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Applications

I Network Analysis
I Delay estimation
I Congestion estimation
I Loss estimation

I Biology
I Population evolution
I Epidemics

I Physics
I Microscopic gas models
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Stationary Distribution
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The stationary distribution is the uniform distribution
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Stationary Distribution

The stationary distribution is very hard to compute

E [number of clients] = ?

E [end-to-end delay] = ?

P {refusing a client} = ?

It is enough to be able to generate random samples

9 / 13



Stationary Distribution

The stationary distribution is very hard to compute

E [number of clients] = ?

E [end-to-end delay] = ?

P {refusing a client} = ?

It is enough to be able to generate random samples

9 / 13



Stationary Distribution

The stationary distribution is very hard to compute

E [number of clients] = ?

E [end-to-end delay] = ?

P {refusing a client} = ?

It is enough to be able to generate random samples

9 / 13



Stationary Distribution

The stationary distribution is very hard to compute

E [number of clients] = ?

E [end-to-end delay] = ?

P {refusing a client} = ?

It is enough to be able to generate random samples
9 / 13



Monte Carlo Markov Chains

I Markov chains converge towards
their stationary distribution

I How long should we wait ?

S
ta
te
s

Events

10 / 13



Monte Carlo Markov Chains

I Markov chains converge towards
their stationary distribution

I How long should we wait ?

S
ta
te
s

Events

10 / 13



Monte Carlo Markov Chains

I Markov chains converge towards
their stationary distribution

I How long should we wait ?

S
ta
te
s

Events

d

10 / 13



Monte Carlo Markov Chains

I Markov chains converge towards
their stationary distribution

I How long should we wait ?

S
ta
te
s

Events

d d

10 / 13



Monte Carlo Markov Chains

I Markov chains converge towards
their stationary distribution

I How long should we wait ?

S
ta
te
s

Events

d d a

10 / 13



Monte Carlo Markov Chains

I Markov chains converge towards
their stationary distribution

I How long should we wait ?

S
ta
te
s

Events

d d a d

10 / 13



Monte Carlo Markov Chains

I Markov chains converge towards
their stationary distribution

I How long should we wait ?

S
ta
te
s

Events

d d a d a

10 / 13



Monte Carlo Markov Chains

I Markov chains converge towards
their stationary distribution

I How long should we wait ?

S
ta
te
s

Events

d d a d a a

10 / 13



Monte Carlo Markov Chains

I Markov chains converge towards
their stationary distribution

I How long should we wait ?

S
ta
te
s

Events

d d a d a a a

10 / 13



Monte Carlo Markov Chains

I Markov chains converge towards
their stationary distribution

I How long should we wait ?

S
ta
te
s

Events

d d a d a a a a

10 / 13



Monte Carlo Markov Chains

I Markov chains converge towards
their stationary distribution

I How long should we wait ?

S
ta
te
s

Events

d d a d a a a a d

10 / 13



Monte Carlo Markov Chains

I Markov chains converge towards
their stationary distribution

I How long should we wait ?

S
ta
te
s

Events

d d a d a a a a d

10 / 13



Coupling from the Past

I Run a Markov chain from −∞
I The state at time 0 has the right
distribution

S
ta
te
s

Events 0
d d a d d a

−∞

d a a a ︸ ︷︷ ︸
?

Propp and Wilson (1996)
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Contribution

Skipping events changes the stationary distribution
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Contribution

Events must be dynamically removed
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Contribution

Some deleted events must be reinserted
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Questions?
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