	The hydrodynamical model	The biological model	Numerical scheme	Kinetic interpretation	Raceway modeling
0000	0000	0000			000000000000

Coupling hydrodynamics and biology to model algae growth

Anne-Céline Boulanger

LJLL,UPMC

October 16th

A			σ	

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	00000000000
Out	line				

Intro	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	000000000000
Outl	ine				

Motivations

- 2 The hydrodynamical model
- The biological model
- 4 Numerical scheme
- 5 Kinetic interpretation

Raceway modeling

Intro ●OOO	The hydrodynamical model	The biological model	Numerical scheme O	Kinetic interpretation	Raceway modeling
Biofu	lel				

Let us begin with several definitions:

Biofuel : fuel whose energy is derived from carbon fixation.

Carbon fixation : reduction of inorganic carbon to organic compounds by living organisms. *Example* : photosynthesis

$$6CO_2 + 6H_2O + light \to C_6H_{12}O_6 + 6O_2 \tag{1}$$

Intro O●○○	The hydrodynamical model 0000	The biological model	Numerical scheme O	Kinetic interpretation	Raceway modeling
Biof	uel generatio	ns			

First generation : biofuels made from

- fermentation of sugars derived from wheat, corn... Produces alcohol : bioethanol, methanol...
- oil (sunflower, colza...)
 Produces biodiesel

Problem: biofuel production to the detriment of food production.

Second generation: derived from non-food lignocellulosic crops.

Plants = *lignin* + *cellulose*

Problem: the conversion requires expensive technologies.

Third generation: algae !

Intro ○○●○	The hydrodynamical model 0000	The biological model	Numerical scheme O	Kinetic interpretation	Raceway modeling
Alga	ae culture				

Why algae?

- Capable of storing carbon under lipid form through photosynthesis
- Autotrophs species only need inorganic material
- Optimal conditions for the growth are easily reachable
- Natural techniques for the increase of oil production (nitrogen stress, thermal stress...)

Actual barriers

- Compromise growth/oil production
- Cost of nutrients
- Need to find a way to use the other products of an algae
- Contamination hazard for outdoor raceways
- No economical study has been done yet

depth.pdf

Intro	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	000000000000
A ra	ceway				

Description: algae pool driven into motion by a paddlewheel

Figure: An industrial raceway (Innovalg, 85) Photo Olivier Darboux, Ifremer

Goal: optimize the biomass production by playing on the nutrients concentrations, water height, light intensity, agitation...

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	00000000000
Outl	ine				

2 The hydrodynamical model

Intro 0000	The hydrodynamical mo	del The biological model 0000	Numerical scheme O	Kinetic interpretation	Raceway modeling
Shall	ow water	approximation	of Navier	[.] Stokes	

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● のへで

Starting point : free surface Navier Stokes equation for incompressible fluids

$$\begin{cases} div(\mathbf{u}) = 0\\ \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p = \mathbf{g} + div\mathbf{\Sigma} \end{cases}$$
(2)

valid for $0 \le z \le h(t, x)$.

Starting point : free surface Navier Stokes equation for incompressible fluids

$$\begin{cases} div(\mathbf{u}) = 0\\ \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \rho = \mathbf{g} + div \mathbf{\Sigma} \end{cases}$$
(2)

valid for $0 \le z \le h(t, x)$.

Hypothesis:

- Hydrostatic hypothesis (vertical pressure variation balanced only by gravity)
- Introduction of a small parameter $\epsilon = \frac{H}{L}$
 - Rescaling in ϵ
 - Integration of NS equations along the vertical dimension

•
$$u = \overline{u}$$

Starting point : free surface Navier Stokes equation for incompressible fluids

$$\begin{cases} div(\mathbf{u}) = 0\\ \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \rho = \mathbf{g} + div \mathbf{\Sigma} \end{cases}$$
(2)

valid for $0 \le z \le h(t, x)$.

Hypothesis:

- Hydrostatic hypothesis (vertical pressure variation balanced only by gravity)
- Introduction of a small parameter $\epsilon = \frac{H}{L}$
 - Rescaling in ϵ
 - Integration of NS equations along the vertical dimension

•
$$u = \overline{u}$$

Result : viscous Saint Venant system [Gerbeau, Perthame 2000]:

$$\begin{pmatrix} \partial_t H + \partial_x (H\bar{u}) = 0 \\ \partial_t H\bar{u} + \partial_x (H\bar{u}^2 + \frac{gH^2}{2}) = -gH\partial_x z_b + \partial_x (4\mu\partial_x\bar{u}) + \kappa(\bar{u})$$

$$(3)$$

	The hydrodynamical model	The biological model	Numerical scheme	Kinetic interpretation	Raceway modeling
0000	0000	0000	0	00	000000000000
Bevo	ond the Saint-	-Venant svs	stem		

▲ロト ▲圖ト ▲国ト ▲国ト 三国

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	00000000000
Bey	ond the Saint	-Venant sys	stem		

- $\bullet~\mbox{Reduced complexity}$: 2D \rightarrow 1D
- Hyperbolic conservation law
- Low computation cost

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	00000000000
Beyo	ond the Saint-	-Venant sys	stem		

- Reduced complexity : $2D \rightarrow 1D$
- Hyperbolic conservation law
- Low computation cost

But, it is only valid for non stratified flows.

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	00000000000
Bevo	ond the Saint-	Venant sys	tem		

- Reduced complexity : $2D \rightarrow 1D$
- Hyperbolic conservation law
- Low computation cost

But, it is only valid for non stratified flows.

Key idea : $u = \sum_{\alpha=1}^{N} \mathbb{1}_{\alpha}(x, t) u_{\alpha}(x, t)$ instead of $u = \bar{u}(x, t)$.

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	000000000000
Beyo	ond the Saint	-Venant sys	stem		

- Reduced complexity : $2D \rightarrow 1D$
- Hyperbolic conservation law
- Low computation cost

But, it is only valid for non stratified flows.

Key idea : $u = \sum_{\alpha=1}^{N} \mathbb{1}_{\alpha}(x, t) u_{\alpha}(x, t)$ instead of $u = \overline{u}(x, t)$.

[Audusse,2005] : a multilayer version without mass exchanges between the layers. Built as a piling of SV systems.

- Only valid for non-miscible fluids
- Loss of conservativity
- Loss of hyperbolicity

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	000000000000
Beyo	ond the Saint	-Venant sys	stem		

- Reduced complexity : $2D \rightarrow 1D$
- Hyperbolic conservation law
- Low computation cost

But, it is only valid for non stratified flows.

Key idea : $u = \sum_{\alpha=1}^{N} \mathbb{1}_{\alpha}(x, t) u_{\alpha}(x, t)$ instead of $u = \overline{u}(x, t)$.

[Audusse,2005] : a multilayer version without mass exchanges between the layers. Built as a piling of SV systems.

- Only valid for non-miscible fluids
- Loss of conservativity
- Loss of hyperbolicity

[Audusse, Bristeau, Perthame, Sainte-Marie, 2010] : a multilayer version with mass exchanges.

From hydrostatic Euler equations

$$\begin{cases} \partial_{x}u + \partial_{z}w = 0\\ \partial_{t}u + \partial_{x}u^{2} + \partial_{z}uw + \partial_{x}p = 0\\ \partial_{z}p = -g \end{cases}$$
(4)

Two main steps:

• Galerkin approximation of every variable on

$$\mathbb{P}_{0,H}^{N,t} = \left\{ \mathbb{I}_{z \in L_{\alpha}(x,t)}(z), \quad \alpha \in \{1,\ldots,N\} \right\},\$$

• Vertical integration on each layer.

The Multilayer Saint Venant system writes

$$\begin{cases} \partial_t H + \sum_{\alpha=1}^{\alpha=N} \partial_x h_\alpha u_\alpha = 0\\ \partial_t h_\alpha u_\alpha + \partial_x (h_\alpha u_\alpha^2 + \frac{g}{2} H h_\alpha) = F_{\alpha+1/2} - F_{\alpha-1/2} \end{cases}$$
(5)

- Only one global continuity equation, $H = \sum h_{lpha}$
- Exchange terms $G_{\alpha+1/2}, F_{\alpha+1/2} = u_{\alpha+1/2}G_{\alpha+1/2} + P_{\alpha+1/2}$

The advantages of this formalism compared to Navier Stokes are:

- No more z-derivative
- H is a variable of the system: once it is known, the geometry is known.
- We get a system of conservation laws with source terms.

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000		00	000000000000
Out	line				

Motivations

3 The biological model

- Numerical scheme
- 5 Kinetic interpretation

Raceway modeling

	The hydrodynamical model	The biological model	Numerical scheme	Kinetic interpretation	Raceway modeling
0000	0000	0000	0	00	000000000000
Phv	toplankton er	vironment			

We want to: study the combined influence of nitrate and light on algae growth.

Nutrient: Monod, Droop, mechanistic...?

Light: photoadaptation, photoinhibition...?

	The hydrodynamical model	The biological model	Numerical scheme	Kinetic interpretation	Raceway modeling
0000	0000	0000	0	00	000000000000
Phy	toplankton er	vironment			

We choose: study the evolution of 3 variables:

- The phytoplanctonic carbon, C_1
- The phytoplanctonic nitrogen, C_2
- The extracellular nutrients, C_3

We call $q = C_2/C_1$ the internal nutrient quota.

We choose: a Droop model (the growth ratio is proportional to the internal nutrient quota)

$$\mu(q) = \bar{\mu}(1 - \frac{Q_0}{q}), \tag{6}$$

with photoinhibition (the growth can be weakened by excessive light exposure)

$$\bar{\mu}(I) = \tilde{\mu} \frac{I}{I + K_{sI} + \frac{I^2}{K_{iI}}},$$

and photoadaptation (the light sensitivity is proportional to the cell history)

$$I(z) = I_0 e^{-\int_0^z (aChI(z)+b)dz},$$
(7)

and Chl depends on the previous light exposure of the cell.

	The hydrodynamical model	The biological model	Numerical scheme	Kinetic interpretation	Raceway modeling
0000	0000	0000	0	00	000000000000
Deriv	vation of the	model in 2	Π		

Add transport, diffusion, to reaction terms:

$$\begin{cases} \partial_t C_1 + \nabla \cdot (\mathbf{u}C_1) = \nu C_1 \Delta C_1 + \mu(q, I)C_1 - RC_1\\ \partial_t C_2 + \nabla \cdot (\mathbf{u}C_2) = \nu C_2 \Delta C_2 + \lambda(C_3, q)C_1 - RC_2\\ \partial_t C_3 + \nabla \cdot (\mathbf{u}C_3) = \nu C_3 \Delta C_3 - \lambda(C_3, q)C_1 \end{cases}$$
(8)

Integrate it in the multilayer model (Galerkin projection + integration):

$$\begin{aligned} \int \frac{\partial h_{\alpha} C_{\alpha}^{1}}{\partial t} &+ \frac{\partial}{\partial x} \left(h_{\alpha} C_{\alpha}^{1} u_{\alpha} \right) = C_{\alpha+1/2}^{1} G_{\alpha+1/2} - C_{\alpha-1/2}^{1} G_{\alpha-1/2} \\ &+ \nu \int_{z_{\alpha-1/2}}^{z_{\alpha-1/2}} \Delta C_{1} dz + h_{\alpha} (\mu(q_{\alpha}, l_{\alpha}) C_{\alpha}^{1} - R C_{\alpha}^{1}) \\ \frac{\partial h_{\alpha} C_{\alpha}^{2}}{\partial t} &+ \frac{\partial}{\partial x} \left(h_{\alpha} C_{\alpha}^{2} u_{\alpha} \right) = C_{\alpha+1/2}^{2} G_{\alpha+1/2} - C_{\alpha-1/2}^{2} G_{\alpha-1/2} \\ &+ \nu \int_{z_{\alpha-1/2}}^{z_{\alpha-1/2}} \Delta C_{2} dz + h_{\alpha} (\lambda(C_{\alpha}^{3}, q_{\alpha}) C_{\alpha}^{1} - R C_{\alpha}^{2}) \\ \frac{\partial h_{\alpha} C_{\alpha}^{3}}{\partial t} + \frac{\partial}{\partial x} \left(h_{\alpha} C_{\alpha}^{3} u_{\alpha} \right) = C_{\alpha+1/2}^{3} G_{\alpha+1/2} - C_{\alpha-1/2}^{3} G_{\alpha-1/2} \\ &+ \nu \int_{z_{\alpha-1/2}}^{z_{\alpha-1/2}} \Delta C_{3} dz - h_{\alpha} \lambda(C_{\alpha}^{3}, q_{\alpha}) C_{\alpha}^{1} \end{aligned}$$

A.-C. Boulanger

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	000000000000
Outl	ine				

Motivations

The hydrodynamical model

3 The biological model

4 Numerical scheme

Kinetic interpretation

Raceway modeling

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	•	00	000000000000
Finit	e volume sch	eme			

Finally, we can summarize the hydro-bio system in:

$$\partial_t X + \partial_x F(X) = S_e + S_v + S_p + S_{bio}$$
(9)

Time discretization (splitting)

$$\begin{cases} \frac{\tilde{X}^{n+1} - X^{n}}{\Delta t} + \partial_{x}F(X^{n}) = S_{e}(X^{n}, \tilde{X}^{n+1}) + S_{p}(X^{n}) + S_{bio}(X^{n}) \\ \frac{X^{n+1} - \tilde{X}^{n+1}}{\Delta t} - S_{v}(X^{n}, X^{n+1}) = 0 \end{cases}$$
(10)

Space discretization

- Division of the X-domain in N cells C_i
- Integration of the system over $[t_i, t_{i+1}] \times [x_i, x_{i+1}]$

$$\tilde{X}_{i}^{n+1} - X_{i}^{n} + \sigma_{i}^{n} [F_{i+1/2}^{n} - F_{i-1/2}^{n}] = \Delta t S_{e,i}^{n} + \Delta t S_{p,i}^{n} + \Delta t S_{bio,i}^{n}$$
(11)

	The hydrodynamical model	The biological model	Numerical scheme	Kinetic interpretation	Raceway modeling
0000	0000	0000	0	00	00000000000
Out	line				

Motivations

The hydrodynamical model

3 The biological model

Numerical scheme

5 Kinetic interpretation

Raceway modeling

	The hydrodynamical model	The biological model	Numerical scheme Kinetic interpretation		Raceway modeling	
0000	0000	0000	0	•0	000000000000	
Kine	tic interpretat	ion				

Particularity of the problem

No proof of MSV system being hyperbolic No analytical computation of the eigenvalues Riemann problem not possible

Use of kinetic schemes

$$\mathsf{MSV}+\mathsf{Bio system} \Leftrightarrow \begin{cases} \partial_t M_\alpha + \xi \partial_x M_\alpha + N_{\alpha-\frac{1}{2}} - N_{\alpha+\frac{1}{2}} = Q_\alpha \\ \partial_t C^i M_\alpha + \xi \partial_x C^i M_\alpha + C^i N_{\alpha-\frac{1}{2}} - C^i N_{\alpha+\frac{1}{2}} = R_\alpha \end{cases}$$
(12)

- $(M_{\alpha}, C^{i}M_{\alpha})$ particle density, (Q_{α}, R_{α}) collision term (= 0 a.e.)
- $\int_{B} \xi^{p} M d\xi$, $\int_{B} \xi^{p} U d\xi$ give the macroscopic variables
- linear transport equation \Rightarrow upwind scheme

Idea

$$F_{i+1/2} = \int_R \xi M_{i+1/2} d\xi$$

	The hydrodynamical model	The biological model	Numerical scheme	Kinetic interpretation	Raceway modeling
0000	0000	0000	0	00	00000000000
Anal	lytical validat	ion			

Analytical solution of Euler system with Biology [B., Sainte-Marie 2012]

- 2D and 3D hydro solutions for any topography $z_b(x)$
- in 2D, stationary continuous solutions (u, H, T) satisfy

$$u(x, z) = \alpha \beta \frac{\cos(\beta(z - z_b))}{\sin(\beta H)}, \quad \left(g(H + z_b) + \frac{\alpha^2 \beta^2}{2\sin^2(\beta H)}\right)_x = 0$$
$$T(x, z) = e^{-(H - (z - z_b))}$$

(13)

where T is solution of the simple biological system $\partial_t T + \partial_x uT + \partial_z wT = f(x, z)T(x, z)$

and

$$f(x,z) = \alpha \beta \frac{\cos(\beta(z-z_b))}{\sin(\beta H)} \left(\frac{\tan(\beta(z-z_b))}{\tan(\beta H)} - 1\right) \frac{\partial H}{\partial x}$$

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	000000000000
Outli	ine				

Motivations

The hydrodynamical model

3 The biological model

4 Numerical scheme

Kinetic interpretation

Intro 0000	The hydrodynamical model 0000	The biological model	Numerical scheme O	Kinetic interpretation	Raceway modeling
Rad	ceway modelin	g			

Geometry: a 2D rectangular pool along x and z axis (H = 50 cm and L = 20m)

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	00000000000
Daa					
Race	eway modelin	g			

Agitation:

$$F_{x}(x,z,t) = F\left(\sqrt{(x-x_{wheel})^{2}+(z-z_{wheel})^{2}}\omega\right)^{2}\cos\theta \qquad (14)$$

$$F_z(x, z, t) = F\left(\sqrt{(x - x_{wheel})^2 + (z - z_{wheel})^2}\omega\right)^2 \sin\theta \qquad (15)$$

where F is a constant, θ is the angle between the blade and the vertical direction, $\omega = \dot{\theta}$.

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	000000000000000000000000000000000000000
Hyd	rodynamics				

Figure: (a): Velocities along vertical and horizontal axis in a cell located near from the wheel rotating at angular speed $\omega = 0.8rad/s$. The flow is very turbulent. (b): Velocities along vertical and horizontal axis in a cell located far from the wheel. An asymptotic value of $0.48m.s^{-1}$ is reached.

$\mathbf{A} =$				
			200	

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	000000000000000000000000000000000000000
Hydr	odynamics				

Figure: Snapshots of the tracer (pollutant) concentration in a raceway set into motion by a paddlwheel of angular velocity $\omega = 0.85 rad/s$. It is clear that after several minutes, the raceway is totally homogeneous. Therefore, the paddlewheel has indeed the required effect on the mixing.

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	000000000000
Lagr	rangian trajec	tories			

Figure: (a):Trajectories of three particles during the simulations. The large curve represents the water surface at the middle of the pool. The other plot is the height of a given particle through time. The algae undergo sudden changes of depth every time it meets the wheel.(b): Perceived light from the microalgae. Particles are subject to even greater irradiance changes since the light is exponentially decaying.

	The hydrodynamical model	The biological model	Numerical scheme	Kinetic interpretation	Raceway modeling
0000	0000	0000	0	00	00000000000
Rial	arical reculte				

Figure: (a): Carbon concentration; (b): Internal quota q; (c): nitrogen concentration; (d): substrate concentration(NO_3). Those plots illustrate the average concentrations in the raceway for 6 simulations. Three were carried out without agitation, and the other three had the agitation term. In each situation, agitation, leading to homogenization leads to a better productivity. However, for certain initial conditions, the improvement is quite slow (after several days), since the biological variables do not evolve as quickly as hydrodynamics does.

Intro 000	The hydrodynamical model	The biological model	Numerical scheme O	Kinetic interpretation	Raceway modeling
3[D investigation				

Simulation of a passive tracer in the raceway.

Passive tracer

	The hydrodynamical model	The biological model	Numerical scheme	Kinetic interpretation	Raceway modeling
0000	0000	0000	0	00	000000000000
Exp	erimental vali	dation			

Measurement points

Comparison (25 Hz, aligned blades, paths 2 and 3, H = 30 cm)

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	00000000000000
Evn	erimental vali	dation			
	criticitai van	uation			

Comparison (25 Hz, aligned blades, paths 1 and 3, H = 20 cm)

Comparison (25 Hz, aligned blades, path 3, H = 30 cm)

	The hydrodynamical mode	The biological model	Numerical scheme		Raceway modeling
000	0000	0000	0	00	00000000000000
La	grangian trai	ectories			

Figure: Y position of the particles

Figure: Depth of the particles

Intro	The hydrodynamical model	The biological model	Numerical scheme	Kinetic interpretation	Raceway modeling
0000	0000	0000	O	00	
Anin	nation				

3D Trajectories

$\mathbf{A} =$	124		67	

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	00000000000
6					
Cone	clusion				

- First order results in 2D are encouraging
- Job in 3D is in progress (hydrodynamics OK)
- Future work : data assimilation

	The hydrodynamical model	The biological model	Numerical scheme		Raceway modeling
0000	0000	0000	0	00	000000000000
Tha	nk you for yo	ur attentior			

Any questions ?