
I

Reduction strategies

Formalisms

Call-by-Need

Weak reduction

Lazy computing

Thibaut Balabonski
GALLIUM

November 20, 2012

1



Solving problems with computers

Problem

Program

Computer

(1 + 2)× (3 + 4)

2



Solving problems with computers

Problem

Program

Computer

(1 + 2)× (3 + 4)

2



Solving problems with computers

Problem

Program

Computer

(1 + 2)× (3 + 4)

Const 3

Offsetint 4

Push

Const 1

Offsetint 2

Mulint

Return 1

Computer

3

Memory

2



Solving problems with computers

Problem

Program

Computer

(1 + 2)× (3 + 4)

Const 3

Offsetint 4

Push

Const 1

Offsetint 2

Mulint

Return 1

Computer

7

Memory

2



Solving problems with computers

Problem

Program

Computer

(1 + 2)× (3 + 4)

Const 3

Offsetint 4

Push

Const 1

Offsetint 2

Mulint

Return 1

Computer

7

Memory

7

2



Solving problems with computers

Problem

Program

Computer

(1 + 2)× (3 + 4)

Const 3

Offsetint 4

Push

Const 1

Offsetint 2

Mulint

Return 1

Computer

1

Memory

7

2



Solving problems with computers

Problem

Program

Computer

(1 + 2)× (3 + 4)

Const 3

Offsetint 4

Push

Const 1

Offsetint 2

Mulint

Return 1

Computer

3

Memory

7

2



Solving problems with computers

Problem

Program

Computer

(1 + 2)× (3 + 4)

Const 3

Offsetint 4

Push

Const 1

Offsetint 2

Mulint

Return 1

Computer

21

Memory

2



Solving problems with computers

Problem

Program

Computer

(1 + 2)× (3 + 4)

Const 3

Offsetint 4

Push

Const 1

Offsetint 2

Mulint

Return 1

Computer
Memory

21
2



Solving problems with computers

Problem

Program

Computer

(1 + 2)× (3 + 4)

Gallium-related issues:

• Programming languages and compilation

• Emphasis on safety

In this talk:

• Emphasis on efficiency

2



Solving problems with computers

Problem

Program

Computer

(1 + 2)× (3 + 4)

Gallium-related issues:

• Programming languages and compilation

• Emphasis on safety

In this talk:

• Emphasis on efficiency

2



Chosing a path

(1 + 2)× (3 + 4)

3× (3 + 4) (1 + 2)× 7

3× 7

21

3



Freedom implies responsibility

• Outermost prevents unneeded computations.

• Innermost prevents duplication of subprograms.

0× (1 + 2)

0× 3

0×
0 +

1 2

4



Freedom implies responsibility

• Outermost prevents unneeded computations.

• Innermost prevents duplication of subprograms.

sq(e) = e × e

sq(1 + 2)

(1 + 2)× (1 + 2) 3× (1 + 2)

(1 + 2)× 3 3× 3

sq(3)

9sq

+

1 2

4



Freedom implies responsibility

• Outermost prevents unneeded computations.

• Innermost prevents duplication of subprograms.

sq(0× (1 + 2))

•

•

•
•

• •
•

•

•

• •
•

•

•
sq

×
0 +

1 2

4



Evaluation strategies

Goal

Minimize the number of rewriting steps.

Question

In which order should we perform the steps?

5



Richer programming languages

• Functions

• Data structures

map(f, [] ) = []

map(f, x : xs) = f(x) : map(f, xs)

> map(sq, 1 : 2 : 3 : [])

1 : 4 : 9 : []

Second-order rewriting

6



Richer programming languages

• Functions

• Data structures

map(f, [] ) = []

map(f, x : xs) = f(x) : map(f, xs)

> map(sq, 1 : 2 : 3 : [])

1 : 4 : 9 : []

Second-order rewriting

6



Lambda-calculus: computing with functions
Church, 1936

@

λx

fun

xx

arg

fun

argarg

(λx .f )a f {x := a}

(λx .xx)((λy .y)a) ((λy .y)a)((λy .y)a)
7



Shortest simple path

(λx .xx)((λy .y)a)

((λy .y)a)((λy .y)a) a((λy .y)a)

((λy .y)a)a aa

(λx .xx)a

Theorem: uncomputability (Barendregt et al. 1976)

Optimal strategies for the λ-calculus
cannot be computable.

8



Wadsworth’s call-by-need (1971)

@

λx

@
x x

@

λy

y

a

@

@

λy

y

a
@

λy

y

a

@

λy

y

a

@

a

(λx .xx)((λy .y)a)

((λy .y)a)((λy .y)a) a((λy .y)a)

((λy .y)a)a aa

(λx .xx)a

9



Wadsworth’s call-by-need (1971)

@

λx

@
x x

@

λy

y

a

@

@

λy

y

a
@

λy

y

a

@

λy

y

a

@

a

(λx .xx)((λy .y)a)

((λy .y)a)((λy .y)a)

a((λy .y)a)

((λy .y)a)a

aa

(λx .xx)a

9



Real compilers use weak reduction

Restriction on evaluation: not inside functions.

OCaml (Call-by-Value)

@

λx

f

a

x x

@

λx

f

v

x x
f

v v

f

a

Haskell (Call-by-Need)
10



New features of weak reduction (my work)

• The optimal strategy is still uncomputable.

• Call-by-need is as good as the optimal strategy.

11



New features of weak reduction (my work)

• The optimal strategy is still uncomputable.

• Call-by-need is as good as the optimal strategy.

11



Shared needed evaluation

• Use shared evaluation.

• Consider only needed steps.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Call-by-Need

Innermost needed

12



Shared needed evaluation

• Use shared evaluation.

• Consider only needed steps.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Call-by-Need

Innermost needed

12



Shared needed evaluation

• Use shared evaluation.

• Consider only needed steps.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Call-by-Need

Innermost needed
12



Conclusion

• Optimal strategies are not computable.

• Sharing adds shortcuts to the reduction space.

• Shared evaluation is as good as an optimal strategy
and is computable.

Question: what is the cost of sharing?

13


	Reduction strategies
	Formalisms for programming languages
	Call-by-Need
	Weak reduction

