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Chosing a path
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Freedom implies responsibility

• Outermost prevents unneeded computations.

• Innermost prevents duplication of subprograms.
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Evaluation strategies

Goal

Minimize the number of rewriting steps.

Question

In which order should we perform the steps?
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Richer programming languages

• Functions

• Data structures

map(f, [] ) = []

map(f, x : xs) = f(x) : map(f, xs)

> map(sq, 1 : 2 : 3 : [])

1 : 4 : 9 : []

Second-order rewriting

6



Richer programming languages

• Functions

• Data structures

map(f, [] ) = []

map(f, x : xs) = f(x) : map(f, xs)

> map(sq, 1 : 2 : 3 : [])

1 : 4 : 9 : []

Second-order rewriting

6



Lambda-calculus: computing with functions
Church, 1936

@

λx

fun

xx

arg

fun

argarg

(λx .f )a f {x := a}

(λx .xx)((λy .y)a) ((λy .y)a)((λy .y)a)
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Shortest simple path

(λx .xx)((λy .y)a)

((λy .y)a)((λy .y)a) a((λy .y)a)

((λy .y)a)a aa

(λx .xx)a

Theorem: uncomputability (Barendregt et al. 1976)

Optimal strategies for the λ-calculus
cannot be computable.
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Wadsworth’s call-by-need (1971)
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Real compilers use weak reduction

Restriction on evaluation: not inside functions.

OCaml (Call-by-Value)

@

λx

f

a

x x

@

λx

f

v

x x
f

v v

f

a

Haskell (Call-by-Need)
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New features of weak reduction (my work)

• The optimal strategy is still uncomputable.

• Call-by-need is as good as the optimal strategy.
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Conclusion

• Optimal strategies are not computable.

• Sharing adds shortcuts to the reduction space.

• Shared evaluation is as good as an optimal strategy
and is computable.

Question: what is the cost of sharing?
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