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Submodularity

Definition (submodular function)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B)
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Definition (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
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Notations

f : 2V → R, where V = {1, 2, . . . , p}. Therefore, |V | = p.
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P : Decision problems that can be solved on a deterministic sequential
machine(read it as “present day computer”) in an amount of time
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prime etc.
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P : Decision problems that can be solved on a deterministic sequential
machine(read it as “present day computer”) in an amount of time
that is polynomial in the size of input. Eg: To check if a number is
prime etc.

NP: Decision problems whose solutions can be verified on a
deterministic sequential machine(read it as “present day computer”)
in an amount of time that is polynomial in the size of input.
Eg:Travelling Salesman problem. Given a list of cities and the
distances between each pair of cities, what is the shortest possible
route that visits each city exactly once and returns to the origin city?
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f : 2V → R, where V = {1, 2, . . . , p}. Therefore, |V | = p.

P : Decision problems that can be solved on a deterministic sequential
machine(read it as “present day computer”) in an amount of time
that is polynomial in the size of input. Eg: To check if a number is
prime etc.

NP: Decision problems whose solutions can be verified on a
deterministic sequential machine(read it as “present day computer”)
in an amount of time that is polynomial in the size of input.
Eg:Travelling Salesman problem. Given a list of cities and the
distances between each pair of cities, what is the shortest possible
route that visits each city exactly once and returns to the origin city?

ρ-Approximate algorithms:

OPT ≤ f (x) ≤ ρOPT , if ρ > 1.
ρOPT ≤ f (x) ≤ OPT , if ρ < 1.
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Graph Cuts

MINIMUM CUT : Given a graph G = (V ,E ), find a set of vertices
S ⊆ V that minimizes the cut (set of edges) between S and V \ S .

MAXIMUM CUT : Given a graph G = (V ,E ), find a set of vertices
S ⊆ V that minimizes the cut (set of edges) between S and V \ S .

Weighted versions.

Eg :- Segmentation in Computer Vision.
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Image Segmentation

An image needing to be segmented.
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Image Segmentation

User marks foreground(red) and background(blue).
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Image Segmentation

Goal.
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Markov random fields and image segmentation

Markov random field

log p(x) ∝
∑

v∈V (G)

ev (xv ) +
∑

(i ,j)∈E(G)

eij(xi , xj)

where G is a 2D grid graph, we have
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Markov random fields and image segmentation

Augmented graph-cut graph. The edge weights of graph are derived from
{ev}v∈V and {eij}(i ,j)∈E(G).
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Markov random fields and image segmentation

Augmented graph-cut graph with indicated cut corresponding to particular
vector x̄ ∈ {0, 1}n. Each cut x̄ has a score corresponding to p(x̄).
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Sensor Placement

Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria
or other environmental contaminant, etc.).
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Sensor Placement

Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria
or other environmental contaminant, etc.).

We have a function f (S) that measures the “coverage” of any given
set S of sensor placement decisions. Then f (V ) is maximum possible
coverage.
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One possible goal: choose smallest set S such that f (S) = αf (V )
with 0 < α ≤ 1.
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Sensor Placement in Buildings

An example of a room layout.
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Sensor Placement in Buildings

Small range sensors.
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Sensor Placement in Buildings

Large range sensors.
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Sensor Placement in Buildings

Sensors with mixed ranges.
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A model of Influence in Social Networks

Given a graph G = (V ,E ), each v ∈ V corresponds to a person, to
each v we have an activation function fv : 2V → [0, 1] dependent only
on its neighbours, i.e, fv (A) = fv (A ∪ Γ(v)).
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each v we have an activation function fv : 2V → [0, 1] dependent only
on its neighbours, i.e, fv (A) = fv (A ∪ Γ(v)).

Goal - Viral Marketing: find a small subset S ⊆ V of individuals to
direct influence, and thus indirectly influence the greatest number of
possible other individuals ( via the social network G ).
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Given a graph G = (V ,E ), each v ∈ V corresponds to a person, to
each v we have an activation function fv : 2V → [0, 1] dependent only
on its neighbours, i.e, fv (A) = fv (A ∪ Γ(v)).

Goal - Viral Marketing: find a small subset S ⊆ V of individuals to
direct influence, and thus indirectly influence the greatest number of
possible other individuals ( via the social network G ).

We define a function f : 2V → Z
+ that models the ultimate influence

of an initial set S of nodes based on the following iterative process:
At each step, a given set of nodes S are activated, and we activate a
new node v ∈ V \ S if fv (S) ≥ U[0, 1](where U[0, 1] is a uniform
random number between 0 and 1).
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Modeling Information Cascade
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Modeling Information Cascade
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Submodular Minimization - Lovász extension

Given any set function f and w such that wj1 ≥ . . . ≥ wjp , define:

f̂ (w) =

p∑

k=1

wjk [f ({j1, . . . , jk})]− f ({j1, . . . , jk−1})]

=

p−1∑

k=1

(wjk − wjk+1
)[f ({j1, . . . , jk})] + wjp f ({j1, . . . , jp})]
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Submodular Minimization

if w = 1A, f̂ (w) = f (A) =⇒ extension from {0, 1}p to R
p

f̂ is piecewise affine and positively homogeneous

f is submodular if and only if f̂ is convex.

Minimizing f̂ (w) on w ∈ [0, 1]p is equivalent to minimizing f on 2V .
minA⊂V f (A) = minw∈[0,1]p f̂ (w).
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Exact submodular function minimization : Combinatorial algorithms.

Algorithms based on minA⊂V f (A).
Best algorithms have polynomial complexity (typically O(p6) or more,
where |V | = p).
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if w = 1A, f̂ (w) = f (A) =⇒ extension from {0, 1}p to R
p

f̂ is piecewise affine and positively homogeneous

f is submodular if and only if f̂ is convex.

Minimizing f̂ (w) on w ∈ [0, 1]p is equivalent to minimizing f on 2V .
minA⊂V f (A) = minw∈[0,1]p f̂ (w).

Exact submodular function minimization : Combinatorial algorithms.

Algorithms based on minA⊂V f (A).
Best algorithms have polynomial complexity (typically O(p6) or more,
where |V | = p).

Minimizing symmetric submodular functions.

A submodular function f is said to be symmetric if for all B ⊂ V ,
f (V \ B) = f (B).
Example: undirected cuts, mutual information
Minimization in O(p3) over all non-trivial subsets of V , where |V | = p.
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Submodular Maximization

NP-hard to solve.
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Submodular Maximization

NP-hard to solve.

Unconstrained Maximization.

Algorithms based on maxA⊂V f (A).
Feige et al.(2007) shows that for non-negative functions, a random set
already achieves at least 1/4 of the optimal value, while local search
techniques achieve at least 1/2.
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NP-hard to solve.

Unconstrained Maximization.

Algorithms based on maxA⊂V f (A).
Feige et al.(2007) shows that for non-negative functions, a random set
already achieves at least 1/4 of the optimal value, while local search
techniques achieve at least 1/2.

Maximizing non-decreasing submodular functions with cardinality
constraint

A submodular function f is said to be non-decreasing if for all A ⊆ B ,
f (A) ≤ f (B).
maxA⊂V

|A|≤k

f (A).

Greedy algorithm achieves (1− 1/e) of the optimal value.(Nemhauser
et al., 1978).
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Maximization with cardinality constraint

Let A∗ = {b1, . . . , bk} be a maximizer of F with k elements, and aj
the j-th selected element. Let
ρj = F ({a1, . . . , aj})− F ({a1, . . . , aj−1})

f (A∗) ≤ f (A∗ ∪ Aj−1)because f is non-decreasing,

= f (Aj−1) +
k∑

i=1

[f (Aj−1 ∪ {b1, . . . , bi})

−f (Aj−1 ∪ {b1, . . . , bi−1})]

≤ f (Aj−1) +
k∑

i=1

[f (Aj−1 ∪ {bi} − f (Aj−1)]by submodularity,

≤ f (Aj−1) + kρj by definition of the greedy algorithm,

=

j−1∑

i=1

ρi + kρj

Minimize
∑k

i=1 ρi : ρj = (k − 1)j−1k−j f (A∗)
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Course on “Submodular Functions” by Prof. Jeff Bilmes, University
of Washington

http://j.ee.washington.edu/ bilmes/classes/ee596a fall 2012/

“Learning with Submodular Functions: A Convex Optimization
Perspective” by Prof. Francis Bach, INRIA.

http://hal.archives-
ouvertes.fr/docs/00/64/52/71/PDF/submodular fot.pdf
http://www.di.ens.fr/ fbach/submodular fbach mlss2012.pdf

Tutorials by Prof. Andreas Krause, ETH, Zurich.

http:
submodularity.org
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Thank You. Questions?
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