choose between the constant function *True* and the constant function *False*!

Proof of the result

Theorem

When the size *n* of the growing tree tends to infinity,

$$\mathbb{P}(f_n = True) = \mathbb{P}(f_n = False) \rightarrow \frac{1}{2}.$$

Two approaches:

- Via analytic combinatorics
 - because it is the classical approach
 - but it is quite technical
- Via continuous time embedding
 - because it is more efficient and gives the speed of convergence
 - but it is an approach specific to the growing tree model

Analytic combinatorics

- We want to study the sequences (p_n(f) := p(f_n = f))_{n≥0} for all Boolean function f ∈ F_k.
- We introduce the generating functions

$$\phi_f(z) = \sum_{g \ge 0} p_n(f) z^n.$$

 If you get information about the <u>dominant</u> singularity of φ_f(z) and the behaviour of φ_f(z) around this singularity, then you get some information about the asymptotic behaviour of p_n(f).

The induction property of the model

Proposition

The two subtrees of a growing tree are growing trees, and if ℓ_n is the size of the left subtree of \mathcal{T}_n , for all $q \in \{0, n-1\}$,

$$\mathbb{P}(\ell_n = q) = \frac{1}{n}.$$

Via analytic combinatorics

The induction property of the model

Proposition

The two subtrees of a growing tree are growing trees, and if ℓ_n is the size of the left subtree of \mathcal{T}_n , for all $q \in \{0, n-1\}$,

$$\mathbb{P}(\ell_n = q) = \frac{1}{n}.$$

We have $p_{n+1}(f) = \sum_{a=0}^{n} \frac{1}{n+1} p(f_{n+1} = f | \ell_{n+1} = q)$. Thus,

$$\mathbb{p}_{n+1}(f) = \sum_{q=0}^{n} \frac{1}{n+1} \left(\frac{1}{2} \sum_{g \wedge h=f} \mathbb{p}_q(g) \mathbb{p}_{n-q}(h) + \frac{1}{2} \sum_{g \vee h=f} \mathbb{p}_q(g) \mathbb{p}_{n-q}(h) \right),$$

Via analytic combinatorics

The induction property of the model

Proposition

The two subtrees of a growing tree are growing trees, and if ℓ_n is the size of the left subtree of \mathcal{T}_n , for all $q \in \{0, n-1\}$,

$$\mathbb{P}(\ell_n=q)=\frac{1}{n}.$$

We have $p_{n+1}(f) = \sum_{a=0}^{n} \frac{1}{n+1} p(f_{n+1} = f | \ell_{n+1} = q)$. Thus,

$$(n+1)\mathbb{p}_{n+1}(f) = \sum_{q=0}^{n} \left(\frac{1}{2} \sum_{g \wedge h=f} \mathbb{p}_q(g)\mathbb{p}_{n-q}(h) + \frac{1}{2} \sum_{g \vee h=f} \mathbb{p}_q(g)\mathbb{p}_{n-q}(h) \right),$$

Via analytic combinatorics

The induction property of the model

Proposition

The two subtrees of a growing tree are growing trees, and if ℓ_n is the size of the left subtree of \mathcal{T}_n , for all $q \in \{0, n-1\}$,

$$\mathbb{P}(\ell_n = q) = \frac{1}{n}.$$

We have $p_{n+1}(f) = \sum_{a=0}^{n} \frac{1}{n+1} p(f_{n+1} = f | \ell_{n+1} = q)$. Thus,

$$(n+1)\mathbb{p}_{n+1}(f) = \sum_{q=0}^n \left(\frac{1}{2}\sum_{g \wedge h=f} \mathbb{p}_q(g)\mathbb{p}_{n-q}(h) + \frac{1}{2}\sum_{g \vee h=f} \mathbb{p}_q(g)\mathbb{p}_{n-q}(h)\right),$$

$$\sum_{n\geq 0}(n+1)\mathbb{p}_{n+1}(f)z^n = \frac{1}{2}\sum_{g\wedge h=f}\left(\sum_{n\geq 0}\sum_{q=0}^n\mathbb{p}_q(g)\mathbb{p}_{n-q}(h)z^n\right) + \frac{1}{2}\sum_{g\vee h=f}\left(\sum_{n\geq 0}\sum_{q=0}^n\mathbb{p}_q(g)\mathbb{p}_{n-q}(h)z^n\right).$$

Abracadabra!

$$\phi_f'(z) = \frac{1}{2} \sum_{g \wedge h=f} \phi_g(z) \phi_h(z) + \frac{1}{2} \sum_{g \vee h=f} \phi_g(z) \phi_h(z).$$

After some long and technical arguments, we get:

$$\begin{split} \phi_{True}(z) &= \phi_{False}(z) \quad \sim \frac{1}{2(1-z)} \quad \text{when } z \to 1^-, \\ \phi_f(z) &= o\left(\frac{1}{1-z}\right) \quad \text{when } z \to 1^-, \text{ for all } f \notin \{\text{True}, \text{False}\}. \end{split}$$

We apply a transfer lemma Tauberian theorem and get immediately:

$$\mathbb{p}_n(True) = \mathbb{p}_n(False) \rightarrow \frac{1}{2} \text{ when } n \rightarrow \infty.$$

Embedding in continuous time The exponential law

- radioactive desintegration
- arrivals of phone calls at a call center
- arrivals of buses at a bus stop

The random variable $\tau \in \mathbb{R}^+$ follows the exponential law of parameter λ if $\mathbb{P}(\tau > t) = e^{-\lambda t}$.

Properties

- no memory: for all $t < s \in \mathbb{R}^+$, $\mathbb{P}(\tau > s | \tau > t) = \mathbb{P}(\tau > s t)$.
- minimum: if $\tau_1, \ldots, \tau_m \sim \mathcal{E}(1)$ are independent, $\mathbb{P}(\min\{\tau_1, \ldots, \tau_m\} = \tau_i) = \frac{1}{m}$ for all $i \in \{1, \ldots, m\}$.

Embedding in continuous time What's a Yule tree?

Labelled Yule tree

We label the process, uniformly at random.

Labelled Yule tree

We label the process, uniformly at random.

→ We thus have \mathcal{Y}_t , a continuous time process of binary AND/OR trees. We denote by g_t the random Boolean function computed by \mathcal{Y}_t .

 $\rightarrow g_t = f_{n(t)}$ almost surely, n(t) being the size of \mathcal{Y}_t

In a Yule tree, the right and left subtrees of each node are **independent**.

Strategy of proof

- We have to show that, asymptotically, only constant functions have a nonzero probability.
- Let us consider p_t¹⁰ := P(g_t(a) = 1 and g_t(b) = 0) for fixed a and b ∈ {0,1}^k two assignments of the k variables.
- Let us show that p_t¹⁰ tends to zero when t → +∞, independently from the choice of a and b.

After two lines of easy calculations, you get, if $\pi(t) \coloneqq \mathbb{P}_t^{10}$:

$$\pi' + \pi^2 = 0 \rightarrow \pi(t) = \frac{1}{t + cst}$$

After two lines of easy calculations, you get, if $\pi(t) \coloneqq \mathbb{p}_t^{10}$:

$$\pi' + \pi^2 = 0 \rightarrow \pi(t) = \frac{1}{t + cst}$$

If n(t) is the number of leaves of \mathcal{Y}_t , then $n(t) \sim e^t$ a.s., thus: $t \sim \ln n(t)$.

Theorem:

When *n* tends to inifinity, $\mathbb{p}_n(True) = \mathbb{p}_n(False) \rightarrow \frac{1}{2}$ and the speed of convergence is of order $\mathcal{O}(\frac{1}{\ln n})$.

Extensions of the result

- bias the law on the literals $\mathbb{P}(x_i) = \mathbb{P}(\bar{x}_i) > 0$: no change!
- bias the choice of the connectives: $\mathbb{P}(\wedge) = q$ and $\mathbb{P}(\vee) = 1 q$.
 - if $q > \frac{1}{2}$ then $p_n(False) \rightarrow 1$
 - if $q < \frac{1}{2}$ then $p_n(True) \rightarrow 1$

bias the choice of the connective and allow only positive literals

- if $q > \frac{1}{2}$ then $\mathbb{p}_n(x_1 \land \ldots \land x_k) \to 1$
- if $q < \frac{1}{2}$ then $p_n(x_1 \vee \ldots \vee x_k) \to 1$
- if $q = \frac{1}{2}$ then ... (solved but complicated)
- the implication model: connective \rightarrow and positive literals only: $p_n(True) \rightarrow 1$

The balanced tree induces a distribution on \mathcal{F}_k which behaves exactly as the growing tree distribution!

"In expectation, a large growing tree contains a large balanced tree"

Conjecture

Every random Boolean tree which "contains a large balanced tree" induces a degenerate distribution on Boolean functions.

Cécile Mailler (LMV - UVSQ)

Random Boolean trees.

Thank you for your attention!

And thanks to my two supervisors Danièle Gardy et Brigitte Chauvin!