Thibaut Balabonski
GALLIUM

November 20, 2012

Solving problems with computers

Problem —\

Program

\——) Computer

Solving problems with computers

Problem —ﬁ (1+2)x(3+4)

Program

\——) Computer

Solving problems with computers

Problem —ﬁ (1+2)x(3+4)

Program

\——) Computer

Const 3 —
: Computer
Offsetint 4
Push
Const 1 3

Offsetint 2
Mulint
Return 1

Solving problems with computers

Problem —ﬁ (1+2)x(3+4)

Program

\——) Computer

Const 3 Computer

Offsetint 4
Push ‘
Const 1 7

Offsetint 2
Mulint
Return 1

Solving problems with computers

Problem —ﬁ (1+2)x(3+4)

Program

\——) Computer

Const 3
Offsetint 4
Push —

Const 1 —|—> 7
Offsetint 2

Mulint
Return 1

Computer

Solving problems with computers

Problem —ﬁ (1+2)x(3+4)

Program

\——) Computer

Const 3
Offsetint 4
Push

Const 1 _-— 1
Offsetint 2
Mulint
Return 1

Computer

Solving problems with computers

Problem —ﬁ (1+2)x(3+4)

Program

\——) Computer

Const 3
Offsetint 4
Push

Const 1 3
Offsetint 2___f_+

Mulint
Return 1

Computer

Solving problems with computers

Problem —ﬁ (1+2)x(3+4)

Program

\——) Computer

Const 3
Offsetint 4
Push

Const 1 21
Offsetint 2 ‘
Mulint —

Return 1

Computer

Solving problems with computers

Problem —ﬁ (1+2)x(3+4)

Program

\——) Computer

Const 3
Offsetint 4
Push

Const 1
Offsetint 2
Mulint
Return 1 —

Computer

21

Solving problems with computers

Problem —\

Program

\——) Computer

Gallium-related issues:
e Programming languages and compilation

o Emphasis on safety

Solving problems with computers

Problem —\

Program

\——) Computer

Gallium-related issues:
e Programming languages and compilation

o Emphasis on safety

In this talk:

o Emphasis on

Chosing a path

Freedom implies responsibility

o Outermost prevents unneeded computations.

Y
L X

Y/
N =2

0x(1+2) 0

N

0x3

Freedom implies responsibility

o Innermost prevents duplication of subprograms.

sle) = exe (142) % (142)—3 x (1+2)

T

s”q sq(1+ 2) (14+2)x3————3x3

Y
1 2

5q(3)

Freedom implies responsibility

o Outermost prevents unneeded computations.

o Innermost prevents duplication of subprograms.

Evaluation strategies

Goal

the number of rewriting steps.

Question

In should we perform the steps?

Richer programming languages

o Data structures

(]
x) (f, xs)

~
-
—
[
~
]

~
i
»
n

N2
I

(sg, 1 :2:3: 1)

Richer programming languages

o Data structures

(]
x) (f, xs)

~
-
—
[
~
]

~
i
»
n

N2
I

(sg, 1 :2:3: 1)

V¥

Second-order rewriting

Lambda-calculus: computing with functions
Church, 1936

<«
o o

(Ax.f)a Fox=a)

(Axxx)((Ay-y)a) ((y-y)a)((Ay.y)a)

Shortest simple path

((A\y-y)a)((Ay.y)a)—a((\y.y)a)

(Ax.xx)((Ay.y)a) ((A\y.y)a)a—aa

(Ax.xx)a

Theorem: uncomputability (Barendregt et al. 1976)

Optimal strategies for the A-calculus
cannot be computable.

Wadsworth’s call-by-need (1971)

7N 7~

A @y re\ r®y
Ay @ — Ay 2)y 2

f©m Il Il Il

X X

y y y

((Ay-y)a)((Ay.y)a)=>a((\y.y)a)

(Ax.xx)(()\yw‘)\y.y)a)a7 aa

(Ax.xx)a

Wadsworth’s call-by-need (1971)

/@\ ©
rex — Ay @ ?
X X y ;

y

Real compilers use weak reduction
Restriction on evaluation: not inside functions.

OCaml (Call-by-Value)

'
N o -

Haskell (Call-by-Need) 10

New features of weak reduction (my work)

o The optimal strategy is still uncomputable.

11

New features of weak reduction (my work)

o The optimal strategy is still uncomputable.
o Call-by-need is as good as the optimal strategy.

11

Shared needed evaluation

o Use shared evaluation.
« Consider only needed steps.

4

—
..

VAVA
VAVAVAN
A\VAVAV

\/\/

12

Shared needed evaluation

o Use shared evaluation.

« Consider only needed steps.

L 12

Shared needed evaluation

o Use shared evaluation.

« Consider only needed steps.

Innermost needed \
L 12

Conclusion

o Optimal strategies are not computable.
« Sharing adds shortcuts to the reduction space.

« Shared evaluation is as good as an optimal strategy
and is computable.

Question: what is the cost of sharing?

13

	Reduction strategies
	Formalisms for programming languages
	Call-by-Need
	Weak reduction

