Two applications

 of maximum capacitated matchings in random bipartite graphsMathieu Leconte (Technicolor - INRIA)
Marc Lelarge (ens - INRIA)
Laurent Massoulié (Microsoft - INRIA)

What is a capacitated matching?

- Bipartite graph with vertex- and edge-capacities
- Capacitated matching = subset of the edges that does not violate any capacity constraint
for simplicity, edge-capacity $=1$
ex: put weight 1 on the red edges

Outline

- Two motivating applications
- Distributed CDN (content delivery networks)
- Cuckoo hashing
- A brief overview of the techniques used
- Message passing algorithms

DISTRIBUTED CDN

Current architecture: Internet content delivered from "cloud"

> Why not leverage bandwidth \& memory resources at the network's edge?

Questions

- What to store where, given heterogeneous content popularity
- how to match requests to servers
- resulting load reduction on data center

Moving from centralized CDNs...

...to distributed CDNs

Bipartite graph representation

- Edges between contents and servers storing them
- Allocation of requests to servers = capacitated matching
- Load reduction on data center = size of matching used

Many sources of randomness

- \# requests for each content is random
$>$ Only a priori popularity is known (ex: past measurements yield only estimates of \# requests)
> Capacity constraints are random
- Server caches constituted at random
$>$ We can only specify the total \# replicas for each content; which server gets which replica is random
$>$ Edges of the graph are random
- Allocation policy may be random
$>$ Matching used may be random
- Evacuate this: assume optimal matching at any time

What happens for large networks and large storage?

- In practice, very large networks (lots of contents/users/servers)
$>$ Our results: for given replication policy, we compute the size of maximum capacitated matching
= load reduction on the data center
\rightarrow Allows to compare different replication policies
- Storage is cheap \Rightarrow large storage asymptotic >Explicit expression for the optimal replication policy

Application to two classes of contents

- Equal-sized classes; $1^{\text {st }}$ class more popular than $2^{\text {nd }}$ one
- Vertical axis = some measure of efficiency
$>$ indicates how fast inefficiency drops as storage capacity grows
- Horizontal axis spans replication policies
$>\theta_{1}=$ fraction of storage used for class 1

CUCKOO HASHING

- The cuckoos want to lay their eggs in some other birds' nests
- However, birds can count: the number of eggs in each nest must remain constant (but kicking out non-cuckoo eggs is okay)
- Each cuckoo must replace eggs in different nests, else it will show
- They are lazy birds and only try $\mathbf{3}$ nests at random before giving up

Link with capacitated matchings

- Capacity of cuckoo nodes = \# eggs of the cuckoo = 2, here
- Capacity of nest nodes = \# eggs in the nest = 1 or 3, here

...and a problem of hash tables

- items = cuckoo eggs \& keys = nests
$>$ Want to assign a key to each item, so as to be able to retrieve the items efficiently
- Multiple-choice hashing
- Each item is given the choice between \boldsymbol{k} random keys
- Cuckoo hashing
- When the \boldsymbol{k} keys are already assigned, re-assign one to new item and kick out old one, like a cuckoo would do!
- Question: how many items can we handle?
- Threshold $\boldsymbol{\tau}$ such that if \# items < $\boldsymbol{\tau}$ \# keys, there exists an assignment with probability tending to 1 as size of system grows

What happens for large bird populations / large hash tables?

- Equivalent to ask how many cuckoos can there be so that no cuckoo egg is lost
$>$ Size of maximum capacitated matching
= \# cuckoo eggs with new home
= \# items with a key successfully assigned
$>$ Our results: we compute the threshold τ under which no cuckoo egg lost \& valid hash table
$>$ Allows dimensioning of hash tables
\& performance evaluation of cuckoo hashing

MESSAGE PASSING ALGORITHMS

How to compute the maximum weight of a capacitated matching in a tree?

- The random graph we used asymptotically look like trees
for simplicity,

Greedy algorithm in finite rooted trees

- Choose a root

Greedy algorithm in finite rooted trees

- Iterately select dangling edges = leaf-removal

Greedy algorithm in finite rooted trees

- Leaf-removal

Greedy algorithm in finite rooted trees

- Leaf-removal

Greedy algorithm in finite rooted trees

- Leaf-removal

Greedy algorithm in finite rooted trees

- Leaf-removal

Greedy algorithm in finite rooted trees

- Maximum size $=6$

In the infinite limiting tree?

- Similar method, implemented through iterating local rules
- Message passing over the
directed edges of the graph
- Message at iteration t indicates

2
whether edge is required for maximum matching in the subtree below cut at depth t

Message-passing in infinite trees

Message-passing in infinite trees

iteration 1

Message-passing in infinite trees

iteration 2

Message-passing in infinite trees

Message-passing in infinite trees

- From fixed-point, maximum size $=6$
iteration 3 : fixed-point

Conclusion

- Compute the size of maximum capacitated matchings in random graphs
- Yields performance evaluation of large distributed CDNs
> Optimization of their organization and dimensioning of residual data center
- Compute cuckoo hashing thresholds
$>$ Dimensioning of hash tables
> Understand more of the life of cuckoos
- Message passing techniques (borrowed from statistical physics)

Thank you!!!

