A Universal Proof Framework

Ali Assaf

INRIA Paris-Rocquencourt, Deducteam

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Outline

Introduction

A closer look

My work

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Whack-A-Bug

def binary_search(A, x, left, right):
 middle = (left + right) / 2
 if A[middle] > x:
 return binary_search(A, x, left, middle)
 elif A[middle] < x:
 return binary_search(A, x, middle, right)
 else:</pre>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

return middle

Whack-A-Bug

```
def binary_search(A, x, left, right):
  middle = (left + right) / 2
  if A[middle] > x:
    return binary_search(A, x, left, middle)
  elif A[middle] < x:
    return binary_search(A, x, middle, right)
  else:
    meturn middle</pre>
```

return middle

```
A = [2, 3, 5, 7]
binary_search(A, 7, 0, 3) # Dops!
```

Whack-A-Bug

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

return middle

```
A = [2, 3, 5, 7]
binary_search(A, 7, 0, 3) # Dops!
```

Proof of correctness

Theorem

If $x \in A$ and left \leq right and $A[left] \leq x \leq A[right]$ then $A[binary_search(A, x, left, right)] = x$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof.

By induction on (right - left) ...

Formal proof

Formal language: \forall , \exists , \Longrightarrow , ...

Deductive system:

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \implies B} \qquad \frac{\Gamma \vdash A \implies B \quad \Gamma \vdash A}{\Gamma \vdash B}$$

Proof systems

Theoretical systems

- First-order logic
- Higher-order logic
- Calculus of constructions

Proof systems

Theoretical systems

- First-order logic
- Higher-order logic
- Calculus of constructions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Implementations

- Twelf
- HOL
- Coq

In software engineering: eliminate more bugs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- CompCert project
- L4.verified project

In mathematics: prove harder theorems

- 4-color theorem
- Kepler theorem

Outline

Introduction

A closer look

My work

<ロ> < 個> < 国> < 国> < 国> < 国> < 国</p>

Proof checking:

• Given a proposition A and a proof \mathcal{D} , does \mathcal{D} prove A?

Proof checking:

• Given a proposition A and a proof \mathcal{D} , does \mathcal{D} prove A?

•
$$Check(D, A) = Yes$$
 or No

Proof search:

• Given a proposition A, does there exist a proof \mathcal{D} of A?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► Search(A) = D or None

Theorem foo: forall A B C : Prop,
(A
$$\rightarrow$$
 B) \rightarrow (B \rightarrow C) \rightarrow (A \rightarrow C) :=

fun A B C proof_of_A_B proof_of_B_C =>
fun proof_of_A =>

let proof_of_B := (proof_of_A_B proof_of_A) in
let proof_of_C := (proof_of_B_C proof_of_B) in
proof_of_C.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem foo: forall A B C : Prop, (A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow (A \rightarrow C) :=

fun A B C proof_of_A_B proof_of_B_C =>
fun proof_of_A =>

let proof_of_B := (proof_of_A_B proof_of_A) in
let proof_of_C := (proof_of_B_C proof_of_B) in
proof_of_C.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem foo: forall A B C : Prop, (A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow (A \rightarrow C) :=

fun A B C proof_of_A_B proof_of_B_C =>
fun proof_of_A =>

let proof_of_B := (proof_of_A_B proof_of_A) in let proof_of_C := (proof_of_B_C proof_of_B) in proof_of_C .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof development

- 1. Write your proof
- 2. Call the proof checker
- 3. Checker answers Yes or No and gives you an error

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

4. If answer is No, go back to step 1

Proof development

- 1. Write your proof
- 2. Call the proof checker
- 3. Checker answers Yes or No and gives you an error

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

4. If answer is No, go back to step 1

Sounds familiar?

Program development

- 1. Write your programs
- 2. Call the compiler
- 3. Compiler answers Yes or No and gives you an error

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

4. If answer is No, go back to step 1

Sounds familiar?

Proofs are programs!

Curry-Howard correspondence

Proof	Program
Proposition	Туре
$A \implies B$	A ightarrow B
Proof checking	Type checking

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Proofs are programs!

Proof system = Programming language

Outline

Introduction

A closer look

My work

A Zoology of proof systems

Twelf, HOL, Coq, Isabelle, PVS, NuPRL, Mizar, Agda, ProofPower, Lego, ACL2, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Different properties
 - Intuitionistic/Classical
 - Top-down/Bottom-up
 - Sequents/Proof terms
 - ▶ ...

Top 100 theorems

HOL Light	86
Mizar	57
lsabelle	51
Coq	49
ProofPower	42
nqthm/ACL2	18
PVS	16
NuPRL/MetaPRL	8

 $http://www.cs.ru.nl/{\sim}freek/100/$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

The need for interoperability

- CompCert project : 50 000 lines (Coq)
- Four-color theorem: 60 000 lines (Coq)
- ► Jordan curve theorem: 75 000 lines (HOL)
- Odd order theorem: 170 000 lines (Coq)
- L4.verified project: 200 000 lines (Isabelle)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The need for interoperability

- CompCert project : 50 000 lines (Coq)
- Four-color theorem: 60 000 lines (Coq)
- ► Jordan curve theorem: 75 000 lines (HOL)
- Odd order theorem: 170 000 lines (Coq)
- L4.verified project: 200 000 lines (Isabelle)

Can we reuse them?

Logical Framework

Idea: Express all these proofs in a common logical framework.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Dedukti

- Dedukti: means "to deduce" in Esperanto
- Minimal formalism: λΠ-calculus modulo = First-order logic + rewriting

Without rewriting

$$\overline{\begin{array}{c}
 4 = 4 \\
 \overline{4 + 1 = 5} \\
 \overline{4 + 2 = 6} \\
 \overline{4 + 3 = 7} \\
 \overline{4 + 4 = 8}
 \end{array}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

With rewriting

$\begin{array}{rrrr} x+0 & \longrightarrow & x \\ x+(y+1) & \longrightarrow & (x+1)+y \end{array}$

With rewriting

With rewriting

$$x + 0 \longrightarrow x$$

 $x + (y + 1) \longrightarrow (x + 1) + y$
 $4 + 4 \longrightarrow^{*} 8$

$$\frac{8=8}{4+4=8}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Adding rewrite rules extends the logic.

- Adding rewrite rules extends the logic.
- Can express the proofs of a system *P* in Dedukti.

$$\Gamma \vdash_P A \implies \phi(\Gamma) \vdash_{\lambda \Pi_R} \phi(A)$$

- Adding rewrite rules extends the logic.
- Can express the proofs of a system *P* in Dedukti.

$$\Gamma \vdash_P A \implies \phi(\Gamma) \vdash_{\lambda \Pi_R} \phi(A) \Gamma \vdash_P A \iff \phi(\Gamma) \vdash_{\lambda \Pi_R} \phi(A)$$

- Adding rewrite rules extends the logic.
- Can express the proofs of a system *P* in Dedukti.

$$\Gamma \vdash_{P} A \implies \phi(\Gamma) \vdash_{\lambda \Pi_{R}} \phi(A) \quad \text{(Completeness)}$$

$$\Gamma \vdash_{P} A \iff \phi(\Gamma) \vdash_{\lambda \Pi_{R}} \phi(A) \quad \text{(Soundness)}$$

Need to find a careful balance between *expressivity* and *consistency*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Assaf, Cousineau, Dowek)

Any pure type system (PTS) can be encoded in the $\lambda \Pi$ -calculus modulo in a way that is sound and complete.

Implementations

- Holide: HOL in Dedukti (Assaf, Burel)
- Coqine: Coq in Dedukti (Assaf, Boespflug, Burel)
- Focalide: Focalize in Dedukti (Cauderlier, Dubois)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thank you!

https://www.rocq.inria.fr/deducteam/software.html

Thank you!

https://www.rocq.inria.fr/deducteam/software.html