Numerical aspects of blood flow modeling for congenital heart diseases

Directors: J.F. Gerbeau, I. Vignon-Clementel

Grant: Leducq Foundation

(normaliser

Grégory ARBIA (INRIA - REO team)

Outline

- Motivations & Context
- Clinical aspects
- Multiscale modeling
- Patients specific results
- Boundary conditions and stability

nain

Clinical pathology and Challenges

- Structural problems with the heart present at birth
- 1% in live birth
- 3 palliative surgeries

Do computational methods allow to:

- Explore hemodynamics in patient-specific simulations ?
- Understand physiopathologies ?
- Perform virtual surgeries ?
- Help surgeons to take a decision ?

MOdeling for Congenital Heart Alliance

- Cardiothoracic surgery
- Pediatric cardiology
- Cardiovascular imaging and radiology
- Biomechanical and mechanical engineering
- Applied mathematics

000

Way of working in this collaboration

Ínría-

(mia-

Pulmonary circulation

Burrowes KS et. al., J Appl Physiol 2005

- Unreasonable to compute the flow in the **whole circulatory domain**.
- Motivation: given a **bounded** 3D geometry, how to model downstream domain of pulmonary arteries ?

Courtesy of University College of London, MOCHA group

- **Rp**: viscous effects in large vessels (arteries).
- C: capacitance of large vessels to store and return blood during cardiac cycle.
- Rd: viscous effects in small vessels (arterioles and capillaries).

- How can we determine these parameters ?
 - Tuning of a **total equivalent resistance** at each branch $\Rightarrow R_{tot} = R_p^A + R_d^A + R_d^V$
 - Using empirical law to evaluate **distribution** of equivalent resistances over **arterial/venous** sides. $\Rightarrow R_{o}^{A} + R_{d}^{A} \approx 0.48R_{tot}$ and $R_{d}^{V} \approx 0.52R_{tot}$
 - Morphometric model to estimate R_p^A , C^A , R_d^A in arterial side
 - Using empirical law to deduce equivalent venous compliance. $\Rightarrow \ C^V \approx 5.7 C^A$

Tuning of total resistance boundary conditions

- Input data
 - Flow split, fs
 - **Transpulmonary gradient**, difference between **measured** arterial pressure and left atrial pressure, $P_m^t P_a$
 - Flow rate at the inlet of interest domain Qⁱⁿ
- Proportionality law between flow Q_i^t and surface area S_i

 $\Rightarrow Q_i^t \propto S_i^{\alpha}$

Then, denoting $\delta_{ir} = 1$ if outlet *i* is on the right side,

$$\Rightarrow Q_i^t = Q^{in}(\delta_{ir} fs + (1 - \delta_{ir})(1 - fs)) rac{S_i^{lpha}}{\sum_i S_i^{lpha} \delta_{ij}}$$

Iterative process: tuning of total resistance

- Initialisation of R_i
- 2 Running 3D simulation imposing resistance boundary condition
- Solution New P_i^{3D} (then new P_m^{3D}), and flow Q_i^{3D}
- Checking convergence
- 🗿 update

$$R_i = rac{(P_m^t - P_a) - (P_m^{3D} - P_i^{3D})}{Q_i^t}$$

Go to 2 until convergence.

 \Rightarrow Convergence with less than 10 iterations.

Aorta flow is measured to be 28ml/s, but is likely underestimated by 3ml/s due to swirling flow.

Innia

 kink of the RPA ⇒ discussion with clinicians: pressure drop in the RPA is expected.

Grégory ARBIA (INRIA - REO team)

Junior Seminar

	clinical data	numerical results
LPA average pressure (mmHg)	13.5	13.4
RPA average pressure (mmHg)	-	13.9
Pressure difference (L/R) (mmHg)	-	0.5
flow split	0.55	0.55

Ínia_

	clinical data	numerical results
LPA average pressure (mmHg)	11	11
RPA average pressure (mmHg)	11	11.2
Pressure difference L/R (mmHg)	0	0.2
Flow split	0.52	0.52

(nría_

	clinical data	numerical results
LPA average pressure (mmHg)	14	14
RPA average pressure (mmHg)	17	17
Pressure difference (L/R) (mmHg)	3	3
flow split	0.66	0.66

Ínría

	clinical data	numerical results
LPA average pressure (mmHg)	12.7	12.7
RPA average pressure (mmHg)	-	13.4
Pressure difference (L/R) (mmHg)	-	0.7
flow split	0.46	0.46

(nría_

Importance of accuracy in clinical measurements

Patient with measured values such as:

- *fs* = 0.46
- $P^t = 12 \text{ mmHg}$

 \Rightarrow <u>Discussion with clinicians</u>: pressure is not coherent with at most 3mmHg difference between left and right pulmonary veins wedge pressures.

Grégory ARBIA (INRIA - REO team)

Importance of accuracy in clinical measurements

- Problem with clinical data.
- 3D simulation with 12 mmHg imposed at both sides.
- New flow split found, fs = 0.54 (instead of 0.46)

 \Rightarrow pressure distribution according to clinical point of view

nia

RCRext

(nría_

Grégory ARBIA (INRIA - REO team)

Junior Seminar

January 15th, 2013 21 / 28

Motivation:

Different ways to couple the pressure:

i)
$$\forall x \in \Sigma, \quad p_{3D}(x,t) = p_{0D}(t)$$

ii)
$$\forall x \in \Sigma, \ \sigma \cdot n(x,t) = p_{0D}(t)$$

iii)
$$\forall x \in \Sigma, \ \sigma \cdot n(x,t) + \frac{1}{2}\rho u^2(x,t) = p_{0D}(t)$$

➡ Poiseuille flow: violation of this condition

3D-0D coupling case with divergence

RCRext

Grégory ARBIA (INRIA - REO team)

Innia

Energy of Windkessel model:

$$\mathbf{P}_{c} = \mathbf{P}_{dist} + R_{p}\mathbf{Q}$$
$$c\frac{d}{dt}\mathbf{P}_{dist} = \mathbf{Q} - \frac{\mathbf{P}_{dist}}{R_{d}}$$

$$\frac{c}{2}\frac{d}{dt}\mathbf{P}_{dist}^2 + \frac{1}{R_d}\mathbf{P}_{dist}^2 + R_p\mathbf{Q}^2 = P_c\mathbf{Q}$$

Coupling 3D-0D: $\frac{d}{dt}E_c + P_{visc} = -\rho \int_{\Sigma} \mathbf{u} \frac{\mathbf{u}^2}{2} \cdot n + \int_{\Sigma} \sigma \mathbf{u} \cdot n$ $\frac{d}{dt}E_c + P_{visc} = P_{in} + \rho \int_{\Sigma_{out}} \frac{\mathbf{u}^2}{2} \mathbf{u} \cdot n - \int_{\Sigma_{out}} \sigma \mathbf{u} \cdot n$

$$\frac{d}{dt}E_c + P_{visc} + R_pQ^2 + \frac{c}{2}\frac{d}{dt}\mathbf{P}_{dist}^2 + \frac{1}{R_d}\mathbf{P}_{dist}^2 = P_{in}$$

- Idea: adding a small 3D domain with modified Navier-Stokes model.
- Aim: get a global energy similar to Navier-Stokes + Windkessel.

$$\Gamma_{in} \longrightarrow \underbrace{\Omega_1}_{\Gamma} \underbrace{\Omega_2}_{\Gamma} \underbrace{\Omega_2}_{\Sigma} \longleftarrow \Gamma_2$$

• In the added 3D part

$$\begin{split} \rho \frac{\partial \mathbf{u}}{\partial t} + \rho \mathbf{u} \nabla \mathbf{u} + \rho \frac{\mathbf{u}}{2} div(\mathbf{u}) - div(2\mu D(\mathbf{u})) + \nabla \mathbf{p} + \gamma \mathbf{u} = \mathbf{0} \\ \alpha \frac{\partial \mathbf{p}}{\partial t} + \beta \mathbf{p} + div(\mathbf{u}) = \mathbf{0} \\ \mathbf{u}_{|\Gamma_2|} = \mathbf{0} \end{split}$$

Ínría-

NSM

(nría_

Grégory ARBIA (INRIA - REO team)

Junior Seminar

January 15th, 2013 27 / 28

Thank you

Ínría

Grégory ARBIA (INRIA - REO team)