

Towards less manipulable voting systems François Durand, Fabien Mathieu, Ludovic Noirie

Inria / Alcatel-Lucent Bell Labs France Inria's Junior Seminar

March 21, 2013

Introduction: voting systems

Context:

- Origins in politics.
- Applications in any situation of **collective choice**.

Questions:

- Is there a natural way to select a reasonable winner?
- Can we trust the electors?
- If not, is it possible to design a voting system that is resistant to manipulation, i.e. to tactical voting?

In quest for a reasonable winner

Presentation of manipulability

Minimizing manipulability (my stuff)

Manipulability of voting systems

In quest for a reasonable winner

Plan

In quest for a reasonable winner

Presentation of manipulability

Minimizing manipulability (my stuff)

Manipulability of voting systems

March 21, 2013- 4

A simplified framework

n electors.

- Agents that can make decisions.
- Can be persons or machines (servers for routing, etc.).

m candidates named A, B, C, ...

- Mutually exclusive options about a question.
- Can be persons, routes...

Each elector *i* has a **binary relation of preferences** r_i over the candidates. Example of *i*'s preferences: $A \sim B \succ D \succ C$.

Voting system $f : (r_1, \ldots, r_n) \rightarrow v \in \{A, B, C...\}.$

In quest for a reasonable winner

2 candidates: May's theorem

Plurality:

- Each elector votes for one candidate.
- The candidate with most votes gets elected.

May's theorem (1952): plurality is the only anonymous, neutral and positively responsive voting system for 2 candidates.

Independance of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

Example:	Electors		
	40	35	25
	А	В	С
Preferences	С	C	Α
	В	A	В

"Majority matrix":

	А	В	С	Victories
А				0
В				0
С				0

Independance of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

Example:	Electors		rs
	40	35	25
	А	В	С
Preferences	С	С	Α
	В	A	В

"Majority matrix":

	А	В	С	Victories
А		65		1
В	35			0
С				0

Independance of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

Example:	Electors		
	40	35	25
	А	В	С
Preferences	С	C	Α
	В	A	В

"Majority matrix":

	Α	В	C	Victories
А		65	40	1
В	35			0
С	60			1

Independance of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

Example:	Electors		rs
	40	35	25
	А	В	С
Preferences	C	C	А
	В	А	В

"Majority matrix":

	А	В	С	Victories
А		65	40	1
В	35		35	0
С	60	65		2

Independance of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

E.g. if C wins, then she must win any electoral duel versus A or B. If it is the case, we say that she's a **Condorcet winner**.

Example:	Electors		
	40	35	25
	А	В	С
Preferences	C	C	А
	В	A	В

"Majority matrix":

	А	В	С	Victories
А		65	40	1
В	35		35	0
С	60	65		2

If we want to extend Plurality for $m \ge 3$ and respect IIA, then C must be elected. We then say that our voting system respects **Condorcet criterion**.

3 candidates or more: Condorcet's paradox

Example:	Electors		
	40	35	25
	А	В	С
Preferences	В	C	Α
	С	А	В

"Majority matrix":

	А	В	С	Victories
А		65	40	1
В	35		75	1
С	60	25		1

Condorcet's paradox (1785): A defeats B, B defeats C and C defeats A.

It's not possible to extend Plurality for $m \ge 3$ while respecting IIA (independence of irrelevant alternatives).

Arrow's theorem

We would like a voting system with the following properties.

- Non-dictatorship: there is not one elector who always decides alone.
- Unanimity: whenever all electors prefers A to B, candidate B cannot get elected.
- Independance of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

Arrow's theorem

We would like a voting system with the following properties.

- Non-dictatorship: there is not one elector who always decides alone.
- Unanimity: whenever all electors prefers A to B, candidate B cannot get elected.
- Independance of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

Arrow's theorem (1951): for $m \ge 3$ candidates, such a voting system does not exist.

 \Rightarrow For $m \ge 3$ candidates, there is no "natural", canonical way to agregate binary relations of preferences from several electors in order to choose a winning candidate.

Manipulability of voting systems

Extending the framework of preferences

Old framework: binary relations of preferences only.

Example of extended framework:

- Each elector has a **utility vector** about the candidates, e.g. (10, 10, 0, 2).
- ► This utility vector induces a binary relation of preferences over the candidates, e.g. A ~ B ≻ D ≻ C.

Extending the framework of preferences

Old framework: binary relations of preferences only.

Example of extended framework:

- Each elector has a **utility vector** about the candidates, e.g. (10, 10, 0, 2).
- ► This utility vector induces a binary relation of preferences over the candidates, e.g. A ~ B ≻ D ≻ C.

General extended framework:

- Each elector *i* has a **state** $\omega_i \in \Omega_i$,
- ► This state contains enough information so that we can extract her **binary relation of preferences** $r_i = R_i(\omega_i)$.

Voting system
$$f : (\omega_1, \dots, \omega_n) \rightarrow v \in \{A, B, C, \dots\}.$$

Escaping Arrow's theorem

Example: range voting.

- Each elector gives her utility vector, that is, a note for each candidate.
- The candidate with highest average (or median) wins.

This voting system is **non-dictatorial**, **unanimous** and **independant of irrelevant alternatives**... and infinitely many other voting systems are too!

So... have we won? Have we found a voting system that is fully satisfying?

Plan

In quest for a reasonable winner

Presentation of manipulability

Minimizing manipulability (my stuff)

Manipulability of voting systems

March 21, 2013-12

Manipulability: an example

Voting system: plurality.

	Electors		
	40	35	25
Preferences	А	В	С
	В	С	А
	С	А	В
Sincere ballot	Α	В	С

Manipulability: an example

Voting system: plurality.

	Electors		
	40	35	25
Preferences	А	В	С
	В	С	А
	С	А	В
Sincere ballot	Α	В	С
Manipulation	А	С	С

We say that this situation is **manipulable** for this voting system:

- A subset of electors, by casting a tactical ballot, may change the result to a candidate that they prefer.
- I.e., sincere voting is not a strong Nash equilibrium.

Why would manipulability be a problem?

If electors do not vote sincerely, the collective decision relies on **false information**.

If electors do vote sincerely, they may be frustrated and find the system nonsensical, since a non-sincere ballot, **misrepresenting** their preferences, would have **defended these preferences better**.

Gibbard's theorem

Gibbard's theorem (1973): for any non-dictatorial voting system with at least 3 eligible candidates, there exists a situation that is manipulable by one elector.

I.e.: this situation is not even a weak Nash equilibrium.

This theorem is true in the general framework of preferences! In fact, is is also true in an even more general framework...

Manipulability rate

We draw a situation (preferences of the population) according to a **probability measure** P.

Manipulability rate: what is the probability that this situation is manipulable for voting system f?

 $\rho_P(f) \in [0,1].$

Manipulability is quite frequent

P = "Uniform spherical culture", n = 33 electors

Manipulability of voting systems

Minimizing manipulability (my stuff)

Plan

In quest for a reasonable winner

Presentation of manipulability

Minimizing manipulability (my stuff)

Manipulability of voting systems

March 21, 2013-18

Condorcification theorem

Take a voting system f (with reasonable properties).

We define its **condorcification** f^c like this:

- Whenever there is a Condorcet winner, designate her;
- ▶ Otherwise, use *f*.

Then *f^c* is at most as manipulable as *f*:

- ► Any situation manipulable for *f*^c is manipulable for *f*;
- ▶ In particular, $\rho_P(f^c) \le \rho_P(f)$ for any probability measure *P*.

Note: for all classical voting systems that fail Condorcet criterion, we proved that their condorcification is **strictly less manipulable**.

Slicing theorem

Take a probability measure P used to draw population preferences (with reasonable properties).

Take a voting system f. This system may depend on the whole information about **electors's states** (utilities, etc.), not only on **binary relations of preferences**.

Then there exists a voting system f' that:

- Depends on binary relations of preferences only,
- ▶ Is at most as manipulable as f for P, in the sense that $\rho_P(f') \leq \rho_P(f)$.

Furthermore, if f respects Condorcet criterion, there exists such a f' that does too.

Minimizing manipulability (my stuff)

Existence of an optimal voting system

Take a probability measure P used to draw population preferences (with reasonable properties).

Then there exists a voting system:

- whose manipulation rate is minimal (among system with reasonable properties),
- that depends only on binary relations of preferences,
- that respects Condorcet criterion.

Future work

So, we can restrict the search for an optimal voting system in the class of those that:

- depend only on binary relations of preferences,
- respect Condorcet criterion.

For a fixed pair (n, m), there is a finite number of such voting systems: $\sim m^{m!^n}$.

For the moment, we can give this optimal voting system explicitly for **very small** values: $n \le 5$ electors and $m \le 4$ candidates...

Conclusion

- For voting systems that rely on binary relations of preferences only, there is no canonical way to choose the winner (Arrow's theorem).
- For m ≥ 3 candidates, all non-dictatorial voting systems are subject to manipulation (Gibbard's theorem).
- We can limit manipulability by **condorcification** and **slicing**.
- There exists an optimal voting system that depends only on binary relations of preferences and respects Condorcet criterion.

Thanks for your attention! Questions?

