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Proof
interpretation

I : S1 7→ S2 such that
if T1 proves S1

then T2 proves S2

sequence converges7→

speed of convergence

Consistency T is consistent CL is consistent

Unprovability T doesn’t prove S
ZF doesn’t
prove AC

Computational
content

T proves ∃x≤b S(x) nth prime ≤ 2n
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Geometry
• Talks about points, lines, planes, . . .
• Has axioms like “two distinct
points determine a line”
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Arithmetic
• Talks about 0, 1, 2, . . . and +,×
• Has axioms like x + y = y + x
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T1 = CL

T2 = IL

I = negative translation
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IL proves S  program

IL proves S1 ∧ (S1→S2) → S2

 

x , f 7→ f (x)
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T1 = ZF + ∃S infinite S≁S×S

T2 = ZF + AC

I = classical realisability



Proof
interpretation

I : S1 7→ S2 such that
if T1 proves S1

then T2 proves S2

sequence converges7→

speed of convergence

Consistency T is consistent CL is consistent

Unprovability T doesn’t prove S
ZF doesn’t
prove AC

Computational
content

T proves ∃x≤b S(x) nth prime ≤ 2n



Proof
interpretation

I : S1 7→ S2 such that
if T1 proves S1

then T2 proves S2

sequence converges7→

speed of convergence

Consistency T is consistent CL is consistent

Unprovability T doesn’t prove S
ZF doesn’t
prove AC

Computational
content

T proves ∃x≤b S(x) nth prime ≤ 2n

T1 = PA
ω + ∀n ∃p prime n<p≤2n

T2 = T1

I = monotone functional interpretation
after a negative translation
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