Coupling From The Past with Oracle Skipping

Rémi VARLOOT

Supervisors: Ana BUŠIĆ Anne BOUILLARD

DYOGENE (Inria — ENS)

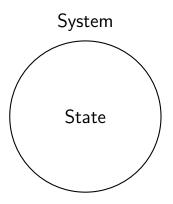
Applications

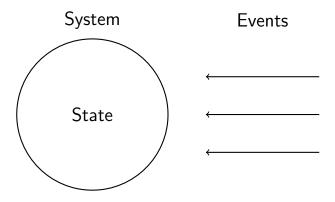
Stationary Distribution

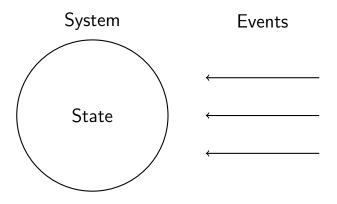
Method 1: Monte Carlo Markov Chains

Method 2: Coupling from the Past

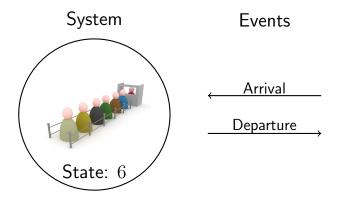
Contribution



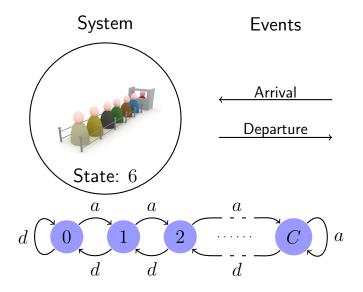


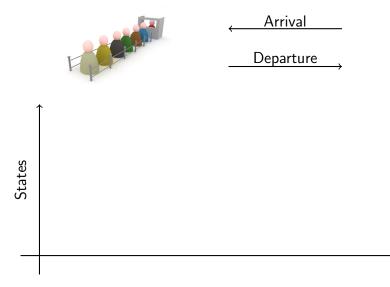


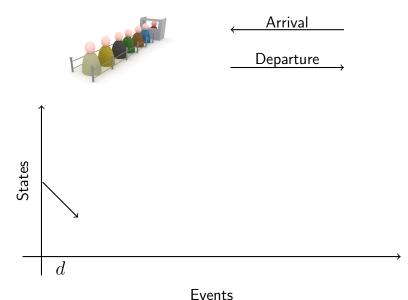
Events are independent

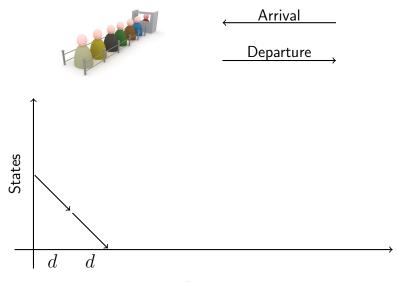


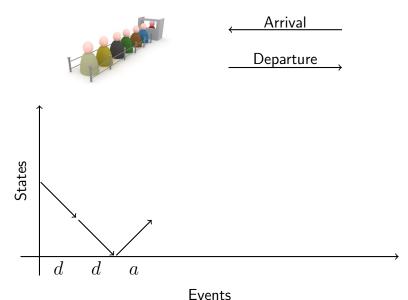
Events are independent

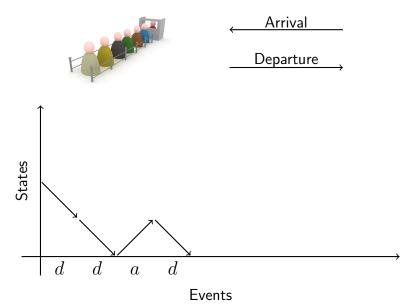


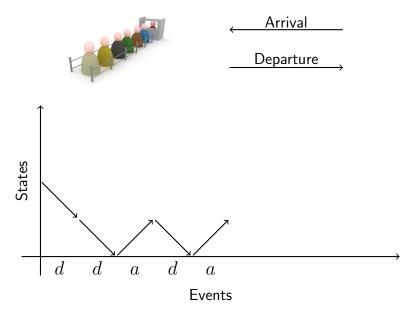


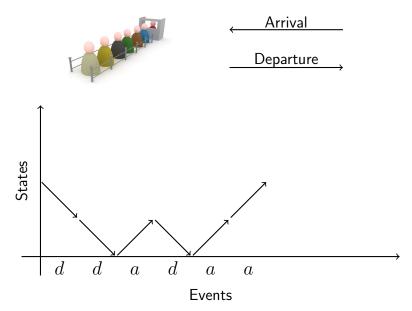


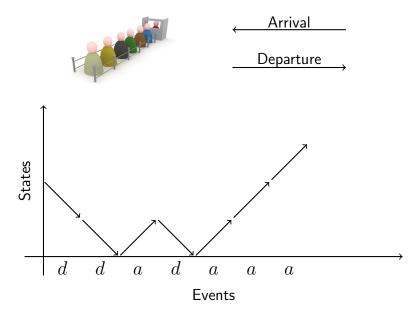


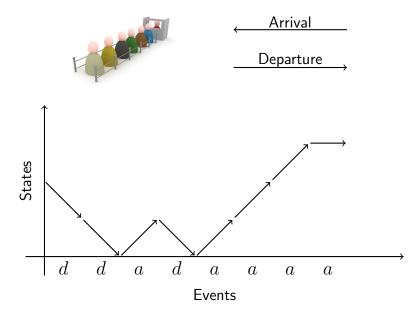


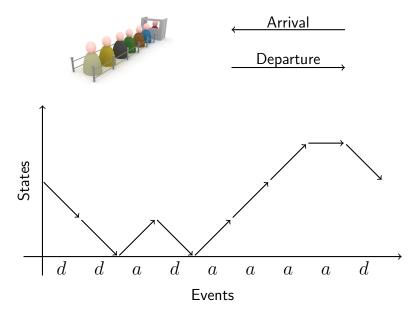


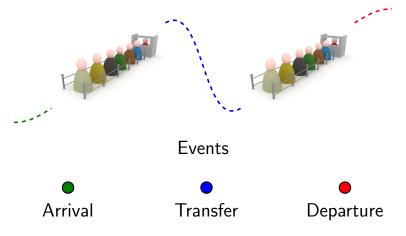


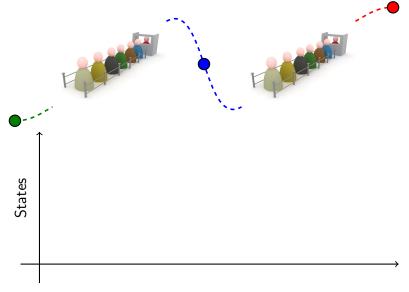


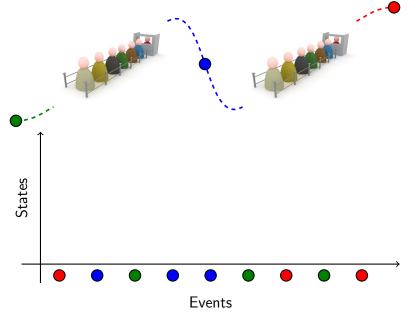


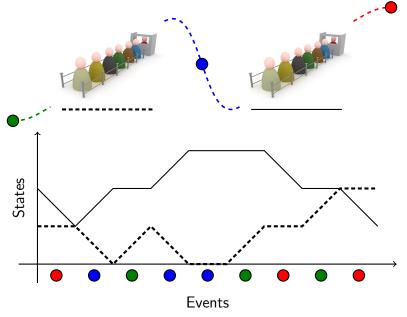






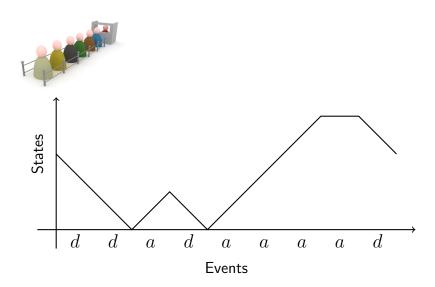


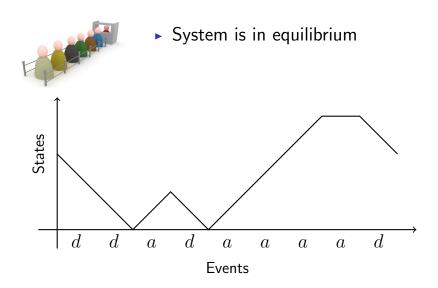


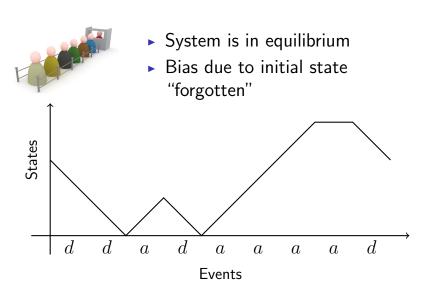


Applications

- Network Analysis
 - Delay estimation
 - Congestion estimation
 - Loss estimation
- Biology
 - Population evolution
 - Epidemics
- Physics
 - Microscopic gas models







- System is in equilibrium
- Bias due to initial state "forgotten"

$$\mathbf{P}(\text{arrival}) = \mathbf{P}(\text{departure}) = \frac{1}{2}$$

$$\forall k, p_t(k) = \frac{1}{C+1} \Rightarrow \forall k, p_{t+1}(k) = \frac{1}{C+1}$$

The stationary distribution is the uniform distribution



The stationary distribution is very hard to compute

The stationary distribution is very hard to compute

$$\begin{split} \mathbf{E} \left[\mathsf{number of clients} \right] &= ? \\ \mathbf{E} \left[\mathsf{end-to-end delay} \right] &= ? \\ \mathbf{P} \left\{ \mathsf{refusing a client} \right\} &= ? \end{split}$$



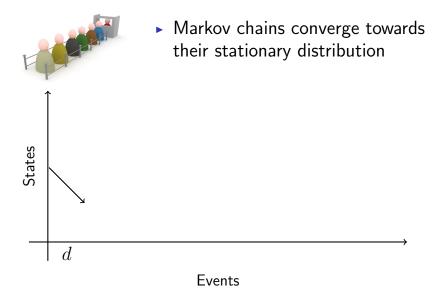
The stationary distribution is very hard to compute

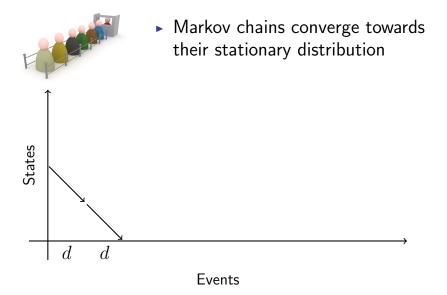
$$\begin{split} \mathbf{E} \left[\mathsf{number of clients} \right] &= ? \\ \mathbf{E} \left[\mathsf{end-to-end delay} \right] &= ? \\ \mathbf{P} \left\{ \mathsf{refusing a client} \right\} &= ? \end{split}$$

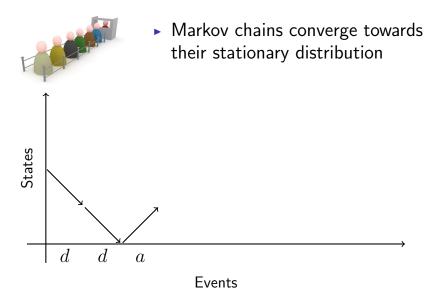
It is enough to be able to generate random samples

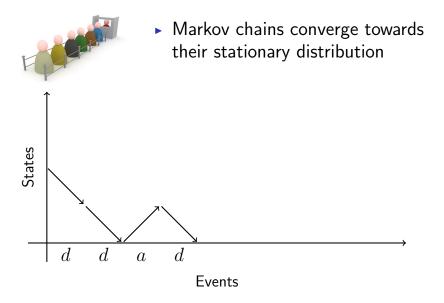
Events

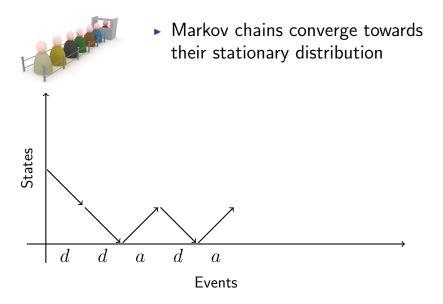
 Markov chains converge towards their stationary distribution

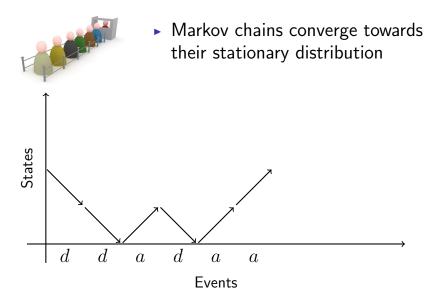


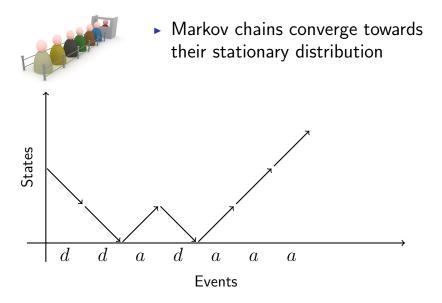


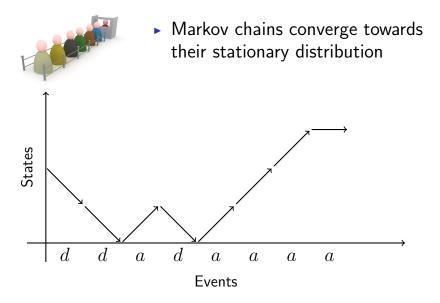


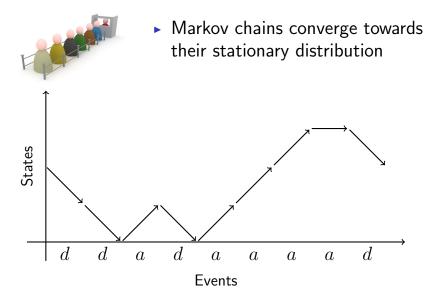


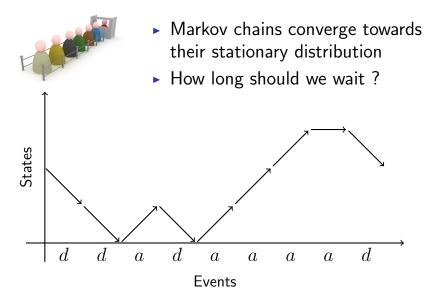










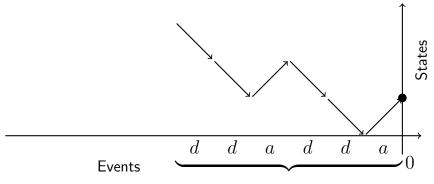


- Run a Markov chain from $-\infty$

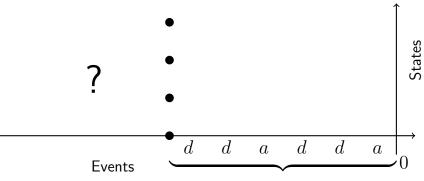




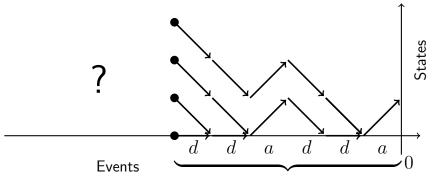
- \blacktriangleright Run a Markov chain from $-\infty$
- The state at time 0 has the right distribution



- \blacktriangleright Run a Markov chain from $-\infty$
- The state at time 0 has the right distribution



- Run a Markov chain from $-\infty$
- The state at time 0 has the right distribution



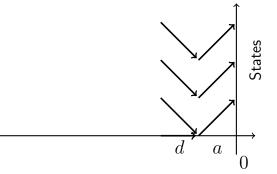
- Run a Markov chain from $-\infty$
- The state at time 0 has the right distribution

Events

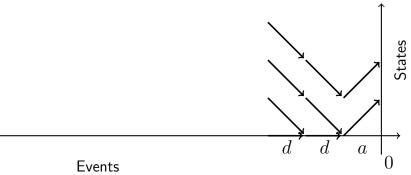
States

- \blacktriangleright Run a Markov chain from $-\infty$
- The state at time 0 has the right distribution

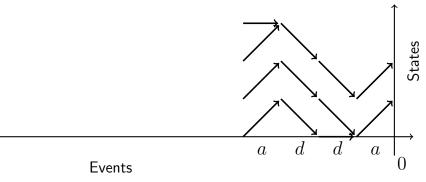
- \blacktriangleright Run a Markov chain from $-\infty$
- The state at time 0 has the right distribution



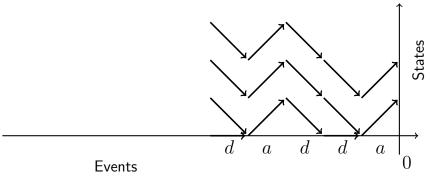
- \blacktriangleright Run a Markov chain from $-\infty$
- The state at time 0 has the right distribution



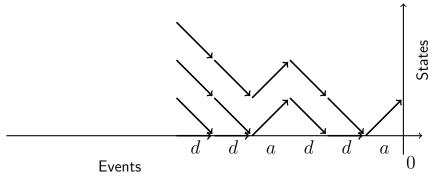
- \blacktriangleright Run a Markov chain from $-\infty$
- The state at time 0 has the right distribution



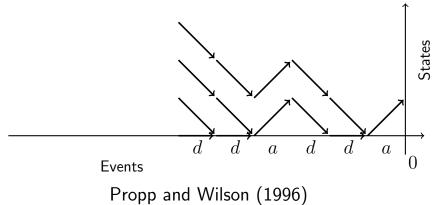
- \blacktriangleright Run a Markov chain from $-\infty$
- The state at time 0 has the right distribution

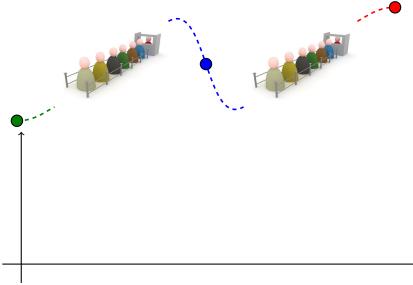


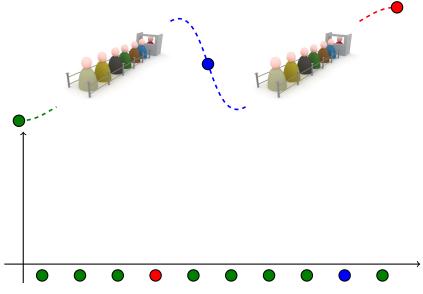
- \blacktriangleright Run a Markov chain from $-\infty$
- The state at time 0 has the right distribution

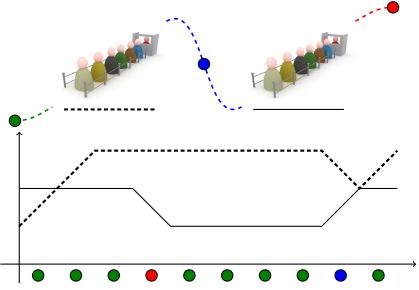


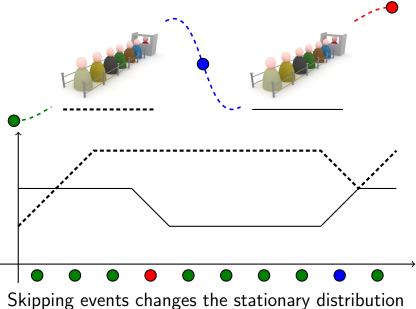
- \blacktriangleright Run a Markov chain from $-\infty$
- The state at time 0 has the right distribution

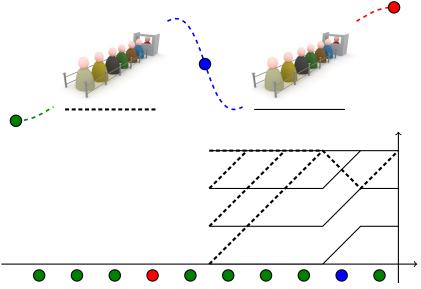


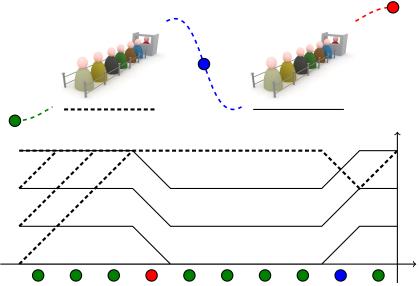


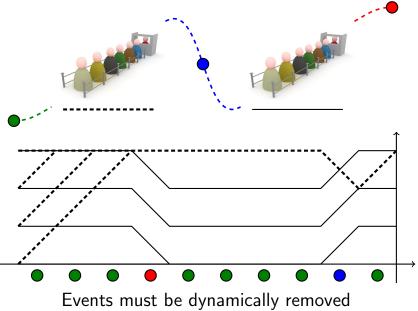


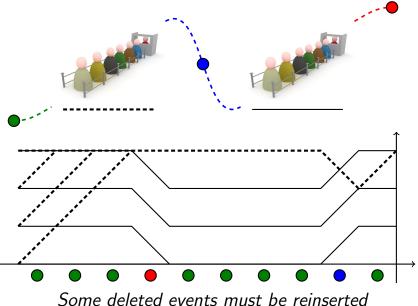












Questions?

