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Whack-A-Bug

def binary_search(A, x, left, right):
middle = (left + right) / 2
if A[middle] > x:

return binary_search(A, x, left, middle)
elif A[middle] < x:

return binary_search(A, x, middle, right)
else:

return middle

A = [2, 3, 5, 7]
binary_search(A, 7, 0, 3) # Oops!
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Whack-A-Bug

def binary_search(A, x, left, right):
middle = (left + right) / 2
if A[middle] > x:

return binary_search(A, x, left, middle - 1)
elif A[middle] < x:

return binary_search(A, x, middle + 1, right)
else:

return middle

A = [2, 3, 5, 7]
binary_search(A, 7, 0, 3) # Oops!



Proof of correctness

Theorem
If x ∈ A and left ≤ right and A[left] ≤ x ≤ A[right]
then A[binary_search(A, x , left, right)] = x .

Proof.
By induction on (right − left) ...



Formal proof

Formal language: ∀, ∃, =⇒ , ...

Deductive system:

Γ,A ` B
Γ ` A =⇒ B

Γ ` A =⇒ B Γ ` A
Γ ` B



Proof systems

Theoretical systems
I First-order logic
I Higher-order logic
I Calculus of constructions

Implementations
I Twelf
I HOL
I Coq
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Why use them?

In software engineering: eliminate more bugs
I CompCert project
I L4.verified project

In mathematics: prove harder theorems
I 4-color theorem
I Kepler theorem
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Two problems

Proof checking:
I Given a proposition A and a proof D, does D prove A?
I Check(D,A) = Yes or No

Proof search:
I Given a proposition A, does there exist a proof D of A?
I Search(A) = D or None
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Writing proofs

Theorem foo: forall A B C : Prop,
(A -> B) -> (B -> C) -> (A -> C) :=

fun A B C proof_of_A_B proof_of_B_C =>
fun proof_of_A =>

let proof_of_B := (proof_of_A_B proof_of_A) in
let proof_of_C := (proof_of_B_C proof_of_B) in
proof_of_C.
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Proof development

1. Write your proof
2. Call the proof checker
3. Checker answers Yes or No and gives you an error
4. If answer is No, go back to step 1

Sounds familiar?
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Program development

1. Write your programs
2. Call the compiler
3. Compiler answers Yes or No and gives you an error
4. If answer is No, go back to step 1

Sounds familiar?



Proofs are programs!

Curry-Howard correspondence

Proof Program
Proposition Type
A =⇒ B A→ B

Proof checking Type checking



Proofs are programs!

Proof system = Programming language
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A Zoology of proof systems

I Twelf, HOL, Coq, Isabelle, PVS, NuPRL, Mizar, Agda,
ProofPower, Lego, ACL2, ...

I Different properties
I Intuitionistic/Classical
I Top-down/Bottom-up
I Sequents/Proof terms
I ...



Top 100 theorems

HOL Light 86
Mizar 57
Isabelle 51
Coq 49

ProofPower 42
nqthm/ACL2 18

PVS 16
NuPRL/MetaPRL 8

http://www.cs.ru.nl/∼freek/100/

http://www.cs.ru.nl/~freek/100/


The need for interoperabilty

I CompCert project : 50 000 lines (Coq)
I Four-color theorem: 60 000 lines (Coq)
I Jordan curve theorem: 75 000 lines (HOL)
I Odd order theorem: 170 000 lines (Coq)
I L4.verified project: 200 000 lines (Isabelle)

Can we reuse them?
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Logical Framework

Idea: Express all these proofs in a common logical
framework.

HOL Coq

Dedukti

PVS



Dedukti

I Dedukti: means “to deduce” in Esperanto
I Minimal formalism: λΠ-calculus modulo =

First-order logic + rewriting



Without rewriting

4 = 4
4 + 1 = 5
4 + 2 = 6
4 + 3 = 7
4 + 4 = 8



With rewriting

x + 0 −→ x
x + (y + 1) −→ (x + 1) + y

4 + 4 −→∗ 8

8 = 8
4 + 4 = 8
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Encodings

I Adding rewrite rules extends the logic.

I Can express the proofs of a system P in Dedukti.

Γ `P A =⇒ φ(Γ) `λΠR φ(A) (Completeness)
Γ `P A ⇐= φ(Γ) `λΠR φ(A) (Soundness)
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Encodings

I Need to find a careful balance between expressivity and
consistency.

Theorem (Assaf, Cousineau, Dowek)
Any pure type system (PTS) can be encoded in the
λΠ-calculus modulo in a way that is sound and complete.



Implementations

I Holide: HOL in Dedukti (Assaf, Burel)
I Coqine: Coq in Dedukti (Assaf, Boespflug, Burel)
I Focalide: Focalize in Dedukti (Cauderlier, Dubois)



Thank you!

Coq OpenTheory

HOL Light HOL4

iProver (modulo) PVS

Dedukti

Coqine

Holide

https://www.rocq.inria.fr/deducteam/software.html

https://www.rocq.inria.fr/deducteam/software.html
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