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Constraintes team

We study constraint programming and systems biology.

A unifying feature is development of modelling languages.



Systems Biology
Systems Biology studies interactions in big models.

Example (Molecular Cell Biology)



Reaction Model

Reaction models are used in systems biology.

I Model of a cell = { Reactions }
I Reaction = Molecules + Parametrized Rates

Example (Michaelis-Menten Reaction)

Highschool notation BIOCHAM reactions

E + S 
kc
kd

ES →kp E + P
kc*[E]*[S] for E + S ⇒ ES.
kd*[ES] for ES ⇒ E + S.
kp*[ES] for ES ⇒ E + P.

Fixing parameters and initial concentrations, models are simulated.



Model Reduction

Large models store biological knowledge

I Kohn’s model = 800 reactions, 500 molecular species

Small models are better fit to work on:

I level of abstraction fitting relative importance of parts

I Model-Parametrize-Test workflow : parametrization and
simulation computationally expensive

Modelers use kinetic reductions : reduce M, get M ′.

Reduction as a binary relation : is model M reducible to M ′?



Reaction Graphs

Definition
A reaction graph is a triple (S , R, A), with A ⊆ (S ×R)∪ (R × S).
S is the set of molecular species of the graph, R is the set of
reactions.

Example (Michaelis-Menten expanded and reduced)

E + S 
 ES → E + P

E c ES

d
S

p P

E + S → E + P

S c P

E



Model reduction by graph operations

What happens when we abstract from kinetic conditions?

M

G

M ′

G ′
abstraction

?

We define a model reduction to be a sequence of elementary
operations:

I Node deletion

I Node merging



Species Deletion

This removes a species from the model.

I Remove every arc linking the species and any reaction

I Remove the species’ node from the graph

Example

E c ES

d
S

p P



Reaction Deletion

This removes a reaction from the model.

I Remove every arc linking the reaction and a species

I Remove the reaction’s node from the graph

Example

E c ES

d
S

p P



Species Merging
This merges several species S1 . . . Sn into one:
I Create a new species node S
I For every reaction linked with an Si , link it with S
I Delete every Si

A r1 B1

r2

B2

r3

r4 C

A r1 B

r2

r3

r4 C



Reaction Merging
This merges several reactions R1 . . .Rn into one:
I Create a new species node R
I For every reaction linked with an Ri , link it with R
I Delete every Ri

E c ES

d
S

p P

c+p

ESE

dS

P



Finishing the Michaelis-Menten example

From the expanded Michaelis-Menten mechanism:

E c ES

d
S

p P

c+p

ESE

dS

P

Merge c with p Delete d

c+p

ESE

dS

P
c+p

ES

E

S P

Delete ES Reduced Michaelis-Menten



Model Reductions as Subgraph Epimorphisms

Sequences of deletions/mergings can be seen as a surjective
mapping from one graph to another:

E → C
S → A
P → B
c → r
p → r
d → ⊥

ES→ ⊥

E c ES

d
S

p P

A r

C

B



Subgraph Epimorphisms

Definition (SEPI)

A subgraph epimorphism µ from G = (N,A) to G ′ = (N ′,A′) is a
mapping µ : N0 −→ N ′,

I Morphism: ∀(x , y) ∈ A ∩ N0 × N0, (µ(x), µ(y)) ∈ A′

I Node Surjection: ∀x ′ ∈ N ′,∃x ∈ N, µ(x) = x ′

I Arc Surjection:
∀(x ′, y ′) ∈ A′,∃(x , y) ∈ A, (µ(x), µ(y)) = (x ′, y ′)

In our setting, µ(S ∩ N0) ⊆ S ′, µ(R ∩ N0) ⊆ R ′.

Theorem (SEPI coding)

∃ sequence of deletions/mergings transforming G into G ′

iff
∃ subgraph epimorphism µ : G −→ G ′

Removes sequence symmetries, easier to work with.



The Subgraph Epimorphism Problem

Theorem

Given G ,G ′, the problem :
∃ subgraph epimorphism µ : G −→ G ′

is NP-complete.

NP-complete means there are hard instances for which the best
known possible algorithms are as costly as trying every possible
solution . . .



Generate and test, a.k.a. Bruteforcing

Generate every function µ : G −→ G ′ and test SEPI conditions:

for every TargetNode in G’ {

image[0] = TargetNode

for every TargetNode in G’ {

image[1] = TargetNode

for ...

if is_sepi(image, graph, graph’) return image;

}

}

return NULL;

This does not work on large instances!



Constraint Programming

Constraint programming allows the reversal of generate-and-test:

...

make_map(Images, TargetNodes),

is_sepi(SourceGraph, TargetGraph, Images),

...

to constrain and search:

...

constrain_sepi(SourceGraph, TargetGraph, Images),

search_map(Images, TargetNodes),

...

which is more efficient.



Logic programming in Prolog

Prolog is a logic-based language made for non-deterministic
programming

Prolog ⊇ Predicates + Backtracking

Some code first . . . calls are sequenced with ’,’:

test :-

format("Hello "),

format("world~N"),

member(X, [1, 3, 4]),

format("X = ~w~N", [X]).

Output:

Hello world

X = 1



Non-deterministic programming

Predicates ∼ Functions with variable number of outputs

I can have zero to infinite successes

Example

member(X, [1, 3, 4]) 0 = 1

member(X, [1, 3, 4])

. . .. . . . . .

X = 1
X = 3

X = 4 0 = 1



Evaluation Strategy
Successes are sequenced from first to last.

test :-

member(X, [1, 3, 4]),

format("X = ~w~N", [X]).

member(X, [1, 3, 4])

format(. . . )format(. . . ) format(. . . )

X = 1
X = 3

X = 4

Output:

X = 1



Failure, Backtracking
When a predicate has no successes, it fails. Execution backtracks
to the state of the last choice point, and executes the next choice:

test :-

member(X, [1, 3, 4]),

X > 1,

format("X = ~w~N", [X]).

member(X, [1, 3, 4])

X > 1X > 1 X > 1

format(. . .) format(. . .)

X = 1
X = 3

X = 4



Non-deterministic programming

What does this do?

test :-

member(X, [1, 3, 4]),

format("X = ~w~N", [X]),

X > 3.

Output:

X = 1

X = 3

X = 4



Non-deterministic programming

What does this do?

test :-

member(X, [1, 3, 4]),

format("X = ~w~N", [X]),

X > 3.

Output:

X = 1

X = 3

X = 4



Bruteforcing SEPI 1

These mechanisms make bruteforcing easy to code:

sepi :-

...

member(Image0, TargetNodes),

member(Image1, TargetNodes),

...

member(ImageN, TargetNodes),

is_sepi(Images, SourceGraph, TargetGraph),

...

The program is easier to write, but not more efficient!



Constraint Programming

Failure can be guessed before a candidate is completely generated.
Constraints tell when failure will happen, thus taking
generate-and-test:

...

make_map(Images, TargetNodes),

is_sepi(SourceGraph, TargetGraph, Images),

...

and replacing it by constrain and search:

...

constrain_sepi(SourceGraph, TargetGraph, Images),

search_map(Images, TargetNodes),

...



CLP(FD)

CLP(FD) introduces finite domain variables to LP.
I FD variables are given a domain

I domain = { possible values }
I Constraints are added on FD variables

I propagators watch their variables

I An assignment is searched
I variables must be in domain, values must satisfy constraints

fd_domain(F, [1, 3, 4]).

F #> 1,

fd_labeling(F),

format("F = ~w~N").

Output:
F = 3

member(X, [1, 3, 4]).

X > 1,

format("X = ~w~N").

Output:
X = 3



FD variables know their domain

CLP(FD) introduces finite domain variables to LP.
I FD variables are given a domain

I domain = { possible values }
I Constraints are added on FD variables

I propagators watch their variables

I An assignment is searched
I variables must be in domain, values must satisfy constraints

fd_domain(F, [1, 3, 4]).

format("F = ~w~N").

Output:

F = _#2(1:3:4)

format("X = ~w~N").

Output:

X = _2



Constraints restrict domains

CLP(FD) introduces finite domain variables to LP.
I FD variables are given a domain

I domain = { possible values }
I Constraints are added on FD variables

I propagators watch their variables

I An assignment is searched
I variables must be in domain, values must satisfy constraints

fd_domain(F, [1, 3, 4]).

F #> 1,

format("F = ~w~N").

Output:

F = _#2(3:4)

X > 1,

format("X = ~w~N").

Output:

uncaught exception:

error(instantiation_error,(>)/2)



FD variables’ values can be enumerated on

CLP(FD) introduces finite domain variables to LP.
I FD variables are given a domain

I domain = { possible values }
I Constraints are added on FD variables

I propagators watch their variables

I An assignment is searched
I variables must be in domain, values must satisfy constraints

fd_domain(F, [1, 3, 4]).

F #> 1,

fd_labeling(F),

format("F = ~w~N"),

fail.

Output:

F = 3

F = 4

no



Propagation (see Thierry Martinez’s talk)

Deductions are made dynamically:

I FD variable is modified ⇒ propagators woken up
I Propagators remove impossible values from domains
I Search fails when a domain is empty

fd_domain(F, [1, 2, 3]).

fd_domain(G, [1, 2, 3]).

format(...),

F #> G,

format(...),

G = 2

format(...).

F = _1#(1:2:3), G = _2#(1:2:3)

F = _1#(2:3), G = _2#(1:2)

F = 3, G = 2



Final Word On SEPI

Problem : Find an assignment from 40 nodes to 20.
Bruteforce : 2040 possible assignments to check.
CLP : < 1s most of the time!

Example (MAPK models as a hierarchy)

009_Huan

010_Khol

011_Levc

027_Mark

029_Mark 031_Mark

026_Mark

028_Mark 030_Mark 049_Sasa

146_Hata



Thank you!
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