The Mystery of Gene Expression

Emanuele Leoncini

Junior Seminar

Ínría

Innía

Réseaux, Algoritimes et Probabilités

•Communication networks (models and algorithms)

•New math tools for probabilistic models of complex networks

Emanuele Leoncini -- Stochastic Gene Expression

June 18th 2013

Communication networks (models and algorithms)

•New math tools for probabilistic models of complex networks

Bike-sharing system Vélib Stochastic modeling of biological phenomena

(nría_

- •first life-form on Earth (~4 billion years ago)
- 5 \cdot 10³⁰ bacteria on Earth
- •independent "simple" organisms

- •first life-form on Earth (~4 billion years ago)
- 5 · 10³⁰ bacteria on Earth
- •independent "simple" organisms

- first life-form on Earth (~4 billion years ago)
- 5 · 10³⁰ bacteria on Earth
- •independent "simple" organisms

The Good (probiotics)

- •first life-form on Earth (~4 billion years ago)
- 5 · 10³⁰ bacteria on Earth
- •independent "simple" organisms

The Good (probiotics)

The Ugly (pathogen)

Bacteria behaviour

Bacteria behaviour

Bacteria behaviour

Innía

1. Stochastic Decision

Abundant nutriment

1. Stochastic Decision

1. Stochastic Decision

1. Stochastic Decision

Pros:flexibilitysimple

Cons: •fluctuations

Abundant nutriment

2.Structural stochasticity

2.Structural stochasticity

- No spatial organization
- •Reactions: stochastic encounters

2.Structural stochasticity

- No spatial organization
- •Reactions: stochastic encounters

Deterministic behaviour robust to fluctuations

Fluctuations

Ínría

Ínría

June 18th 2013

Ínría

•Proteins: the core of biologic processes (enzymes, DNA duplication, cell machinery...)

•Proteins: the core of biologic processes (enzymes, DNA duplication, cell machinery...)

 Lack of one protein can have serious consequences

•Proteins: the core of biologic processes (enzymes, DNA duplication, cell machinery...)

 Lack of one protein can have serious consequences

A highly consuming process:

- >80% of cell resources
- ~3.5 millions of proteins
- ~2000 types of proteins constantly produced

Ínría

What is a protein?

Protein: chain of elementary bricks (amino acids)

Innía

What is a protein?

Protein: chain of elementary bricks (amino acids)

What is a protein?

Protein: chain of elementary bricks (amino acids)

Innía
What is a protein?

Protein: chain of elementary bricks (amino acids)

3D conformation

both determining the protein function

Central Dogma of Molecular Biology

Central Dogma of Molecular Biology

"It states that such [sequential] information cannot be transferred from protein to either protein or nucleic acid" Crick (1958)

DNA

Gene: portion of DNA encoding for a specific protein

Innía

Emanuele Leoncini -- Stochastic Gene Expression

Gene activation

Two states of gene: active and inactive

Emanuele Leoncini -- Stochastic Gene Expression

Transcription: initiation

Innia

Transcription: elongation

Translation: initiation

Ínría

Emanuele Leoncini -- Stochastic Gene Expression

Translation: elongation

Translation: termination

Emanuele Leoncini -- Stochastic Gene Expression

Emanuele Leoncini -- Stochastic Gene Expression

How to analyze gene expression?

Experiments

Pros:

- Fine description
 Finding of new phenomena
 Cons:
- ExpensiveHard to reproduce
- (sometimes not conclusive)

How to analyze gene expression?

Experiments

Math Models

Pros:

- Fine description
 Finding of new phenomena
 Cons:
- Expensive
 Hard to reproduce
 (sometimes not conclusive)

Pros:

- •Synthesis
- Reproducibility
- Cheap

Cons:

- •Time consuming
- •Simple but exhaustive ?

Ínría

Model

(nría_

•stochastic

discrete numbers of components

Ínnía

•stochastic

discrete numbers of components

Emanuele Leoncini -- Stochastic Gene Expression

Protein production $Y(t) \in \{0, I\}$ $P(t) \in \mathbb{N}$ → $M(t) \in \mathbb{N}$

$$Y(t) \in \{0, 1\} \xrightarrow{\lambda_{M}} M(t) \in \mathbb{N} \xrightarrow{\lambda_{P}} P(t) \in \mathbb{N}$$

$$\downarrow_{\varnothing}$$
Target protein copies:
$$\mathbb{E}[P] = 100$$

Two possible strategies:

small λ_{M} (few mRNAs) large λ_{P}

large λ_{M} (many mRNAs) small λ_{P}

Emanuele Leoncini -- Stochastic Gene Expression

Ínría

A few results:

Quantitative characterization of fluctuations

$$\operatorname{var}(\mathbf{P}) = \mathbb{E}[\mathbf{P}] \left[\mathbf{I} + \frac{\lambda_3}{(\mu_2 + \mu_3)} + \frac{\lambda_2 \lambda_3 (\mathbf{I} - \delta_+) (\Lambda + \mu_2 + \mu_3)}{(\mu_2 + \mu_3) (\Lambda + \mu_2) (\Lambda + \mu_3)} \right]$$

•Rigorous (and controlled) analysis: identification of the crucial steps in gene expression

- •Counter-intuitive (or surprising) results
- Identification of critical behaviour
- Model as hypothesis-testing framework

Ínría

Gene expression: work to do...

- Interaction between proteins: how does it impact on fluctuations?
- •More realistic (treatable) model
- Control in stochastic environment

More in general...

•Deeper cooperation between maths and biology

Gene expression: work to do...

- Interaction between proteins: how does it impact on fluctuations?
- •More realistic (treatable) model
- Control in stochastic environment

More in general...

Deeper cooperation between maths and biology

Crit Rev Biochem Mol Biol. 2011 April ; 46(2): 137–151. doi:10.3109/10409238.2011.556597.

Mathematical modeling of gene expression: a guide for the perplexed biologist

Gene expression: work to do...

- Interaction between proteins: how does it impact on fluctuations?
- •More realistic (treatable) model
- •Control in stochastic environment

More in general...

Deeper cooperation between maths and biologies

Crit Rev Biochem Mol Biol. 2011 April; 46(2): 137–151. doi:10.3109/10409238.2011.556

Mathematical modeling of gene expression: a guide for perplexed biologist

Emanuele Leoncini -- Stochastic Gene Expression

Emanuele Leoncini -- Stochastic Gene Expression

Emanuele Leoncini -- Stochastic Gene Expression