A constraint programming approach to the analysis of Petri nets structural properties and application to biochemical networks

Faten Nabli Supervised by François Fages and Sylvain Soliman

INRIA Paris-Rocquencourt CONTRAINTES

May 21, 2013

UFR D'INFORMATIQUE DENIS-DIDEROT

Outline

2 Boolean model for siphons/traps

- Complexity
- Model & Strategy for minimal siphon
- Comparison SAT/CSP/state-of-the-art algorithm
- Linear time complexity result

3 Conclusion

Differential equations and structure

A classical way to describe and analyse biochemical reaction systems: Differential equations.

Conclusion

Differential equations and structure

A classical way to describe and analyse biochemical reaction systems: Differential equations.

Reaction model

$$S + E \xrightarrow{k_1}{k_2} ES \xrightarrow{k_3} E + P$$

$$dS/dt = -k_1 \times S \times E + k_2 \times ES$$

$$dP/dt = k_3 \times ES$$

$$dE/dt = -k_1 \times S \times E + (k_2 + k_3) \times ES$$

$$dES/dt = k_1 \times S \times E - (k_2 + k_3) \times ES$$

1913 Die Kinetik der Invertinwirkung.L. Menten, M.I. Michaelis. Biochemistry Zeitung 49.

Conclusion

Differential equations and structure

A classical way to describe and analyse biochemical reaction systems: Differential equations.

3/24

Differential equations and structure

A classical way to describe and analyse biochemical reaction systems: Differential equations.

- Rate constants usually not known
- S Analytically intractable even for small systems.

Use of Petri nets structural properties to say something about the system dynamics without knowing the kinetics.

Conclusion

Differential equations and structure

A classical way to describe and analyse biochemical reaction systems: Differential equations.

 $\begin{array}{c} \text{Reaction model} \\ S+E \stackrel{k_1}{\xrightarrow{k_1}} ES \stackrel{k_3}{\longrightarrow} E+P \\ dS/dt = -k_1 \times S \times E + k_2 \times ES \\ dP/dt = k_3 \times ES \\ dE/dt = -k_1 \times S \times E + (k_2 + k_3) \times ES \\ dES/dt = k_1 \times S \times E - (k_2 + k_3) \times ES \end{array} \xrightarrow{\text{Conservation laws}} P\text{-invariants:} \\ E+ES = \text{cte} \\ P+S+ES = \text{cte} \\ P+S+ES = \text{cte} \end{array}$

Equivalent model: $dS/dt = k_2 \times ES - k_1 \times E \times S$ $dES/dt = k_1 \times E \times S - (k_2 + k_3) \times ES$

Conclusion

Michaelis–Menten enzymatic reactions

Structural model: Reaction graph

 $S + E \rightleftharpoons ES \longrightarrow E + P$

Petri-net = reaction graph + discrete dynamics

1962 Kommunikation mit Automaten. Carl Adam Petri. Ph. D. Thesis. University of Bonn.

Conclusion

Michaelis–Menten enzymatic reactions

 $S + E \rightleftharpoons ES \longrightarrow E + P$

Petri-net = reaction graph + discrete dynamics

1962 Kommunikation mit Automaten. Carl Adam Petri. Ph. D. Thesis. University of Bonn.

Conclusion

Michaelis–Menten enzymatic reactions

Structural model: Reaction graph

 $S + E \rightleftharpoons ES \longrightarrow E + P$

Petri-net = reaction graph + discrete dynamics

1962 Kommunikation mit Automaten. Carl Adam Petri. Ph. D. Thesis. University of Bonn.

Jutline					
	•		+ 1		
Juume		u	u		

Conclusion

Siphon

A siphon is a non-empty set of chemical species that once all of them is absent, none of them will ever become present.

 $\{S, ES\}$ is a siphon

2003 Topological analysis of metabolic networks based on Petri net theory. I.Zevedei-Oancea and S.Schuster. In Silico Biology.

Jutline					
	•		+ 1		
Juume		u	u		

Conclusion

Siphon

A siphon is a non-empty set of chemical species that once all of them is absent, none of them will ever become present.

2003 Topological analysis of metabolic networks based on Petri net theory. I.Zevedei-Oancea and S.Schuster. In Silico Biology.

T-invariant

Minimal T-invariants correspond to elementary flux modes.

 $t_1 = t_{-1} = k \ (k \ge 0)$ and $t_2 = 0$ is a T-invariant

T-invariant

Minimal T-invariants correspond to elementary flux modes.

 $t_1 = t_{-1} = k \ (k \ge 0)$ and $t_2 = 0$ is a T-invariant

T-invariant

Minimal T-invariants correspond to elementary flux modes.

 $t_1 = t_{-1} = k \ (k \ge 0)$ and $t_2 = 0$ is a T-invariant

T-invariant

Minimal T-invariants correspond to elementary flux modes.

 $t_1 = t_{-1} = k \ (k \ge 0)$ and $t_2 = 0$ is a T-invariant

0			
	† 1	n	0
\sim			

T-invariant

Minimal T-invariants correspond to elementary flux modes.

 $t_1 = t_{-1} = k \ (k \ge 0)$ and $t_2 = 0$ is a T-invariant

Benchmark for evaluation

Database **Biomodels.net** (version march 2012)

404 manually curated quantitative biochemical models. Average ~ 50 species, ~ 90 reactions. Biggest model has 194 species, 313 reactions. Reference publication for each model.

2006 BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems.
 le Novère et al. Nucleic Acid Research.

Benchmark for evaluation (2)

Database Petriweb

Repository of 80 models modelling real industrial processes. Average ~ 10 places, ~ 8 transitions. Biggest model has 68 places, 51 transitions.

2006 Petriweb: A Repository for Petri Nets,R. Goud et al. Petri Nets and Other Models of Concurrency - ICATPN.

Combinatorial problems

- There can be an exponential number of minimal siphons and minimal T-invariants.
- Finding a (minimal) siphon of a given cardinality in a general Petri net is NP-complete.

1996 Finding minimal siphons in general Petri nets.S. Tanimoto, M. Yamauchi, and T. Watanabe. IEICE.

• Finding a minimal siphon containing a given set of places in a general Petri net is NP-complete.

1999 Time complexity analysis of the minimal siphon extraction problem of petri nets. S. Tanimoto, M. Yamauchi, and T. Watanabe. IEICE.

Our goal: enumerating efficiently all of them in practical benchmark!

Thesis contribution

- Minimal siphons and minimal T-invariants as constraint solving problems.
- Customized branch & bound implementation for minimal siphons efficient enumeration.
- Enumerating all minimal siphons on all Biomodels.net and Petriweb models.
- Outperforming state-of-the-art algorithms on Biomodels.net and Petriweb.
- Understanding why our techniques are efficient:
 - New complexity result: linear time complexity on classes of Petri nets of bounded tree-widths.

Boolean model for siphons

Minimal siphon

Biological interpretation: A siphon refers to a non-empty set of chemical species that once all of them is absent, none of them will ever become present.

Dynamical characterisation: A siphon is a non-empty set of places that, once it is unmarked, remains so.

Structural characterisation: A siphon is a non-empty set of places S such that ${}^{\bullet}S \subseteq S^{\bullet}$.

A siphon is minimal if it does not contain any other siphon.

Conclusion

Minimal siphon example

S siphon iff $\bullet S \subseteq S^{\bullet}$

Conclusion

Minimal trap example

 $\{E, ES\}^{\bullet} = \{t_1, t_{-1}, t_2\} \quad {}^{\bullet}\{E, ES\} = \{t_1, t_{-1}, t_2\}$ $D \text{ trap} \quad \text{iff} \quad D^{\bullet} \subseteq {}^{\bullet}D$

State-of-the-art algorithms for enumerating minimal siphons

2005 Enumeration algorithms for minimal siphons in Petri nets based on place constraints.
R. Cordone, L. Ferrarini, and L. Piroddi.
IEEE TSC.

PN	#minimal	time (in s.)
size	siphons (avg)	state-of-the-art algorithm
5	2	0.05
10	10	0.07
15	60	0.39
20	302	6.84

Conclusion

Boolean Model of Siphons

$(\forall p) \ X_p = 1 \Longleftrightarrow p \in S$

constraints

variables

$$(\forall p) \ X_p = 1 \Rightarrow \bigwedge_{t \in \bullet_p} \bigvee_{p' \in \bullet_t} X_{p'} = 1$$

Finding siphons is reduced to finding Boolean assignments satisfying these formulas.

Conclusion

Minimality in the boolean model

Value selection strategy: 0 then 1

0 before 1 and S_0 before S_1 in the search tree $\Longrightarrow S_1 \not\subseteq S_0$

Enumerating all minimal siphons in the boolean model

Branch & Bound

Once a (minimal) siphon S is found

a add the constraint
$$\bigvee_{p \in S} X_p = 0$$

restart the search

Enumerating minimal siphons with SAT and CSP(B)

					total time (in ms.		n ms.)
database	#	avg	max	avg#	st.art	mini	GNU
	models	#P,#T	#P+#T	siphons	algo	SAT	Prolog
Petriweb	80	10,8	119	2.85	2325	156	6
Biomodels.net	403	50,90	507	4.21	19734	611	195

			time	(in ms.)	
model	#P,#T	#	state-of-the-art	miniSAT	GNU
		siphons	algorithm		Prolog
Biomodel #175	118, 194	3042	∞	137000	∞

Enumerating minimal siphons with SAT and CSP(B)

					total time (in ms		n ms.)
database	#	avg	max	avg#	st.art	mini	GNU
	models	#P,#T	#P+#T	siphons	algo	SAT	Prolog
Petriweb	80	10,8	119	2.85	2325	156	6
Biomodels.net	403	50,90	507	4.21	19734	611	195

			time (in ms.)			
model	#P,#T	#	state-of-the-art	miniSAT	GNU	
		siphons	algorithm		Prolog	
Biomodel #175	118, 194	3042	∞	137000	∞	

but why are we so efficient?

Tree-width of non-oriented graph

Tree-decomposition of a graph:

- Each graph vertex is associated with at least one tree node.
- 2 Each graph edge connects two vertices that are listed together at some tree node.
- Each graph vertex is listed at the nodes of a contiguous sub-tree of the tree.

The width of a tree-decomposition is the size of its largest node minus one.

The tree-width of a graph is the minimum width among all its possible tree-decompositions.

Bounded tree-widths

Theorem. Finding minimal siphon containing a given set of places Q is linear for Petri-nets of bounded tree-width.

Proof. Definable in Monadic Second Order logic \implies linear-time resolution.

1990 Definable monadic second-order logic of graphs I. Recognizable sets of Finite Graphs. Bruno Courcelle. Information and Computation.

SIPHON(S)

$$\begin{aligned} \forall v(v \in S \Rightarrow \mathsf{place}(v)) \\ & \land \exists v(v \in S) \\ \land \forall t (\exists v(v \in S \land \mathsf{edge}(t, v)) \Rightarrow \exists v(v \in S \land \mathsf{edge}(v, t))) \end{aligned}$$

$$\begin{array}{l} \text{Minimal siphon containing } Q: \\ \exists S(\text{SIPHON}(S) \\ \land \forall S'(\text{SIPHON}(S') \land \forall v(v \in S' \Rightarrow v \in S) \Rightarrow \forall v(v \in S \Rightarrow v \in S')) \\ \land \forall v(v \in Q \Rightarrow v \in S)) \end{array}$$

Biochemicals networks seem to have a **bounded** tree-width

Biomodels.net tree-width as a function of the size (places and transitions) of the Petri net Computed tree-width ≤ 10

Conclusion

- Petri nets structural properties can give us some information about the biochemical network dynamics when the kinetics are missing.
- Constraint programming over finite domain can be successfully applied to Petri nets structural problems.
- CSP and miniSAT solvers outperform state-of-the-art algorithms for enumerating minimal siphons.
- Surprisingly good performance on real-size models.
- Linear-time complexity result for Petri nets with bounded tree width.

Perspectives

- Add biological constraints to the computation of T-invariants (compute only those of interest).
- Provide a generic tool for the verification of graphs structural properties having a biological meaning, with an underlying CSP engine. (Biocham)
- Identify parameters for certain structural properties computation that ensure no performances issues.
- Understand the links between structural measurements of graphs and the complexity of solving the CSP.