A Universal Proof Framework

Ali Assaf

INRIA Paris-Rocquencourt, Deducteam



Outline

Introduction



Whack-A-Bug

def binary_search(A, x, left, right):
middle = (left + right) / 2
if A[middle] > x:
return binary_search(A, x, left, middle)
elif A[middle] < x:
return binary_search(A, x, middle, right)
else:
return middle



Whack-A-Bug

def binary_search(A, x, left, right):
middle = (left + right) / 2
if A[middle] > x:
return binary_search(A, x, left, middle)
elif A[middle] < x:
return binary_search(A, x, middle, right)
else:
return middle

A= [2> 3, 5, 7]
binary_search(A, 7, 0, 3) # Oops!



Whack-A-Bug

def binary_search(A, x, left, right):
middle = (left + right) / 2
if A[middle] > x:
return binary_search(A, x, left, middle - 1)
elif A[middle] < x:
return binary_search(A, x, middle + 1, right)
else:
return middle

A= [2> 3, 5, 7]
binary_search(A, 7, 0, 3) # Oops!



Proof of correctness

Theorem
If x € A and left < right and Alleft] < x < Alright]
then Albinary _search(A, x, left, right)] = x.

Proof.
By induction on (right — left) ...



Formal proof

Formal language: V, 4, =, ...

Deductive system:

NNAEB '-A = B r=A
'FA = B =B




Proof systems

Theoretical systems
» First-order logic
» Higher-order logic

» Calculus of constructions



Proof systems

Theoretical systems

» First-order logic

» Higher-order logic

» Calculus of constructions
Implementations

» Twelf

» HOL

» Coq



Why use them?

In software engineering: eliminate more bugs
» CompCert project
» L4.verified project

In mathematics: prove harder theorems
» 4-color theorem

» Kepler theorem



Outline

A closer look



Two problems

Proof checking:
» Given a proposition A and a proof D, does D prove A?
» Check(D, A) = Yes or No



Two problems

Proof checking:
» Given a proposition A and a proof D, does D prove A?
» Check(D, A) = Yes or No

Proof search:
» Given a proposition A, does there exist a proof D of A?
» Search(A) = D or None



Writing proofs

Theorem foo: forall A B C : Prop,
(A->B) > (B->C > (A >0 :=

fun A B C proof_of A B proof _of B C =>
fun proof of A =>

let proof of B :
let proof_of C :
proof _of C.

(proof_of A B proof_of A) in
(proof_of B C proof_of B) in



Writing proofs

Theorem foo: forall A B C : Prop,
(A->B) > B ->C > (A >0 :=

fun A B C proof_of A B proof _of B C =>
fun proof of A =>

let proof of B :
let proof_of C :
proof _of C.

(proof_of A B proof_of A) in
(proof_of B C proof_of B) in



Writing proofs

Theorem foo: forall A B C : Prop,
(A->B) > (B->C > (A >0 :=

fun A B C proof of A B proof of B C =>
fun proof of A =>

let proof of B := (proof_of A B proof of A) in
let proof of C := (proof of B C proof_of B) in
proof of C .



Proof development

. Write your proof
. Call the proof checker
. Checker answers Yes or No and gives you an error

A W NN =

. If answer is No, go back to step 1



Proof development

. Write your proof
. Call the proof checker

w N =

. Checker answers Yes or No and gives you an error
4. If answer is No, go back to step 1

Sounds familiar?



Program development

. Write your programs

. Call the compiler

w N =

. Compiler answers Yes or No and gives you an error

4. If answer is No, go back to step 1

Sounds familiar?



Proofs are programs!

Curry-Howard correspondence

Proof Program
Proposition Type
A= B A— B

Proof checking | Type checking




Proofs are programs!

Proof system = Programming language



Outline

My work



A Zoology of proof systems

» Twelf, HOL, Coq, Isabelle, PVS, NuPRL, Mizar, Agda,
ProofPower, Lego, ACL2, ...

» Different properties

» Intuitionistic/Classical
» Top-down/Bottom-up
» Sequents/Proof terms

> ...



Top 100 theorems

HOL Light | 86

Mizar Y/
Isabelle 51
Coq 49

ProofPower 42
nqthm/ACL2 18
PVS 16
NuPRL/MetaPRL | 8

http://www.cs.ru.nl/~freek/100/


http://www.cs.ru.nl/~freek/100/

The need for interoperabilty

CompCert project : 50 000 lines (Coq)
Four-color theorem: 60 000 lines (Coq)
Jordan curve theorem: 75 000 lines (HOL)
Odd order theorem: 170 000 lines (Coq)
L4.verified project: 200 000 lines (Isabelle)

v

v

v

v

v



The need for interoperabilty

CompCert project : 50 000 lines (Coq)
Four-color theorem: 60 000 lines (Coq)
Jordan curve theorem: 75 000 lines (HOL)
Odd order theorem: 170 000 lines (Coq)
L4.verified project: 200 000 lines (Isabelle)

v

v

v

v

v

Can we reuse them?



Logical Framework

Idea: Express all these proofs in a common logical
framework.

PVS

o,

Dedukti

HOL Coq



Dedukti

» Dedukti: means “to deduce” in Esperanto

» Minimal formalism: All-calculus modulo =
First-order logic + rewriting



Without rewriting

4=4
111=5
44+2=06
1737

4+4=38



With rewriting

x+0 — x
x+(y+1) — (x+1)+y



With rewriting

x+0 — x
x+(y+1) — (x+1)+y

444 —* 8



With rewriting

x+0 — x
x+(y+1) — (x+1)+y

444 —* 8



Encodings

» Adding rewrite rules extends the logic.



Encodings

» Adding rewrite rules extends the logic.

» Can express the proofs of a system P in Dedukti.

FEr A = () Fang ¢(A)



Encodings

» Adding rewrite rules extends the logic.

» Can express the proofs of a system P in Dedukti.

Fep A = ¢(T) Fan, 9(A)
Fep A <= @) Fan, 6(A)



Encodings

» Adding rewrite rules extends the logic.

» Can express the proofs of a system P in Dedukti.

Fep A = o() Fanr ®(A) (Completeness)
FFp A < () Fang, #(A) (Soundness)



Encodings

» Need to find a careful balance between expressivity and
consistency.

Theorem (Assaf, Cousineau, Dowek)

Any pure type system (PTS) can be encoded in the
Al-calculus modulo in a way that is sound and complete.



Implementations

» Holide: HOL in Dedukti (Assaf, Burel)
» Cogine: Coq in Dedukti (Assaf, Boespflug, Burel)

» Focalide: Focalize in Dedukti (Cauderlier, Dubois)



Thank you!

( OpenTheory ) iProver (modulo)

https://www.rocq.inria.fr/deducteam /software.html


https://www.rocq.inria.fr/deducteam/software.html

Thank you!

HOL Light)  (HOL4)
( OpenTheory ) iProver (modulo)

/ -
P
P d
”
-
Dedukti -

https://www.rocq.inria.fr/deducteam /software.html


https://www.rocq.inria.fr/deducteam/software.html

	Introduction
	A closer look
	My work

