
Constraint Programming for Graph Reduction in
Systems Biology

Steven Gay, Francois Fages, Sylvain Soliman

October 16, 2012

Reaction Model Reduction
Reaction Model
Model Reduction
Reaction Graphs

Graph Editing Operations
Delete and Merge Operations
Coding as a Subgraph Epimorphim Problem

Searching a mapping
Bruteforce
Constraint Logic Programming

Constraintes team

We study constraint programming and systems biology.

A unifying feature is development of modelling languages.

Systems Biology
Systems Biology studies interactions in big models.

Example (Molecular Cell Biology)

Reaction Model

Reaction models are used in systems biology.

I Model of a cell = { Reactions }
I Reaction = Molecules + Parametrized Rates

Example (Michaelis-Menten Reaction)

Highschool notation BIOCHAM reactions

E + S
kc
kd

ES →kp E + P
kc*[E]*[S] for E + S ⇒ ES.
kd*[ES] for ES ⇒ E + S.
kp*[ES] for ES ⇒ E + P.

Fixing parameters and initial concentrations, models are simulated.

Model Reduction

Large models store biological knowledge

I Kohn’s model = 800 reactions, 500 molecular species

Small models are better fit to work on:

I level of abstraction fitting relative importance of parts

I Model-Parametrize-Test workflow : parametrization and
simulation computationally expensive

Modelers use kinetic reductions : reduce M, get M ′.

Reduction as a binary relation : is model M reducible to M ′?

Reaction Graphs

Definition
A reaction graph is a triple (S , R, A), with A ⊆ (S ×R)∪ (R × S).
S is the set of molecular species of the graph, R is the set of
reactions.

Example (Michaelis-Menten expanded and reduced)

E + S
 ES → E + P

E c ES

d
S

p P

E + S → E + P

S c P

E

Model reduction by graph operations

What happens when we abstract from kinetic conditions?

M

G

M ′

G ′
abstraction

?

We define a model reduction to be a sequence of elementary
operations:

I Node deletion

I Node merging

Species Deletion

This removes a species from the model.

I Remove every arc linking the species and any reaction

I Remove the species’ node from the graph

Example

E c ES

d
S

p P

Reaction Deletion

This removes a reaction from the model.

I Remove every arc linking the reaction and a species

I Remove the reaction’s node from the graph

Example

E c ES

d
S

p P

Species Merging
This merges several species S1 . . . Sn into one:
I Create a new species node S
I For every reaction linked with an Si , link it with S
I Delete every Si

A r1 B1

r2

B2

r3

r4 C

A r1 B

r2

r3

r4 C

Reaction Merging
This merges several reactions R1 . . .Rn into one:
I Create a new species node R
I For every reaction linked with an Ri , link it with R
I Delete every Ri

E c ES

d
S

p P

c+p

ESE

dS

P

Finishing the Michaelis-Menten example

From the expanded Michaelis-Menten mechanism:

E c ES

d
S

p P

c+p

ESE

dS

P

Merge c with p Delete d

c+p

ESE

dS

P
c+p

ES

E

S P

Delete ES Reduced Michaelis-Menten

Model Reductions as Subgraph Epimorphisms

Sequences of deletions/mergings can be seen as a surjective
mapping from one graph to another:

E → C
S → A
P → B
c → r
p → r
d → ⊥

ES→ ⊥

E c ES

d
S

p P

A r

C

B

Subgraph Epimorphisms

Definition (SEPI)

A subgraph epimorphism µ from G = (N,A) to G ′ = (N ′,A′) is a
mapping µ : N0 −→ N ′,

I Morphism: ∀(x , y) ∈ A ∩ N0 × N0, (µ(x), µ(y)) ∈ A′

I Node Surjection: ∀x ′ ∈ N ′,∃x ∈ N, µ(x) = x ′

I Arc Surjection:
∀(x ′, y ′) ∈ A′,∃(x , y) ∈ A, (µ(x), µ(y)) = (x ′, y ′)

In our setting, µ(S ∩ N0) ⊆ S ′, µ(R ∩ N0) ⊆ R ′.

Theorem (SEPI coding)

∃ sequence of deletions/mergings transforming G into G ′

iff
∃ subgraph epimorphism µ : G −→ G ′

Removes sequence symmetries, easier to work with.

The Subgraph Epimorphism Problem

Theorem

Given G ,G ′, the problem :
∃ subgraph epimorphism µ : G −→ G ′

is NP-complete.

NP-complete means there are hard instances for which the best
known possible algorithms are as costly as trying every possible
solution . . .

Generate and test, a.k.a. Bruteforcing

Generate every function µ : G −→ G ′ and test SEPI conditions:

for every TargetNode in G’ {

image[0] = TargetNode

for every TargetNode in G’ {

image[1] = TargetNode

for ...

if is_sepi(image, graph, graph’) return image;

}

}

return NULL;

This does not work on large instances!

Constraint Programming

Constraint programming allows the reversal of generate-and-test:

...

make_map(Images, TargetNodes),

is_sepi(SourceGraph, TargetGraph, Images),

...

to constrain and search:

...

constrain_sepi(SourceGraph, TargetGraph, Images),

search_map(Images, TargetNodes),

...

which is more efficient.

Logic programming in Prolog

Prolog is a logic-based language made for non-deterministic
programming

Prolog ⊇ Predicates + Backtracking

Some code first . . . calls are sequenced with ’,’:

test :-

format("Hello "),

format("world~N"),

member(X, [1, 3, 4]),

format("X = ~w~N", [X]).

Output:

Hello world

X = 1

Non-deterministic programming

Predicates ∼ Functions with variable number of outputs

I can have zero to infinite successes

Example

member(X, [1, 3, 4]) 0 = 1

member(X, [1, 3, 4])

.

X = 1
X = 3

X = 4 0 = 1

Evaluation Strategy
Successes are sequenced from first to last.

test :-

member(X, [1, 3, 4]),

format("X = ~w~N", [X]).

member(X, [1, 3, 4])

format(. . .)format(. . .) format(. . .)

X = 1
X = 3

X = 4

Output:

X = 1

Failure, Backtracking
When a predicate has no successes, it fails. Execution backtracks
to the state of the last choice point, and executes the next choice:

test :-

member(X, [1, 3, 4]),

X > 1,

format("X = ~w~N", [X]).

member(X, [1, 3, 4])

X > 1X > 1 X > 1

format(. . .) format(. . .)

X = 1
X = 3

X = 4

Non-deterministic programming

What does this do?

test :-

member(X, [1, 3, 4]),

format("X = ~w~N", [X]),

X > 3.

Output:

X = 1

X = 3

X = 4

Non-deterministic programming

What does this do?

test :-

member(X, [1, 3, 4]),

format("X = ~w~N", [X]),

X > 3.

Output:

X = 1

X = 3

X = 4

Bruteforcing SEPI 1

These mechanisms make bruteforcing easy to code:

sepi :-

...

member(Image0, TargetNodes),

member(Image1, TargetNodes),

...

member(ImageN, TargetNodes),

is_sepi(Images, SourceGraph, TargetGraph),

...

The program is easier to write, but not more efficient!

Constraint Programming

Failure can be guessed before a candidate is completely generated.
Constraints tell when failure will happen, thus taking
generate-and-test:

...

make_map(Images, TargetNodes),

is_sepi(SourceGraph, TargetGraph, Images),

...

and replacing it by constrain and search:

...

constrain_sepi(SourceGraph, TargetGraph, Images),

search_map(Images, TargetNodes),

...

CLP(FD)

CLP(FD) introduces finite domain variables to LP.
I FD variables are given a domain

I domain = { possible values }
I Constraints are added on FD variables

I propagators watch their variables

I An assignment is searched
I variables must be in domain, values must satisfy constraints

fd_domain(F, [1, 3, 4]).

F #> 1,

fd_labeling(F),

format("F = ~w~N").

Output:
F = 3

member(X, [1, 3, 4]).

X > 1,

format("X = ~w~N").

Output:
X = 3

FD variables know their domain

CLP(FD) introduces finite domain variables to LP.
I FD variables are given a domain

I domain = { possible values }
I Constraints are added on FD variables

I propagators watch their variables

I An assignment is searched
I variables must be in domain, values must satisfy constraints

fd_domain(F, [1, 3, 4]).

format("F = ~w~N").

Output:

F = _#2(1:3:4)

format("X = ~w~N").

Output:

X = _2

Constraints restrict domains

CLP(FD) introduces finite domain variables to LP.
I FD variables are given a domain

I domain = { possible values }
I Constraints are added on FD variables

I propagators watch their variables

I An assignment is searched
I variables must be in domain, values must satisfy constraints

fd_domain(F, [1, 3, 4]).

F #> 1,

format("F = ~w~N").

Output:

F = _#2(3:4)

X > 1,

format("X = ~w~N").

Output:

uncaught exception:

error(instantiation_error,(>)/2)

FD variables’ values can be enumerated on

CLP(FD) introduces finite domain variables to LP.
I FD variables are given a domain

I domain = { possible values }
I Constraints are added on FD variables

I propagators watch their variables

I An assignment is searched
I variables must be in domain, values must satisfy constraints

fd_domain(F, [1, 3, 4]).

F #> 1,

fd_labeling(F),

format("F = ~w~N"),

fail.

Output:

F = 3

F = 4

no

Propagation (see Thierry Martinez’s talk)

Deductions are made dynamically:

I FD variable is modified ⇒ propagators woken up
I Propagators remove impossible values from domains
I Search fails when a domain is empty

fd_domain(F, [1, 2, 3]).

fd_domain(G, [1, 2, 3]).

format(...),

F #> G,

format(...),

G = 2

format(...).

F = _1#(1:2:3), G = _2#(1:2:3)

F = _1#(2:3), G = _2#(1:2)

F = 3, G = 2

Final Word On SEPI

Problem : Find an assignment from 40 nodes to 20.
Bruteforce : 2040 possible assignments to check.
CLP : < 1s most of the time!

Example (MAPK models as a hierarchy)

009_Huan

010_Khol

011_Levc

027_Mark

029_Mark 031_Mark

026_Mark

028_Mark 030_Mark 049_Sasa

146_Hata

Thank you!

	Reaction Model Reduction
	Reaction Model
	Model Reduction
	Reaction Graphs

	Graph Editing Operations
	Delete and Merge Operations
	Coding as a Subgraph Epimorphim Problem

	Searching a mapping
	Bruteforce
	Constraint Logic Programming

