
Two applications

of maximum capacitated matchings

in random bipartite graphs

Mathieu Leconte (Technicolor - INRIA)

Marc Lelarge (ENS - INRIA)

Laurent Massoulié (Microsoft – INRIA)

What is a capacitated matching?

• Bipartite graph with vertex- and edge-capacities

• Capacitated matching = subset of the edges that
does not violate any capacity constraint

w x y z

a b c d e

10201

0 211

for simplicity,

edge-capacity =1

ex: put weight 1

on the red edges

Outline

• Two motivating applications

– Distributed CDN (content delivery networks)

– Cuckoo hashing

• A brief overview of the techniques used

– Message passing algorithms

DISTRIBUTED CDN

Current architecture: Internet content

delivered from “cloud”

Questions

• What to store where, given heterogeneous content popularity

• how to match requests to servers

• resulting load reduction on data center

The Internet

data center 3-play gateways,

set-top boxes

� Why not leverage bandwidth & memory resources at the

network’s edge?

Moving from centralized CDNs…

big data

center

(youtube)

users

upload capacity

scales with # users

…to distributed CDNs
small servers
(gateways,

set-top boxes) smaller
data center

limited storage

& upload capacity,

servers scales with # users (P2P-like)

users

Bipartite graph representation

• Edges between contents and servers storing them

• Allocation of requests to servers = capacitated matching

• Load reduction on data center = size of matching used

for simplicity,

upload capacity =1

requests: 10201

11 11

storage space

of size 3

contents

servers

a b c d e

Many sources of randomness

• # requests for each content is random
�Only a priori popularity is known (ex: past

measurements yield only estimates of # requests)

�Capacity constraints are random

• Server caches constituted at random
�We can only specify the total # replicas for each

content; which server gets which replica is random

�Edges of the graph are random

• Allocation policy may be random
�Matching used may be random

�Evacuate this: assume optimal matching at any time

What happens for large networks

and large storage?

• In practice, very large networks (lots of

contents/users/servers)

�Our results: for given replication policy, we compute

the size of maximum capacitated matching

= load reduction on the data center

�Allows to compare different replication policies

• Storage is cheap ⇒ large storage asymptotic

�Explicit expression for the optimal replication policy

Application to two classes of contents

• Equal-sized classes; 1st class more popular than 2nd one

• Vertical axis = some measure of efficiency

� indicates how fast inefficiency drops as storage capacity grows

• Horizontal axis spans replication policies

�θ1 = fraction of storage used for class 1

CUCKOO HASHING

• The cuckoos want to lay their eggs in some other birds’ nests

• However, birds can count: the number of eggs in each nest must

remain constant (but kicking out non-cuckoo eggs is okay)

• Each cuckoo must replace eggs in different nests, else it will show

• They are lazy birds and only try 3 nests at random before giving up

A problem of birds…

• Capacity of cuckoo nodes = # eggs of the cuckoo = 2, here

• Capacity of nest nodes = # eggs in the nest = 1 or 3, here

Link with capacitated matchings
cuckoo nodes

nest nodes

…and a problem of hash tables

• items = cuckoo eggs & keys = nests
�Want to assign a key to each item, so as to be able to

retrieve the items efficiently

• Multiple-choice hashing
– Each item is given the choice between k random keys

• Cuckoo hashing
– When the k keys are already assigned, re-assign one to

new item and kick out old one, like a cuckoo would do!

• Question: how many items can we handle?
– Threshold τ such that if # items < τ # keys,

there exists an assignment with probability tending to 1
as size of system grows

What happens for large bird

populations / large hash tables?

• Equivalent to ask how many cuckoos can there

be so that no cuckoo egg is lost

�Size of maximum capacitated matching

= # cuckoo eggs with new home

= # items with a key successfully assigned

�Our results: we compute the threshold τ under

which no cuckoo egg lost & valid hash table

�Allows dimensioning of hash tables

& performance evaluation of cuckoo hashing

MESSAGE PASSING ALGORITHMS

How to compute the maximum weight

of a capacitated matching in a tree?

• The random graph we used asymptotically

look like trees 3

112

11 2

111
for simplicity,

edge-capacity =1

Greedy algorithm in finite rooted trees

• Choose a root

3

112

11 2

111

Greedy algorithm in finite rooted trees

• Iterately select dangling edges = leaf-removal

3

112

11 2

111

Greedy algorithm in finite rooted trees

• Leaf-removal

3

112

11 2

111

Greedy algorithm in finite rooted trees

• Leaf-removal

3

112

11 2

111

Greedy algorithm in finite rooted trees

• Leaf-removal

3

112

11 2

111

Greedy algorithm in finite rooted trees

• Leaf-removal

3

112

11 2

111

Greedy algorithm in finite rooted trees

• Maximum size = 6

3

112

11 2

111

In the infinite limiting tree?

• Similar method, implemented through iterating

local rules

1
00

2

1– Message passing over the

directed edges of the graph

– Message at iteration t indicates

whether edge is required for

maximum matching in the

subtree below cut at depth t

Message-passing in infinite trees

3

112

11 2

111

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

iteration 0

Message-passing in infinite trees

3

112

11 2

111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

iteration 1

Message-passing in infinite trees

3

112

11 2

111

1

1

0

1

1

0

0

1

1

1

1

0

0

0

1

0

1

0

iteration 2

Message-passing in infinite trees

3

112

11 2

111

1

1

0

1

1

0

0

1

1

1

1

0

0

0

1

1

1

1

iteration 3 : fixed-point

Message-passing in infinite trees

• From fixed-point, maximum size = 6

3

112

11 2

111

1

1

0

1

1

0

0

1

1

1

1

0

0

0

1

1

1

1

iteration 3 : fixed-point

Conclusion

• Compute the size of maximum capacitated
matchings in random graphs

• Yields performance evaluation of large
distributed CDNs

�Optimization of their organization and dimensioning
of residual data center

• Compute cuckoo hashing thresholds

�Dimensioning of hash tables

�Understand more of the life of cuckoos

• Message passing techniques (borrowed from
statistical physics)

Thank you!!!

