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Biofuel

Let us begin with several definitions:

Biofuel : fuel whose energy is derived from carbon fixation.

Carbon fixation : reduction of inorganic carbon to organic compounds
by living organisms. Example : photosynthesis

6CO2 + 6H2O + light → C6H12O6 + 6O2 (1)
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Biofuel generations

First generation : biofuels made from

fermentation of sugars derived from wheat, corn...
Produces alcohol : bioethanol, methanol...

oil (sunflower, colza...)
Produces biodiesel

Problem: biofuel production to the detriment of food production.

Second generation: derived from non-food lignocellulosic crops.

Plants = lignin + cellulose

Problem: the conversion requires expensive technologies.

Third generation: algae !
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Algae culture

Why algae?

Capable of storing carbon under lipid form through photosynthesis

Autotrophs species only need inorganic material

Optimal conditions for the growth are easily reachable

Natural techniques for the increase of oil production (nitrogen stress,
thermal stress...)

Actual barriers

Compromise growth/oil production

Cost of nutrients

Need to find a way to use the other products of an algae

Contamination hazard for outdoor raceways

No economical study has been done yet

depth.pdf
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A raceway

Description: algae pool driven into motion by a paddlewheel

Figure: An industrial raceway (Innovalg, 85) Photo Olivier Darboux, Ifremer

Goal: optimize the biomass production by playing on the nutrients
concentrations, water height, light intensity, agitation...
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Shallow water approximation of Navier Stokes

Starting point : free surface Navier Stokes equation for incompressible
fluids {

div(u) = 0

∂tu + (u.∇)u +∇p = g + divΣ
(2)

valid for 0 ≤ z ≤ h(t, x).
Hypothesis:

Hydrostatic hypothesis (vertical pressure variation balanced only by
gravity)

Introduction of a small parameter ε = H
L

Rescaling in ε
Integration of NS equations along the vertical dimension
u = ū

Result : viscous Saint Venant system [Gerbeau, Perthame 2000]:
∂tH + ∂x(Hū) = 0

∂tHū + ∂x(Hū2 +
gH2

2
) = −gH∂xzb + ∂x(4µ∂x ū) + κ(ū)

(3)
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∂tHū + ∂x(Hū2 +
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gH2

2
) = −gH∂xzb + ∂x(4µ∂x ū) + κ(ū)
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Beyond the Saint-Venant system

The advantages of the SV system are:

Reduced complexity : 2D → 1D

Hyperbolic conservation law

Low computation cost

But, it is only valid for non stratified flows.

Key idea : u =
∑N
α=1 1α(x , t)uα(x , t) instead of u = ū(x , t).

[Audusse,2005] : a multilayer version without mass exchanges between
the layers. Built as a piling of SV systems.

Only valid for non-miscible fluids

Loss of conservativity

Loss of hyperbolicity

[Audusse, Bristeau, Perthame, Sainte-Marie, 2010] : a multilayer version
with mass exchanges.
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The Multilayer Saint-Venant system

From hydrostatic Euler equations
∂xu + ∂zw = 0

∂tu + ∂xu
2 + ∂zuw + ∂xp = 0

∂zp = −g
(4)

Two main steps:

Galerkin approximation of every variable on

PN,t
0,H =

{
Iz∈Lα(x,t)(z), α ∈ {1, . . . ,N}

}
,

Vertical integration on each layer.
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The Multilayer Saint-Venant system

The Multilayer Saint Venant system writes
∂tH +

α=N∑
α=1

∂xhαuα = 0

∂thαuα + ∂x(hαu
2
α +

g

2
Hhα) = Fα+1/2 − Fα−1/2

(5)

Only one global continuity equation, H =
∑

hα

Exchange terms Gα+1/2,Fα+1/2 = uα+1/2Gα+1/2 + Pα+1/2

The advantages of this formalism compared to Navier Stokes are:

No more z-derivative

H is a variable of the system: once it is known, the geometry is
known.

We get a system of conservation laws with source terms.
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Phytoplankton environment

We want to: study the combined influence of nitrate and light on algae
growth.
Nutrient: Monod, Droop, mechanistic...?
Light: photoadaptation, photoinhibition...?
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Phytoplankton environment

We choose: study the evolution of 3 variables:

The phytoplanctonic carbon, C1

The phytoplanctonic nitrogen, C2

The extracellular nutrients, C3

We call q = C2/C1 the internal nutrient quota.
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Droop model with photoadaptation

We choose: a Droop model (the growth ratio is proportional to the
internal nutrient quota)

µ(q) = µ̄(1− Q0

q
), (6)

with photoinhibition (the growth can be weakened by excessive light
exposure)

µ̄(I ) = µ̃
I

I + KsI + I 2

KiI

,

and photoadaptation (the light sensitivity is proportional to the cell
history)

I (z) = I0e
−
∫ z

0
(aChl(z)+b)dz , (7)

and Chl depends on the previous light exposure of the cell.
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Derivation of the model in 2D

Add transport, diffusion, to reaction terms:
∂tC1 +∇ · (uC1) = νC1∆C1 + µ(q, I )C1 − RC1

∂tC2 +∇ · (uC2) = νC2∆C2 + λ(C3, q)C1 − RC2

∂tC3 +∇ · (uC3) = νC3∆C3 − λ(C3, q)C1

(8)

Integrate it in the multilayer model (Galerkin projection + integration):

∂hαC
1
α

∂t
+

∂

∂x

(
hαC

1
αuα

)
= C 1

α+1/2Gα+1/2 − C 1
α−1/2Gα−1/2

+ ν

∫ zα−1/2

zα−1/2

∆C1dz + hα(µ(qα, Iα)C 1
α − RC 1

α)

∂hαC
2
α

∂t
+

∂

∂x

(
hαC

2
αuα

)
= C 2

α+1/2Gα+1/2 − C 2
α−1/2Gα−1/2

+ ν

∫ zα−1/2

zα−1/2

∆C2dz + hα(λ(C 3
α, qα)C 1

α − RC 2
α)

∂hαC
3
α

∂t
+

∂

∂x

(
hαC

3
αuα

)
= C 3

α+1/2Gα+1/2 − C 3
α−1/2Gα−1/2

+ ν

∫ zα−1/2

zα−1/2

∆C3dz − hαλ(C 3
α, qα)C 1

α

α ∈ [1, . . . ,N],

A.-C. Boulanger INRIA Junior Seminar October 16th 17 / 36



Intro The hydrodynamical model The biological model Numerical scheme Kinetic interpretation Raceway modeling

Outline

1 Motivations

2 The hydrodynamical model

3 The biological model

4 Numerical scheme

5 Kinetic interpretation

6 Raceway modeling

A.-C. Boulanger INRIA Junior Seminar October 16th 18 / 36



Intro The hydrodynamical model The biological model Numerical scheme Kinetic interpretation Raceway modeling

Finite volume scheme

Finally, we can summarize the hydro-bio system in:

∂tX + ∂xF (X ) = Se + Sv + Sp + Sbio (9)

Time discretization (splitting)
X̃ n+1 − X n

∆t
+ ∂xF (X n) = Se(X n, X̃ n+1) + Sp(X n) + Sbio(X n)

X n+1 − X̃ n+1

∆t
− Sv (X n,X n+1) = 0

(10)

Space discretization

Division of the X-domain in N cells Ci

Integration of the system over [ti , ti+1]× [xi , xi+1]

X̃ n+1
i − X n

i + σn
i [F n

i+1/2 − F n
i−1/2] = ∆tSn

e,i + ∆tSn
p,i + ∆tSn

bio,i (11)
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Kinetic interpretation

Particularity of the problem
No proof of MSV system being hyperbolic

No analytical computation of the eigenvalues

}
Riemann problem not possible

Use of kinetic schemes

MSV+Bio system ⇔

 ∂tMα + ξ∂xMα + Nα− 1
2
− Nα+ 1

2
= Qα

∂tC
iMα + ξ∂xC

iMα + C iNα− 1
2
− C iNα+ 1

2
= Rα

(12)

(Mα,C
iMα) particle density, (Qα,Rα) collision term (= 0 a.e.)∫

R
ξpMdξ,

∫
R
ξpUdξ give the macroscopic variables

linear transport equation ⇒ upwind scheme

Idea

Fi+1/2 =

∫
R

ξMi+1/2dξ
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Analytical validation

Analytical solution of Euler system with Biology [B., Sainte-Marie 2012]

2D and 3D hydro solutions for any topography zb(x)
in 2D, stationary continuous solutions (u, H, T) satisfy

u(x, z) = αβ
cos(β(z − zb))

sin(βH)
,

(
g(H + zb) +

α2β2

2sin2(βH)

)
x

= 0

T (x, z) = e−(H−(z−zb ))

where T is solution of the simple biological system

∂tT + ∂xuT + ∂zwT = f (x, z)T (x, z) (13)

and
f (x, z) = αβ

cos(β(z − zb))

sin(βH)

(
tan(β(z − zb))

tan(βH)
− 1

)
∂H

∂x
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Raceway modeling

Geometry: a 2D rectangular pool along x and z axis (H = 50 cm and L
= 20m )
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Raceway modeling

Agitation:

Fx(x , z , t) = F
(√

(x − xwheel)2 + (z − zwheel)2ω
)2

cos θ (14)

Fz(x , z , t) = F
(√

(x − xwheel)2 + (z − zwheel)2ω
)2

sin θ (15)

where F is a constant, θ is the angle between the blade and the vertical
direction, ω = θ̇.

X

Z

θ
1

θ
2

F
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Hydrodynamics

Figure: (a): Velocities along vertical and horizontal axis in a cell located near
from the wheel rotating at angular speed ω = 0.8rad/s. The flow is very
turbulent. (b): Velocities along vertical and horizontal axis in a cell located far
from the wheel. An asymptotic value of 0.48m.s−1 is reached.
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Hydrodynamics

Figure: Snapshots of the tracer (pollutant) concentration in a raceway set into
motion by a paddlwheel of angular velocity ω = 0.85rad/s. It is clear that after
several minutes, the raceway is totally homogeneous. Therefore, the
paddlewheel has indeed the required effect on the mixing.
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Lagrangian trajectories

Figure: (a):Trajectories of three particles during the simulations. The large
curve represents the water surface at the middle of the pool. The other plot is
the height of a given particle through time. The algae undergo sudden changes
of depth every time it meets the wheel.(b): Perceived light from the
microalgae. Particles are subject to even greater irradiance changes since the
light is exponentially decaying.
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Biological results

Figure: (a): Carbon concentration; (b): Internal quota q; (c): nitrogen concentration; (d):
substrate concentration(NO3). Those plots illustrate the average concentrations in the raceway for
6 simulations. Three were carried out without agitation, and the other three had the agitation
term. In each situation, agitation, leading to homogenization leads to a better productivity.
However, for certain initial conditions, the improvement is quite slow (after several days), since the
biological variables do not evolve as quickly as hydrodynamics does.
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3D investigation

Simulation of a passive tracer in the raceway.

Passive tracer

A.-C. Boulanger INRIA Junior Seminar October 16th 30 / 36
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Experimental validation

Measurement points

Comparison (25 Hz, aligned blades, paths 2 and 3, H = 30 cm)
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Experimental validation

Comparison (25 Hz, aligned blades, paths 1 and 3, H = 20 cm)

Comparison (25 Hz, aligned blades, path 3, H = 30 cm)

Figure: Figure:
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Lagrangian trajectories
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Figure: Y position of the particles
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Animation

3D Trajectories
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Conclusion

First order results in 2D are encouraging

Job in 3D is in progress (hydrodynamics OK)

Future work : data assimilation
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Thank you for your attention

Any questions ?
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