Constraint Programming for Graph Reduction in Systems Biology

Steven Gay, Francois Fages, Sylvain Soliman

October 16, 2012

Reaction Model Reduction

Reaction Model Model Reduction Reaction Graphs

Graph Editing Operations

Delete and Merge Operations Coding as a Subgraph Epimorphim Problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Searching a mapping

Bruteforce Constraint Logic Programming We study constraint programming and systems biology.

A unifying feature is development of modelling languages.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Systems Biology

Systems Biology studies interactions in big models.

Example (Molecular Cell Biology)

Reaction Model

Ε

Reaction models are used in systems biology.

- Model of a cell = { Reactions }
- Reaction = Molecules + Parametrized Rates

Example (Michaelis-Menten Reaction)

Highschool notation

BIOCHAM reactions

$$+ S \rightleftharpoons_{k_d}^{k_c} ES \to^{k_p} E + P$$

 $\begin{aligned} &\mathsf{kc}^*[\mathsf{E}]^*[\mathsf{S}] \text{ for } \mathsf{E} + \mathsf{S} \Rightarrow \mathsf{E}\mathsf{S}. \\ &\mathsf{kd}^*[\mathsf{E}\mathsf{S}] \text{ for } \mathsf{E}\mathsf{S} \Rightarrow \mathsf{E} + \mathsf{S}. \\ &\mathsf{kp}^*[\mathsf{E}\mathsf{S}] \text{ for } \mathsf{E}\mathsf{S} \Rightarrow \mathsf{E} + \mathsf{P}. \end{aligned}$

Fixing parameters and initial concentrations, models are simulated.

Model Reduction

Large models store biological knowledge

▶ Kohn's model = 800 reactions, 500 molecular species

Small models are better fit to work on:

- level of abstraction fitting relative importance of parts
- Model-Parametrize-Test workflow : parametrization and simulation computationally expensive

Modelers use kinetic reductions : reduce M, get M'.

Reduction as a binary relation : is model M reducible to M'?

Reaction Graphs

Definition

A reaction graph is a triple (S, R, A), with $A \subseteq (S \times R) \cup (R \times S)$. S is the set of molecular species of the graph, R is the set of reactions.

Example (Michaelis-Menten expanded and reduced)

$$E + S \rightleftharpoons ES \rightarrow E + P$$

$$E + S \rightarrow E + P$$

ヘロト 人間ト 人団ト 人団ト

-

Model reduction by graph operations

What happens when we abstract from kinetic conditions?

$$\begin{array}{c} M \rightarrow M' \\ \text{abstraction} \\ G \xrightarrow{?} G' \end{array}$$

We define a model reduction to be a sequence of elementary operations:

- Node deletion
- Node merging

Species Deletion

This removes a species from the model.

- Remove every arc linking the species and any reaction
- Remove the species' node from the graph

Example

Reaction Deletion

This removes a reaction from the model.

- Remove every arc linking the reaction and a species
- Remove the reaction's node from the graph

Example

Species Merging

This merges several species $S_1 \dots S_n$ into one:

- Create a new species node S
- For every reaction linked with an S_i , link it with S
- Delete every S_i

ヘロン 人間と ヘヨン ヘヨン

э

Reaction Merging

This merges several reactions $R_1 \ldots R_n$ into one:

- ► Create a new species node *R*
- For every reaction linked with an R_i , link it with R
- Delete every R_i

◆□> ◆□> ◆豆> ◆豆> □豆

Finishing the Michaelis-Menten example

From the expanded Michaelis-Menten mechanism:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Model Reductions as Subgraph Epimorphisms

Sequences of deletions/mergings can be seen as a surjective mapping from one graph to another:

Subgraph Epimorphisms

Definition (SEPI)

A subgraph epimorphism μ from G = (N, A) to G' = (N', A') is a mapping $\mu : N_0 \longrightarrow N'$,

- Morphism: $\forall (x, y) \in A \cap N_0 \times N_0, (\mu(x), \mu(y)) \in A'$
- ▶ Node Surjection: $\forall x' \in N', \exists x \in N, \mu(x) = x'$
- Arc Surjection: $\forall (x', y') \in A', \exists (x, y) \in A, (\mu(x), \mu(y)) = (x', y')$

In our setting, $\mu(S \cap N_0) \subseteq S'$, $\mu(R \cap N_0) \subseteq R'$.

Theorem (SEPI coding)

 \exists sequence of deletions/mergings transforming G into G' iff \exists subgraph epimorphism $\mu : G \longrightarrow G'$

Removes sequence symmetries, easier to work with

The Subgraph Epimorphism Problem

Theorem

Given G, G', the problem : \exists subgraph epimorphism $\mu : G \longrightarrow G'$ is NP-complete.

NP-complete means there are hard instances for which the *best known* possible algorithms are as costly as *trying every possible solution* . . .

Generate and test, a.k.a. Bruteforcing

```
Generate every function \mu: G \longrightarrow G' and test SEPI conditions:
```

```
for every TargetNode in G' {
  image[0] = TargetNode
  for every TargetNode in G' {
    image[1] = TargetNode
    for ...
       if is_sepi(image, graph, graph') return image;
  }
}
return NULL;
```

This does not work on large instances!

Constraint Programming

Constraint programming allows the reversal of generate-and-test:

```
...
make_map(Images, TargetNodes),
is_sepi(SourceGraph, TargetGraph, Images),
...
```

to constrain and search:

```
...
constrain_sepi(SourceGraph, TargetGraph, Images),
search_map(Images, TargetNodes),
...
```

which is more efficient.

Logic programming in Prolog

Prolog is a logic-based language made for non-deterministic programming

```
Prolog \supseteq Predicates + Backtracking
```

Some code first ... calls are sequenced with ',':

```
test :-
format("Hello "),
format("world~N"),
member(X, [1, 3, 4]),
format("X = ~w~N", [X]).
```

Output:

Hello world X = 1

Non-deterministic programming

Predicates \sim Functions with variable number of outputs

can have zero to infinite successes

Example

member(X, [1, 3, 4]) 0 = 1

Evaluation Strategy

Successes are sequenced from first to last.

```
test :-
  member(X, [1, 3, 4]),
  format("X = ~w~N", [X]).
```


Output:

X = 1

Failure, Backtracking

When a predicate has no successes, it *fails*. Execution backtracks to the state of the last choice point, and executes the next choice:

```
test :-
  member(X, [1, 3, 4]),
  X > 1,
  format("X = ~w~N", [X]).
```


Non-deterministic programming

```
What does this do?
```

```
test :-
  member(X, [1, 3, 4]),
  format("X = ~w~N", [X]),
  X > 3.
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Non-deterministic programming

```
What does this do?
```

```
test :-
  member(X, [1, 3, 4]),
  format("X = ~w~N", [X]),
  X > 3.
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Output:

X = 1X = 3X = 4

Bruteforcing SEPI 1

These mechanisms make bruteforcing easy to code:

```
sepi :-
...
member(Image0, TargetNodes),
member(Image1, TargetNodes),
...
member(ImageN, TargetNodes),
is_sepi(Images, SourceGraph, TargetGraph),
...
```

The program is easier to write, but not more efficient!

Constraint Programming

Failure can be guessed before a candidate is completely generated. Constraints tell when failure will happen, thus taking generate-and-test:

```
make_map(Images, TargetNodes),
is_sepi(SourceGraph, TargetGraph, Images),
...
```

and replacing it by constrain and search:

```
...
constrain_sepi(SourceGraph, TargetGraph, Images),
search_map(Images, TargetNodes),
```

. . .

CLP(FD)

CLP(FD) introduces finite domain variables to LP.

- FD variables are given a domain
 - domain = { possible values }
- Constraints are added on FD variables
 - propagators watch their variables
- An assignment is searched
 - variables must be in domain, values must satisfy constraints

```
fd_domain(F, [1, 3, 4]).
F #> 1,
fd_labeling(F),
format("F = ~w~N").
```

```
member(X, [1, 3, 4]).
X > 1,
format("X = ~w~N").
```

Output: F = 3

Output: X = 3

FD variables know their domain

CLP(FD) introduces finite domain variables to LP.

- FD variables are given a domain
 - domain = { possible values }
- Constraints are added on FD variables
 - propagators watch their variables
- An assignment is searched
 - variables must be in domain, values must satisfy constraints

```
fd_domain(F, [1, 3, 4]).
format("F = ~w~N").
Output:
Output:
format("X = ~w~N").
```

X = _2

 $F = _{#2(1:3:4)}$

Constraints restrict domains

CLP(FD) introduces finite domain variables to LP.

- FD variables are given a domain
 - domain = { possible values }
- Constraints are added on FD variables
 - propagators watch their variables
- An assignment is searched
 - variables must be in domain, values must satisfy constraints

```
fd_domain(F, [1, 3, 4]). X > 1,
F #> 1, format("X = ~w~N").
format("F = ~w~N").
Output:
```

Output:

 $F = _{#2(3:4)}$

```
uncaught exception:
error(instantiation_error,(>)/2)
```

FD variables' values can be enumerated on

CLP(FD) introduces finite domain variables to LP.

- FD variables are given a domain
 - domain = { possible values }
- Constraints are added on FD variables
 - propagators watch their variables
- An assignment is searched
 - variables must be in domain, values must satisfy constraints

fd_domain(F, [1, 3, 4]).	Output:
F #> 1,	F = 3
fd labeling(F)	F = 4
<pre>format("F = ~w~N"),</pre>	no
fail.	110

Propagation (see Thierry Martinez's talk)

Deductions are made dynamically:

- FD variable is modified \Rightarrow propagators woken up
- Propagators remove impossible values from domains
- Search fails when a domain is empty

```
fd_domain(F, [1, 2, 3]).
fd_domain(G, [1, 2, 3]).
format(...),
F = _1#(1:2:3), G = _2#(1:2:3)
F #> G,
format(...),
F = _1#(2:3), G = _2#(1:2)
G = 2
format(...).
F = 3, G = 2
```

Final Word On SEPI

Problem : Find an assignment from 40 nodes to 20. Bruteforce : 20^{40} possible assignments to check. CLP : < 1s most of the time!

Example (MAPK models as a hierarchy)

Thank you!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>