Submodular Function Optimization - An Overview

Senanayak Sesh Kumar Karri

Advisor: Prof. Francis Bach INRIA Rocquencourt - Sierra project-team Laboratoire d'Informatique de l'Ecole Normale Supérieure Paris, France. sesh-kumar.karri@inria.fr

April 23, 2013

Definition (submodular function)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$

Definition (submodular function)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$

$$f(\mathbf{r}) + f(\mathbf{r}) \geq f(\mathbf{r}) + f(\mathbf{r})$$

Definition (submodular function)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$

$$f(\mathbf{r}) + f(\mathbf{r}) \geq f(\mathbf{r}) + f(\mathbf{r})$$

Definition (diminishing returns)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \ge f(B \cup \{v\}) - f(B)$$

Definition (submodular function)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$

$$f(\mathbf{r}) + f(\mathbf{r}) \geq f(\mathbf{r}) + f(\mathbf{r})$$

Definition (diminishing returns)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \ge f(B \cup \{v\}) - f(B)$$

• $f: 2^V \to \mathbb{R}$, where $V = \{1, 2, \dots, p\}$. Therefore, |V| = p.

- $f: 2^V \to \mathbb{R}$, where $V = \{1, 2, \dots, p\}$. Therefore, |V| = p.
- P: Decision problems that can be solved on a deterministic sequential machine(read it as "present day computer") in an amount of time that is polynomial in the size of input. Eg: To check if a number is prime etc.

- $f: 2^V \to \mathbb{R}$, where $V = \{1, 2, \dots, p\}$. Therefore, |V| = p.
- P: Decision problems that can be solved on a deterministic sequential machine(read it as "present day computer") in an amount of time that is polynomial in the size of input. Eg: To check if a number is prime etc.
- NP: Decision problems whose solutions can be verified on a
 deterministic sequential machine(read it as "present day computer")
 in an amount of time that is polynomial in the size of input.
 Eg:Travelling Salesman problem. Given a list of cities and the
 distances between each pair of cities, what is the shortest possible
 route that visits each city exactly once and returns to the origin city?

- $f: 2^V \to \mathbb{R}$, where $V = \{1, 2, \dots, p\}$. Therefore, |V| = p.
- P: Decision problems that can be solved on a deterministic sequential machine(read it as "present day computer") in an amount of time that is polynomial in the size of input. Eg: To check if a number is prime etc.
- NP: Decision problems whose solutions can be verified on a
 deterministic sequential machine(read it as "present day computer")
 in an amount of time that is polynomial in the size of input.
 Eg:Travelling Salesman problem. Given a list of cities and the
 distances between each pair of cities, what is the shortest possible
 route that visits each city exactly once and returns to the origin city?
- ρ -Approximate algorithms:
 - $OPT \le f(x) \le \rho OPT$, if $\rho > 1$.
 - $\rho OPT \le f(x) \le OPT$, if $\rho < 1$.

Graph Cuts

- MINIMUM CUT : Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimizes the cut (set of edges) between S and $V \setminus S$.
- MAXIMUM CUT : Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimizes the cut (set of edges) between S and $V \setminus S$.
- Weighted versions.
- Eg :- Segmentation in Computer Vision.

Image Segmentation

• An image needing to be segmented.

Image Segmentation

• User marks foreground(red) and background(blue).

Image Segmentation

Goal.

Markov random fields and image segmentation

Markov random field

$$\log p(x) \propto \sum_{v \in V(G)} e_v(x_v) + \sum_{(i,j) \in E(G)} e_{ij}(x_i, x_j)$$

where G is a 2D grid graph, we have

Markov random fields and image segmentation

Augmented graph-cut graph. The edge weights of graph are derived from $\{e_v\}_{v\in V}$ and $\{e_{ij}\}_{(i,j)\in E(G)}$.

Markov random fields and image segmentation

Augmented graph-cut graph with indicated cut corresponding to particular vector $\bar{x} \in \{0,1\}^n$. Each cut \bar{x} has a score corresponding to $p(\bar{x})$.

• Given an environment, there is a set V of candidate locations for placement of a sensor (e.g., temperature, gas, audio, video, bacteria or other environmental contaminant, etc.).

- Given an environment, there is a set V of candidate locations for placement of a sensor (e.g., temperature, gas, audio, video, bacteria or other environmental contaminant, etc.).
- We have a function f(S) that measures the "coverage" of any given set S of sensor placement decisions. Then f(V) is maximum possible coverage.

- Given an environment, there is a set V of candidate locations for placement of a sensor (e.g., temperature, gas, audio, video, bacteria or other environmental contaminant, etc.).
- We have a function f(S) that measures the "coverage" of any given set S of sensor placement decisions. Then f(V) is maximum possible coverage.
- One possible goal: choose smallest set S such that $f(S) = \alpha f(V)$ with $0 < \alpha \le 1$.

- Given an environment, there is a set V of candidate locations for placement of a sensor (e.g., temperature, gas, audio, video, bacteria or other environmental contaminant, etc.).
- We have a function f(S) that measures the "coverage" of any given set S of sensor placement decisions. Then f(V) is maximum possible coverage.
- One possible goal: choose smallest set S such that $f(S) = \alpha f(V)$ with $0 < \alpha \le 1$.
- Another possible goal: choose size at most k set S such that f(S) is maximized.

- Given an environment, there is a set V of candidate locations for placement of a sensor (e.g., temperature, gas, audio, video, bacteria or other environmental contaminant, etc.).
- We have a function f(S) that measures the "coverage" of any given set S of sensor placement decisions. Then f(V) is maximum possible coverage.
- One possible goal: choose smallest set S such that $f(S) = \alpha f(V)$ with $0 < \alpha \le 1$.
- Another possible goal: choose size at most k set S such that f(S) is maximized.
- Environment could be a floor of a building, water network, monitored ecological preservation.

- Given an environment, there is a set V of candidate locations for placement of a sensor (e.g., temperature, gas, audio, video, bacteria or other environmental contaminant, etc.).
- We have a function f(S) that measures the "coverage" of any given set S of sensor placement decisions. Then f(V) is maximum possible coverage.
- One possible goal: choose smallest set S such that $f(S) = \alpha f(V)$ with $0 < \alpha \le 1$.
- Another possible goal: choose size at most k set S such that f(S) is maximized.
- Environment could be a floor of a building, water network, monitored ecological preservation.

• An example of a room layout.

• Small range sensors.

• Large range sensors.

Sensors with mixed ranges.

A model of Influence in Social Networks

• Given a graph G = (V, E), each $v \in V$ corresponds to a person, to each v we have an activation function $f_v : 2^V \to [0, 1]$ dependent only on its neighbours, i.e, $f_v(A) = f_v(A \cup \Gamma(v))$.

A model of Influence in Social Networks

- Given a graph G = (V, E), each $v \in V$ corresponds to a person, to each v we have an activation function $f_v : 2^V \to [0, 1]$ dependent only on its neighbours, i.e, $f_v(A) = f_v(A \cup \Gamma(v))$.
- Goal Viral Marketing: find a small subset $S \subseteq V$ of individuals to direct influence, and thus indirectly influence the greatest number of possible other individuals (via the social network G).

A model of Influence in Social Networks

- Given a graph G = (V, E), each $v \in V$ corresponds to a person, to each v we have an activation function $f_v : 2^V \to [0, 1]$ dependent only on its neighbours, i.e, $f_v(A) = f_v(A \cup \Gamma(v))$.
- Goal Viral Marketing: find a small subset $S \subseteq V$ of individuals to direct influence, and thus indirectly influence the greatest number of possible other individuals (via the social network G).
- We define a function $f: 2^V \to \mathbb{Z}^+$ that models the ultimate influence of an initial set S of nodes based on the following iterative process: At each step, a given set of nodes S are activated, and we activate a new node $v \in V \setminus S$ if $f_v(S) \geq U[0,1]$ (where U[0,1] is a uniform random number between 0 and 1).

.

Submodular Minimization - Lovász extension

• Given any set function f and w such that $w_{j_1} \geq \ldots \geq w_{j_p}$, define:

$$\hat{f}(w) = \sum_{k=1}^{p} w_{j_k} [f(\{j_1, \dots, j_k\})] - f(\{j_1, \dots, j_{k-1}\})]$$

$$= \sum_{p-1}^{p-1} (w_{j_k} - w_{j_{k+1}}) [f(\{j_1, \dots, j_k\})] + w_{j_p} f(\{j_1, \dots, j_p\})]$$

Submodular Minimization

- if $w = 1_A$, $\hat{f}(w) = f(A) \implies$ extension from $\{0,1\}^p$ to \mathbb{R}^p
- $f \hat{f}$ is piecewise affine and positively homogeneous
- f is submodular if and only if \hat{f} is convex.
 - Minimizing $\hat{f}(w)$ on $w \in [0,1]^p$ is equivalent to minimizing f on 2^V .
 - $\bullet \ \min_{A\subset V} f(A) = \min_{w\in[0,1]^p} \hat{f}(w).$

Submodular Minimization

- if $w = 1_A$, $\hat{f}(w) = f(A) \implies$ extension from $\{0,1\}^p$ to \mathbb{R}^p
- $f \hat{f}$ is piecewise affine and positively homogeneous
- f is submodular if and only if \hat{f} is convex.
 - Minimizing $\hat{f}(w)$ on $w \in [0,1]^p$ is equivalent to minimizing f on 2^V .
 - $\bullet \ \operatorname{min}_{A \subset V} f(A) = \operatorname{min}_{w \in [0,1]^p} \hat{f}(w).$
- Exact submodular function minimization : Combinatorial algorithms.
 - Algorithms based on $\min_{A \subset V} f(A)$.
 - Best algorithms have polynomial complexity (typically $O(p^6)$ or more, where |V| = p).

Submodular Minimization

- if $w = 1_A$, $\hat{f}(w) = f(A) \implies$ extension from $\{0,1\}^p$ to \mathbb{R}^p
- $f \hat{\it f}$ is piecewise affine and positively homogeneous
- f is submodular if and only if \hat{f} is convex.
 - Minimizing $\hat{f}(w)$ on $w \in [0,1]^p$ is equivalent to minimizing f on 2^V .
 - $\bullet \ \operatorname{min}_{A \subset V} f(A) = \operatorname{min}_{w \in [0,1]^p} \hat{f}(w).$
- Exact submodular function minimization : Combinatorial algorithms.
 - Algorithms based on $\min_{A \subset V} f(A)$.
 - Best algorithms have polynomial complexity (typically $O(p^6)$ or more, where |V| = p).
- Minimizing symmetric submodular functions.
 - A submodular function f is said to be symmetric if for all $B \subset V$, $f(V \setminus B) = f(B)$.
 - Example: undirected cuts, mutual information
 - Minimization in $O(p^3)$ over all non-trivial subsets of V, where |V| = p.

Submodular Maximization

NP-hard to solve.

Submodular Maximization

- NP-hard to solve.
- Unconstrained Maximization.
 - Algorithms based on $\max_{A \subset V} f(A)$.
 - Feige et al.(2007) shows that for non-negative functions, a *random set* already achieves at least 1/4 of the optimal value, while *local search* techniques achieve at least 1/2.

Submodular Maximization

- NP-hard to solve.
- Unconstrained Maximization.
 - Algorithms based on $\max_{A \subset V} f(A)$.
 - Feige et al.(2007) shows that for non-negative functions, a *random set* already achieves at least 1/4 of the optimal value, while *local search* techniques achieve at least 1/2.
- Maximizing non-decreasing submodular functions with cardinality constraint
 - A submodular function f is said to be non-decreasing if for all $A \subseteq B$, $f(A) \le f(B)$.
 - $\bullet \max_{\substack{A \subset V \\ |A| \le k}} f(A).$
 - Greedy algorithm achieves (1-1/e) of the optimal value.(Nemhauser et al., 1978).

Maximization with cardinality constraint

• Let $A^* = \{b_1, \ldots, b_k\}$ be a maximizer of F with k elements, and a_j the j-th selected element. Let $\rho_j = F(\{a_1, \ldots, a_j\}) - F(\{a_1, \ldots, a_{j-1}\})$

 $f(A^*) \leq f(A^* \cup A_{i-1})$ because f is non-decreasing,

$$= f(A_{j-1}) + \sum_{i=1}^{k} [f(A_{j-1} \cup \{b_1, \dots, b_i\}) \\ -f(A_{j-1} \cup \{b_1, \dots, b_{i-1}\})]$$

$$\leq f(A_{j-1}) + \sum_{i=1}^{k} [f(A_{j-1} \cup \{b_i\} - f(A_{j-1})] \text{by submodularity,}$$

$$\leq f(A_{j-1}) + k\rho_j \text{ by definition of the greedy algorithm,}$$

$$= \sum_{i=1}^{j-1} \rho_i + k\rho_j$$

• Minimize $\sum_{i=1}^k \rho_i : \rho_j = (k-1)^{j-1} k^{-j} f(A^*)$

Courtesy and References

- Course on "Submodular Functions" by Prof. Jeff Bilmes, University of Washington
 - http://j.ee.washington.edu/bilmes/classes/ee596a_fall_2012/
- "Learning with Submodular Functions: A Convex Optimization Perspective" by Prof. Francis Bach, INRIA.
 - http://hal.archivesouvertes.fr/docs/00/64/52/71/PDF/submodular_fot.pdf
 - http://www.di.ens.fr/ fbach/submodular_fbach_mlss2012.pdf
- Tutorials by Prof. Andreas Krause, ETH, Zurich.
 - http: submodularity.org

Thank You. Questions?