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Chosing a path



Freedom implies responsibility

o Outermost prevents unneeded computations.
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Freedom implies responsibility

o Innermost prevents duplication of subprograms.
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Freedom implies responsibility

o Outermost prevents unneeded computations.

o Innermost prevents duplication of subprograms.




Evaluation strategies

Goal

the number of rewriting steps.

Question

In should we perform the steps?



Richer programming languages

o Data structures
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Second-order rewriting



Lambda-calculus: computing with functions
Church, 1936
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Shortest simple path

((A\y-y)a)((Ay.y)a)—a((\y.y)a)

(Ax.xx)((Ay.y)a)  ((A\y.y)a)a—aa

(Ax.xx)a

Theorem: uncomputability (Barendregt et al. 1976)

Optimal strategies for the A-calculus
cannot be computable.



Wadsworth’s call-by-need (1971)
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Wadsworth’s call-by-need (1971)
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Real compilers use weak reduction
Restriction on evaluation: not inside functions.

OCaml (Call-by-Value)
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New features of weak reduction (my work)

o The optimal strategy is still uncomputable.
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New features of weak reduction (my work)

o The optimal strategy is still uncomputable.
o Call-by-need is as good as the optimal strategy.
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Shared needed evaluation

o Use shared evaluation.
« Consider only needed steps.
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Conclusion

o Optimal strategies are not computable.
« Sharing adds shortcuts to the reduction space.

« Shared evaluation is as good as an optimal strategy
and is computable.

Question: what is the cost of sharing?
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