Reaction Model Reduction
 Reaction Model
 Model Reduction
 Reaction Graphs

Graph Editing Operations
 Delete and Merge Operations
 Coding as a Subgraph Epimorphism Problem

Searching a mapping
 Brute force
 Constraint Logic Programming
We study constraint programming and systems biology.

A unifying feature is development of *modelling languages*.
Systems Biology

Systems Biology studies interactions in big models.

Example (Molecular Cell Biology)
Reaction Model

Reaction models are used in systems biology.

- Model of a cell = \{ Reactions \}
- Reaction = Molecules + Parametrized Rates

Example (Michaelis-Menten Reaction)

Highschool notation

\[E + S \rightleftharpoons_{k_d}^{k_c} ES \rightarrow_{k_p} E + P \]

BIOCHAM reactions

- \(kc*[E][S] \) for \(E + S \Rightarrow ES \).
- \(kd*[ES] \) for \(ES \Rightarrow E + S \).
- \(kp*[ES] \) for \(ES \Rightarrow E + P \).

Fixing parameters and initial concentrations, models are simulated.
Model Reduction

Large models store biological knowledge
 ▶ Kohn’s model = 800 reactions, 500 molecular species

Small models are better fit to work on:
 ▶ level of abstraction fitting relative importance of parts
 ▶ Model-Parametrize-Test workflow: parametrization and simulation computationally expensive

Modelers use kinetic reductions: reduce \(M \), get \(M' \).

Reduction as a binary relation: is model \(M \) reducible to \(M' \)?
Definition
A reaction graph is a triple \((S, R, A)\), with \(A \subseteq (S \times R) \cup (R \times S)\).
\(S\) is the set of molecular species of the graph, \(R\) is the set of reactions.

Example (Michaelis-Menten expanded and reduced)

\[
E + S \rightleftharpoons ES \rightarrow E + P
\]
Model reduction by graph operations

What happens when we abstract from kinetic conditions?

\[M \rightarrow M' \]
\[G \rightarrow G' \]

We define a model reduction to be a sequence of elementary operations:

- Node deletion
- Node merging
Species Deletion

This removes a species from the model.

- Remove every arc linking the species and any reaction
- Remove the species’ node from the graph

Example
Reaction Deletion

This removes a reaction from the model.

- Remove every arc linking the reaction and a species
- Remove the reaction’s node from the graph

Example

![Diagram of Reaction Deletion]
Species Merging

This merges several species $S_1 \ldots S_n$ into one:

- Create a new species node S
- For every reaction linked with an S_i, link it with S
- Delete every S_i
Reaction Merging

This merges several reactions $R_1 \ldots R_n$ into one:

- Create a new species node R
- For every reaction linked with an R_i, link it with R
- Delete every R_i
Finishing the Michaelis-Menten example

From the expanded Michaelis-Menten mechanism:

<table>
<thead>
<tr>
<th>Diagram 1</th>
<th>Diagram 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E ⇝ c ⇝ ES ⇝ p ⇝ P</td>
<td>E ⇝ c+p ⇝ ES ⇝ P</td>
</tr>
<tr>
<td>Merge c with p</td>
<td>Delete d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram 3</th>
<th>Diagram 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>E ⇝ c+p ⇝ ES ⇝ P</td>
<td>S ⇝ c+p ⇝ P</td>
</tr>
<tr>
<td>Delete ES</td>
<td>Reduced Michaelis-Menten</td>
</tr>
</tbody>
</table>
Model Reductions as Subgraph Epimorphisms

Sequences of deletions/mergings can be seen as a surjective mapping from one graph to another:
Subgraph Epimorphisms

Definition (SEPI)

A subgraph epimorphism \(\mu \) from \(G = (N, A) \) to \(G' = (N', A') \) is a mapping \(\mu : N_0 \to N' \),

- **Morphism:** \(\forall (x, y) \in A \cap N_0 \times N_0, (\mu(x), \mu(y)) \in A' \)
- **Node Surjection:** \(\forall x' \in N', \exists x \in N, \mu(x) = x' \)
- **Arc Surjection:**
 \(\forall (x', y') \in A', \exists (x, y) \in A, (\mu(x), \mu(y)) = (x', y') \)

In our setting, \(\mu(S \cap N_0) \subseteq S', \mu(R \cap N_0) \subseteq R' \).

Theorem (SEPI coding)

\(\exists \) sequence of deletions/mergings transforming \(G \) into \(G' \)

iff

\(\exists \) subgraph epimorphism \(\mu : G \to G' \)

Removes sequence symmetries, easier to work with.
The Subgraph Epimorphism Problem

Theorem

Given G, G', the problem:

\exists subgraph epimorphism $\mu : G \rightarrow G'$

is NP-complete.

NP-complete means there are hard instances for which the best known possible algorithms are as costly as trying every possible solution . . .
Generate and test, a.k.a. Bruteforcing

Generate every function $\mu : G \rightarrow G'$ and test SEPI conditions:

```plaintext
for every TargetNode in G' {
    image[0] = TargetNode
    for every TargetNode in G' {
        image[1] = TargetNode
        for ...
            if is_sepi(image, graph, graph') return image;
    }
}
return NULL;
```

This does not work on large instances!
Constraint Programming

Constraint programming allows the reversal of generate-and-test:

```
... make_map(Images, TargetNodes), is_sepi(SourceGraph, TargetGraph, Images), ...
```

to constrain and search:

```
... constrain_sepi(SourceGraph, TargetGraph, Images), search_map(Images, TargetNodes), ...
```

which is more efficient.
Logic programming in Prolog

Prolog is a logic-based language made for non-deterministic programming

Prolog \supseteq Predicates + Backtracking

Some code first ... calls are sequenced with ' , ':

test :-
 format("Hello "),
 format("world\n"),
 member(X, [1, 3, 4]),
 format("X = \sim w\n", [X]).

Output:
Hello world
X = 1
Non-deterministic programming

Predicates ~ Functions with variable number of outputs
 - can have zero to infinite successes

Example

\[
\text{member}(X, [1, 3, 4])
\]

\[
X = 1 \quad X = 3 \quad X = 4
\]

\[
0 = 1
\]
Evaluation Strategy

Successes are sequenced from first to last.

test :-
 member(X, [1, 3, 4]),
 format("X = ~w~N", [X]).

Output:

X = 1
Failure, Backtracking

When a predicate has no successes, it fails. Execution backtracks to the state of the last choice point, and executes the next choice:

test :-
 member(X, [1, 3, 4]),
 X > 1,
 format("X = ~w~N", [X]).
Non-deterministic programming

What does this do?

test :-
 member(X, [1, 3, 4]),
 format("X = ~w~N", [X]),
 X > 3.
Non-deterministic programming

What does this do?

test :-
 member(X, [1, 3, 4]),
 format("X = ~w~N", [X]),
 X > 3.

Output:

X = 1
X = 3
X = 4
These mechanisms make bruteforcing easy to code:

sepi :-
 ...
 member(Image0, TargetNodes),
 member(Image1, TargetNodes),
 ...
 member(ImageN, TargetNodes),
 is_sepi(Images, SourceGraph, TargetGraph),
 ...

The program is easier to write, but not more efficient!
Constraint Programming

Failure can be guessed before a candidate is completely generated. Constraints tell when failure will happen, thus taking generate-and-test:

...
make_map(Images, TargetNodes),
is_sepi(SourceGraph, TargetGraph, Images),
...

and replacing it by constrain and search:

...
constrain_sepi(SourceGraph, TargetGraph, Images),
search_map(Images, TargetNodes),
...
CLP(FD)

CLP(FD) introduces finite domain variables to LP.
- FD variables are given a domain
 - domain = { possible values }
- Constraints are added on FD variables
 - propagators watch their variables
- An assignment is *searched*
 - variables must be in domain, values must satisfy constraints

```prolog
fd_domain(F, [1, 3, 4]).
F #> 1,
fds_domain(F),
format("F = ~w~N").
```

Output:
F = 3

```prolog
member(X, [1, 3, 4]).
X > 1,
format("X = ~w~N").
```

Output:
X = 3
FD variables know their domain

CLP(FD) introduces finite domain variables to LP.
▶ **FD variables are given a domain**
 ▶ domain = { possible values }
▶ Constraints are added on FD variables
 ▶ propagators watch their variables
▶ An assignment is *searched*
 ▶ variables must be in domain, values must satisfy constraints

```prolog
fd_domain(F, [1, 3, 4]).
format("F = ~w~N").

Output:
F = _#2(1:3:4)
```

```prolog
format("X = ~w~N").

Output:
X = _2
```
Constraints restrict domains

CLP(FD) introduces finite domain variables to LP.
 ▶ FD variables are given a domain
 ▶ domain = \{ possible values \}
 ▶ **Constraints are added on FD variables**
 ▶ propagators watch their variables
 ▶ An assignment is *searched*
 ▶ variables must be in domain, values must satisfy constraints

```
fd_domain(F, [1, 3, 4]).  X > 1,
F #> 1,                   format("X = ~w~N").
format("F = ~w~N").

Output:
uncaught exception:    error(instantiation_error,(>/))/2)
F = _#2(3:4)
```

FD variables’ values can be enumerated on

CLP(FD) introduces finite domain variables to LP.

- FD variables are given a domain
 - domain = \{ possible values \}
- Constraints are added on FD variables
 - propagators watch their variables
- An assignment is searched
 - variables must be in domain, values must satisfy constraints

```prolog
fd_domain(F, [1, 3, 4]).
F #> 1,
fd_labeling(F),
format("F = ~w~N"),
fail.
```

Output:

```
F = 3
F = 4
no
```
Propagation (see Thierry Martinez’s talk)

Deductions are made dynamically:

- FD variable is modified ⇒ propagators woken up
- Propagators remove impossible values from domains
- Search fails when a domain is empty

```
fd_domain(F, [1, 2, 3]).
fd_domain(G, [1, 2, 3]).
format(...), F #> G, format(...),
F = _1#(1:2:3), G = _2#(1:2:3)
G = 2
format(...).
F = 3, G = 2
```
Problem: Find an assignment from 40 nodes to 20.
Brute force: \(20^{40}\) possible assignments to check.
CLP: < 1s most of the time!

Example (MAPK models as a hierarchy)
Thank you!