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Motivation from systems biology

Differential equations and structure

A classical way to describe and analyse biochemical reaction
systems: Differential equations.
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Differential equations and structure

A classical way to describe and analyse biochemical reaction
systems: Differential equations.

Reaction model

k‘1 kS
S+EFE=FES—FE+P

ko
dS/dt = —k1 x S x E+ kg x ES
dP/dt = ks x ES
dE/dt = —k; x S x E + (ka2 + k3) x ES
dES/dt = k1 x S x E — (kg + k3) x ES

1913 Die Kinetik der Invertinwirkung.
L. Menten, M.l. Michaelis. Biochemistry Zeitung 49.
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Differential equations and structure

A classical way to describe and analyse biochemical reaction
systems: Differential equations.

Reaction model

k
S+Ek:1ESﬁ>E+P
2

concentration

Time
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Motivation from systems biology

Differential equations and structure

A classical way to describe and analyse biochemical reaction
systems: Differential equations.

& Rate constants usually not known

& Analytically intractable even for small systems.

Use of Petri nets structural properties to say something
about the system dynamics without knowing the kinetics.
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Motivation from systems biology

Differential equations and structure

A classical way to describe and analyse biochemical reaction
systems: Differential equations.

Reaction model

k
S+E2pES* . pip

ko
dS/dt = —k; X S X E + kg x ES Conservation laws
dP/dt = ks x ES + P-invariants:
dE/dt = —k; x S X E + (ko + k3) x ES E+ ES = cte
P+ S+ ES =cte
dES/dt = ki x S x E — (ks + k3) x ES

4

Equivalent model: dS/dt = ko x ES — k1 x E x S
dES/dt = ky x E x S — (ks + k3) x ES
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Motivation from systems biology
Michaelis—Menten enzymatic reactions

Structural model: Reaction graph

‘o .><>~ ‘O

S+E=FES—FE+P
Petri-net = reaction graph + discrete dynamics

1962 Kommunikation mit Automaten. Carl Adam Petri.
Ph. D. Thesis. University of Bonn.
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Motivation from systems biology

Siphon

A siphon is a non-empty set of chemical species that once all of
them is absent, none of them will ever become present.

{S, ES} is a siphon

2003 Topological analysis of metabolic networks based on Petri
net theory. |.Zevedei-Oancea and S.Schuster. In Silico
Bioloov £ /oA
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Motivation from systems biology

T-invariant

Minimal T-invariants correspond to elementary flux modes.

t1 =t 1="Fk(k>0)and t; =0is a T-invariant

1994 On elementary flux modes in biochemical reaction
systems at steady state.
Schuster, S., Hilgetag, C., .J. Biol. Syst.
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Motivation from systems biology

T-invariant

Minimal T-invariants correspond to elementary flux modes.

N
A
) A
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Motivation from systems biology

Benchmark for evaluation

Database Biomodels.net (version march 2012)

404 manually curated quantitative biochemical models.
Average ~ 50 species, ~ 90 reactions.

Biggest model has 194 species, 313 reactions.
Reference publication for each model.

2006 BioModels Database: a free, centralized database of
curated, published, quantitative kinetic models of
biochemical and cellular systems.
le Novere et al. Nucleic Acid Research.
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Motivation from systems biology

Benchmark for evaluation (2)

Database Petriweb

Repository of 80 models modelling real industrial processes.
Average ~ 10 places, ~ 8 transitions.
Biggest model has 68 places, 51 transitions.

2006 Petriweb: A Repository for Petri Nets,
R. Goud et al. Petri Nets and Other Models of
Concurrency - ICATPN.
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Motivation from systems biology

Combinatorial problems

@ There can be an exponential number of minimal siphons and
minimal T-invariants.

e Finding a (minimal) siphon of a given cardinality in a general
Petri net is NP-complete.

1996 Finding minimal siphons in general Petri nets.
S. Tanimoto, M. Yamauchi, and T. Watanabe. IEICE.

e Finding a minimal siphon containing a given set of places in a
general Petri net is NP-complete.
1999 Time complexity analysis of the minimal siphon extraction

problem of petri nets. S. Tanimoto, M. Yamauchi, and
T. Watanabe. |EICE.

Our goal: enumerating efficiently all of them in practical
benchmark!

/24



Motivation from systems biology

Thesis contribution

@ Minimal siphons and minimal T-invariants as constraint
solving problems.

@ Customized branch & bound implementation for minimal
siphons efficient enumeration.

@ Enumerating all minimal siphons on all Biomodels.net and
Petriweb models.

@ Outperforming state-of-the-art algorithms on Biomodels.net
and Petriweb.

@ Understanding why our techniques are efficient:

o New complexity result: linear time complexity on classes of
Petri nets of bounded tree-widths.

10 /24
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Boolean model for siphons/traps
©0®000

Minimal siphon

Biological interpretation: A siphon refers to a non-empty set
of chemical species that once all of them is absent, none of
them will ever become present.

Dynamical characterisation: A siphon is a non-empty set of
places that, once it is unmarked, remains so.

Structural characterisation: A siphon is a non-empty set of
places S such that *S C S°.

A siphon is minimal if it does not contain any other siphon.

12 /24



Boolean model for siphons/traps
00e00

Minimal siphon example

{S,ES} =A{t1,t.1} {S,ES}* ={t1,t_1,t2}

S siphon iff °*S CS°
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Boolean model for siphons/traps

Minimal trap example

{E,ES} ={ti,t-1,to} *{E,ES} ={t1,l-1,12}

D trap iff D®*C°D

14 /24



Boolean model for siphons/traps
ooooe

State-of-the-art algorithms for enumerating minimal

siphons

2005 Enumeration algorithms for minimal siphons in Petri nets
based on place constraints.
R. Cordone, L. Ferrarini, and L. Piroddi.

IEEE TSC.
PN #minimal time (in s.)
size | siphons (avg) | state-of-the-art algorithm
5 2 0.05
10 10 0.07
15 60 0.39
20 302 6.84

15 /24



Boolean Model of Siphons

variables (¥p) X,=1l<spes

constraints
(Vp) Xp,=1= A\ V Xy =1

te’pp et

Finding siphons is reduced to finding
Boolean assignments satisfying these formulas.
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Boolean model for siphons/traps

(o] le}

Minimality in the boolean model

Value selection strategy: 0 then 1

p ¢ So peS

0 before 1 and S, before S} in the search tree =— S} € .5y

17 /24



Boolean model for siphons/traps
ocoe

Enumerating all minimal siphons in the boolean model

Branch & Bound

Once a (minimal) siphon S is found

© add the constraint \/ X, =0
peS

@ restart the search

12 /24



Boolean model for siphons/traps

Enumerating minimal siphons with SAT and CSP(B)

total time (in ms.)
database # avg max avg# st.art | mini GNU
models | #P,#T | #P+#T | siphons algo SAT | Prolog
Petriweb 80 10,8 119 2.85 2325 | 156 6
Biomodels.net 403 50,90 507 4.21 19734 | 611 195

time (in ms.)

model #P,#T 7# state-of-the-art | miniSAT | GNU
siphons algorithm Prolog
Biomodel #175 | 118, 194 3042 0o 137000 00
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Enumerating minimal siphons with SAT and CSP(B)

total time (in ms.)
database # avg max avg# st.art | mini GNU
models | #P,#T | #P+#T | siphons algo SAT | Prolog
Petriweb 80 10,8 119 2.85 2325 | 156 6
Biomodels.net 403 50,90 507 4.21 19734 | 611 195

time (in ms.)
model #P,#T 7# state-of-the-art | miniSAT | GNU
siphons algorithm Prolog
Biomodel #175 | 118, 194 3042 0o 137000 00

but why are we so efficient?
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Boolean model for siphons/traps

[ leje}

Tree-width of non-oriented graph

Tree-decomposition of a graph:

@ Each graph vertex is associated with
at least one tree node.

@ Each graph edge connects two
vertices that are listed together at
some tree node.

© Each graph vertex is listed at the
nodes of a contiguous sub-tree of
the tree.

The width of a tree-decomposition is
the size of its largest node minus
one.

The tree-width of a graph is the
minimum width among all its
possible tree-decompositions.
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Boolean model for siphons/traps
oeo

Bounded tree-widths

Theorem. Finding minimal siphon containing a given set of places
@ is linear for Petri-nets of bounded tree-width.

Proof. Definable in Monadic Second Order logic = linear-time resolution.

1990 Definable monadic second-order logic of graphs I.
Recognizable sets of Finite Graphs. Bruno Courcelle.
Information and Computation.

SIPHON(S)
Yu(v € S = place(v))

AFv(v € 5)
AYE(Fv(v € S Aedge(t,v)) = Fv(v € S A edge(v,1)))

Minimal siphon containing Q:
3S(stPHON(S)

AVS'(STIPHON(S') AVo(v € ' = v e S) = Vo(ve S=wvels))
AVv(v € Q = v € S))
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Boolean model for siphons/traps
ooe

Biochemicals networks seem to have a bounded tree-width
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Biomodels.net tree-width as a function of the size (places and
transitions) of the Petri net
Computed tree-width < 10
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Conclusion

Conclusion

@ Petri nets structural properties can give us some information
about the biochemical network dynamics when the kinetics are
missing.

@ Constraint programming over finite domain can be
successfully applied to Petri nets structural problems.

@ CSP and miniSAT solvers outperform state-of-the-art
algorithms for enumerating minimal siphons.

@ Surprisingly good performance on real-size models.

@ Linear-time complexity result for Petri nets with bounded tree
width.
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Conclusion

Perspectives

@ Add biological constraints to the computation of T-invariants
(compute only those of interest).

@ Provide a generic tool for the verification of graphs structural
properties having a biological meaning, with an underlying
CSP engine. (Biocham)

@ Identify parameters for certain structural properties
computation that ensure no performances issues.

@ Understand the links between structural measurements of
graphs and the complexity of solving the CSP.

24 /04
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