Towards less manipulable

 voting systemsFrançois Durand, Fabien Mathieu, Ludovic Noirie

```
Inria / Alcatel-Lucent Bell Labs France
Inria's Junior Seminar
```


Introduction: voting systems

Context:

- Origins in politics.
- Applications in any situation of collective choice.

Questions:

- Is there a natural way to select a reasonable winner?
- Can we trust the electors?
- If not, is it possible to design a voting system that is resistant to manipulation, i.e. to tactical voting?

Plan

In quest for a reasonable winner

Presentation of manipulability

Minimizing manipulability (my stuff)

Plan

In quest for a reasonable winner

Presentation of manipulability

Minimizing manipulability (my stuff)

A simplified framework

n electors.

- Agents that can make decisions.
- Can be persons or machines (servers for routing, etc.).
m candidates named A, B, C, \ldots
- Mutually exclusive options about a question.
- Can be persons, routes...

Each elector i has a binary relation of preferences r_{i} over the candidates. Example of i 's preferences: $\mathrm{A} \sim \mathrm{B} \succ \mathrm{D} \succ \mathrm{C}$.

Voting system $f:\left(r_{1}, \ldots, r_{n}\right) \rightarrow v \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C} \ldots\}$.

2 candidates: May's theorem

Plurality:

- Each elector votes for one candidate.
- The candidate with most votes gets elected.

May's theorem (1952): plurality is the only anonymous, neutral and positively responsive voting system for 2 candidates.

3 candidates or more: Condorcet winner

Independance of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.
E.g. if C wins, then she must win any electoral duel versus A or B. If it is the case, we say that she's a Condorcet winner.

	Example:			
	40	35	25	
Preferences	A	B	C	
	C	C	A	
	B	A	B	

"Majority matrix":

3 candidates or more: Condorcet winner

Independance of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.
E.g. if C wins, then she must win any electoral duel versus A or B. If it is the case, we say that she's a Condorcet winner.

Example:	Electors		
	40	35	25
Preferences	A	B	C
	C	C	A
	B	A	B

"Majority matrix":

	A	B	C	Victories
A		$\mathbf{6 5}$		1
B	35			0
C				0

3 candidates or more: Condorcet winner

Independance of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.
E.g. if C wins, then she must win any electoral duel versus A or B. If it is the case, we say that she's a Condorcet winner.

Example:	Electors		
	40	35	25
Preferences	A	B	C
	C	C	A
	B	A	B

"Majority matrix":

	A	B	C	Victories
A		65	40	1
B	35			0
C	$\mathbf{6 0}$			1

3 candidates or more: Condorcet winner

Independance of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.
E.g. if C wins, then she must win any electoral duel versus A or B . If it is the case, we say that she's a Condorcet winner.

Example:	Electors		
	40	35	25
Preferences	A	B	C
	C	C	A
	B	A	B

"Majority matrix":

	A	B	C	Victories
A		65	40	1
B	35		35	0
C	60	$\mathbf{6 5}$		2

3 candidates or more: Condorcet winner

Independance of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.
E.g. if C wins, then she must win any electoral duel versus A or B. If it is the case, we say that she's a Condorcet winner.

	Electors		
	40	35	25
Preferences	A	B	C
	C	C	A
	B	A	B

"Majority matrix":

	A	B	C	Victories
A		$\mathbf{6 5}$	40	1
B	35		35	0
C	$\mathbf{6 0}$	$\mathbf{6 5}$		2

If we want to extend Plurality for $m \geq 3$ and respect IIA, then C must be elected. We then say that our voting system respects
Condorcet criterion.

3 candidates or more: Condorcet's paradox

	Electors		
	40	35	25
Preferences	A	B	C
	B	C	A
	C	A	B

"Majority matrix":

	A	B	C	Victories
A		$\mathbf{6 5}$	40	1
B	35		$\mathbf{7 5}$	1
C	$\mathbf{6 0}$	25		1

Condorcet's paradox (1785): A defeats B, B defeats C and C defeats A .

It's not possible to extend Plurality for $m \geq 3$ while respecting IIA (independance of irrelevant alternatives).

Arrow's theorem

We would like a voting system with the following properties.

- Non-dictatorship: there is not one elector who always decides alone.
- Unanimity: whenever all electors prefers A to B, candidate B cannot get elected.
- Independance of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

Arrow's theorem

We would like a voting system with the following properties.

- Non-dictatorship: there is not one elector who always decides alone.
- Unanimity: whenever all electors prefers A to B, candidate B cannot get elected.
- Independance of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

Arrow's theorem (1951): for $m \geq 3$ candidates, such a voting system does not exist.
\Rightarrow For $m \geq 3$ candidates, there is no "natural", canonical way to agregate binary relations of preferences from several electors in order to choose a winning candidate.

Extending the framework of preferences

Old framework: binary relations of preferences only.
Example of extended framework:

- Each elector has a utility vector about the candidates, e.g. $(10,10,0,2)$.
- This utility vector induces a binary relation of preferences over the candidates, e.g. $\mathrm{A} \sim \mathrm{B} \succ \mathrm{D} \succ \mathrm{C}$.

Extending the framework of preferences

Old framework: binary relations of preferences only.
Example of extended framework:

- Each elector has a utility vector about the candidates, e.g. ($10,10,0,2$).
- This utility vector induces a binary relation of preferences over the candidates, e.g. $\mathrm{A} \sim \mathrm{B} \succ \mathrm{D} \succ \mathrm{C}$.

General extended framework:

- Each elector i has a state $\omega_{i} \in \Omega_{i}$,
- This state contains enough information so that we can extract her binary relation of preferences $r_{i}=R_{i}\left(\omega_{i}\right)$.

Voting system $f:\left(\omega_{1}, \ldots, \omega_{n}\right) \rightarrow v \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \ldots\}$.

Escaping Arrow's theorem

Example: range voting.

- Each elector gives her utility vector, that is, a note for each candidate.
- The candidate with highest average (or median) wins.

This voting system is non-dictatorial, unanimous and independant of irrelevant alternatives... and infinitely many other voting systems are too!

So... have we won? Have we found a voting system that is fully satisfying?

Plan

In quest for a reasonable winner

Presentation of manipulability

Minimizing manipulability (my stuff)

Manipulability: an example

Voting system: plurality.

	Electors		
	40	35	25
Preferences	A	B	C
	B	C	A
	C	A	B
Sincere ballot	A	B	C

Manipulability: an example

Voting system: plurality.

	Electors			
	40	35	25	
Preferences	A	B	C	
	B	C	A	
	C	A	B	
Sincere ballot	A	B	C	
Manipulation	A	C	C	

We say that this situation is manipulable for this voting system:

- A subset of electors, by casting a tactical ballot, may change the result to a candidate that they prefer.
- I.e., sincere voting is not a strong Nash equilibrium.

Why would manipulability be a problem?

If electors do not vote sincerely, the collective decision relies on false information.

If electors do vote sincerely, they may be frustrated and find the system nonsensical, since a non-sincere ballot, misrepresenting their preferences, would have defended these preferences better.

Gibbard's theorem

Gibbard's theorem (1973): for any non-dictatorial voting system with at least 3 eligible candidates, there exists a situation that is manipulable by one elector.
I.e.: this situation is not even a weak Nash equilibrium.

This theorem is true in the general framework of preferences! In fact, is is also true in an even more general framework...

Manipulability rate

We draw a situation (preferences of the population) according to a probability measure P.

Manipulability rate: what is the probability that this situation is manipulable for voting system f ?

$$
\rho_{P}(f) \in[0,1] .
$$

Manipulability is quite frequent

$P=$ "Uniform spherical culture", $n=33$ electors

Plan

In quest for a reasonable winner

Presentation of manipulability

Minimizing manipulability (my stuff)

Condorcification theorem

Take a voting system f (with reasonable properties).
We define its condorcification f^{c} like this:

- Whenever there is a Condorcet winner, designate her;
- Otherwise, use f.

Then f^{c} is at most as manipulable as f :

- Any situation manipulable for f^{c} is manipulable for f;
- In particular, $\rho_{P}\left(f^{c}\right) \leq \rho_{P}(f)$ for any probability measure P.

Note: for all classical voting systems that fail Condorcet criterion, we proved that their condorcification is strictly less manipulable.

Slicing theorem

Take a probability measure P used to draw population preferences (with reasonable properties).

Take a voting system f. This system may depend on the whole information about electors's states (utilities, etc.), not only on binary relations of preferences.

Then there exists a voting system f^{\prime} that:

- Depends on binary relations of preferences only,
- Is at most as manipulable as f for P, in the sense that $\rho_{P}\left(f^{\prime}\right) \leq \rho_{P}(f)$.

Furthermore, if f respects Condorcet criterion, there exists such a f^{\prime} that does too.

Existence of an optimal voting system

Take a probability measure P used to draw population preferences (with reasonable properties).

Then there exists a voting system:

- whose manipulation rate is minimal (among system with reasonable properties),
- that depends only on binary relations of preferences,
- that respects Condorcet criterion.

Future work

So, we can restrict the search for an optimal voting system in the class of those that:

- depend only on binary relations of preferences,
- respect Condorcet criterion.

For a fixed pair (n, m), there is a finite number of such voting systems: $\sim m^{m!n}$.

For the moment, we can give this optimal voting system explicitly for very small values: $n \leq 5$ electors and $m \leq 4$ candidates...

Conclusion

- For voting systems that rely on binary relations of preferences only, there is no canonical way to choose the winner (Arrow's theorem).
- For $m \geq 3$ candidates, all non-dictatorial voting systems are subject to manipulation (Gibbard's theorem).
- We can limit manipulability by condorcification and slicing.
- There exists an optimal voting system that depends only on binary relations of preferences and respects Condorcet criterion.

Thanks for your attention! Questions?

