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Backgrounds History

George Boole

I 2 November 1815 – 8 December 1864.

I English mathematician, philosopher
and logician.

I known as a founder of the field of
Computer Science.

I Notable contribution:
Boolean Algebra.
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Backgrounds History

Boolean Algebra

— Possible values of the variables: TRUE or FALSE.
— Basic operations: AND, OR and NOT.

AND FALSE TRUE
FALSE FALSE FALSE
TRUE FALSE TRUE

OR FALSE TRUE
FALSE FALSE TRUE
TRUE TRUE TRUE

NOT
FALSE TRUE
TRUE FALSE

Many other operations can be built from these basic operations.
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Backgrounds History

Boolean Algebra

First introduced by G. Boole in “An Investigation of the Laws of
Thought”, 1854.

The term “Boolean Algebra” is suggested by Sheffer in 1913.

Boolean Algebra (a.k.a. digital logic) is fundamental in Computer
Science, Set Theory, Statistics. . .
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Backgrounds Preliminaries

Example

Is taking my umbrella a good option?

1. Is it raining?

2. Bad weather forecast?

3. But . . . do I go by car?

Rain

Bad weather

Car

OR

NOT

ANDforecast
Umbrella

Rain x X x X x X x X
Bad weather forecast x x X X x x X X
Car x x x x X X X X
Umbrella x X X X x x x x
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Definitions Boolean Functions

Definitions

Boolean Functions
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Definitions Boolean Functions

Binary Representation

F2 = ({0, 1},⊕, ·): Finite Field of 2 elements.

1, 0←→ TRUE, FALSE,
⊕ (addition modulo 2)←→ XOR (Exclusive OR),

· ←→ AND.

Remark:

XOR(A,B) = OR(AND(A,NOT (B)),AND(NOT (A),B)).

XOR FALSE TRUE
FALSE FALSE TRUE
TRUE TRUE FALSE
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Definitions Boolean Functions

Boolean Functions

Truth table of a Boolean function.

x0 0 1 0 1 0 1 0 1
x1 0 0 1 1 0 0 1 1
x2 0 0 0 0 1 1 1 1

f (x0, x1, x2) 0 1 1 1 0 0 0 0

Definition
A Boolean function of n variables is a function from Fn

2 into F2.

f : Fn
2 → F2

(x0, . . . , xn−1) 7→ f (x0, . . . , xn−1).
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Definitions Boolean Functions

Boolean Functions

Value vector of f : word of 2n bits consisting of every f (x), for
x ∈ Fn

2.
Example: f (x0, x1, x2) = (0, 1, 1, 1, 0, 0, 0, 0).
Definition [Hamming weight]

The Hamming weight of a Boolean function f , wt(f ), is
the binary weight of its value vector.

Example: wt(f ) = wt(0, 1, 1, 1, 0, 0, 0, 0) = 3.

A Boolean function of n variables is balanced if and only if
wt(f ) = 2n−1.
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Definitions Boolean Functions

Algebraic Normal Form (ANF)
Proposition
Any Boolean function f of n variables has a unique multivariate
polynomial representation:

f (x0, . . . , xn−1) =
⊕

u=(u0,...,un−1)∈Fn
2

auxu, xu =
n−1∏
i=0

xui
i ,

and au ∈ F2.

Example:
x110 = x0x1

f (x0, x1, x2) = x0 ⊕ x0x1 ⊕ x0x1x2.
Moreover, the coefficients of the ANF and the value of f satisfy:

au =
⊕
x�u

f (x) and f (u) =
⊕
x�u

ax ,

where x � u if and only if xi ≤ ui for all i .
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Definitions Boolean Functions

Example x0 0 1 0 1 0 1 0 1
x1 0 0 1 1 0 0 1 1
x2 0 0 0 0 1 1 1 1

f (x0, x1, x2) 0 1 1 1 0 0 0 0

a000 = f (000) = 0
a100 = f (000)⊕ f (100) = 1
a010 = f (000)⊕ f (010) = 1
a110 = f (000)⊕ f (100)⊕ f (010)⊕ f (110) = 1
a001 = f (000)⊕ f (001) = 0
a101 = f (000)⊕ f (100)⊕ f (001)⊕ f (101) = 1
a011 = f (000)⊕ f (010)⊕ f (001)⊕ f (011) = 1

a111 =
⊕
x∈F3

2

f (x) = wt(f ) (mod 2) = 1.

Then f (x) = x0 ⊕ x1 ⊕ x0x1 ⊕ x0x2 ⊕ x1x2 ⊕ x0x1x2.
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Definitions Vectorial Boolean Functions

Definitions

Vectorial Boolean Functions
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Definitions Vectorial Boolean Functions

Vectorial Boolean Functions
Definition [Vectorial Boolean Function]
A vectorial Boolean function of n inputs and m outputs ((n,m)-
function) is a function from Fn

2 into Fm
2 :

F : Fn
2 → Fm

2
(x0, . . . , xn−1) 7→ (y0, . . . , ym−1).

The Boolean functions fi : (x0, . . . , xn−1) 7→ yi , 0 ≤ i ≤ m− 1, are
called the coordinate functions.
Linear combinations of the coordinate functions:

x 7→ λ · (f0(x), . . . , fm−1(x)), λ ∈ Fm
2 , λ 6= 0,

are called the component functions.
Proposition
An (n, n)-function is a permutation of Fn

2 if and only if all its com-
ponent functions are balanced.
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Definitions Vectorial Boolean Functions

Example of a Vectorial Boolean Function
n = 4

0 ↔ (0, 0, 0, 0) 8 ↔ (0, 0, 0, 1)
1 ↔ (1, 0, 0, 0) 9 ↔ (1, 0, 0, 1)
2 ↔ (0, 1, 0, 0) a ↔ (0, 1, 0, 1)
3 ↔ (1, 1, 0, 0) b ↔ (1, 1, 0, 1)
4 ↔ (0, 0, 1, 0) c ↔ (0, 0, 1, 1)
5 ↔ (1, 0, 1, 0) d ↔ (1, 0, 1, 1)
6 ↔ (0, 1, 1, 0) e ↔ (0, 1, 1, 1)
7 ↔ (1, 1, 1, 0) f ↔ (1, 1, 1, 1)
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Definitions Vectorial Boolean Functions

Example of a Vectorial Boolean Function
n = 4

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S0(x) 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1
S1(x) 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0
S2(x) 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1
S3(x) 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0

x = (x0, x1, x2, x3):

S0(x) = 1 + x0 + x2 + x3 + x1x2 + x1x3 + x2x3 + x0x2x3 + x1x2x3
S1(x) = 1 + x3 + x0x1 + x0x2 + x0x3 + x0x1x2 + x0x1x3 + x0x2x3
S2(x) = 1 + x1 + x3 + x0x1 + x1x2 + x1x3 + x2x3 + x0x1x3 + x0x2x3
S3(x) = 1 + x2 + x3 + x0x2 + x1x3 + x2x3 + x0x2x3 + x1x2x3
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Definitions Vectorial Boolean Functions

Identifying Fn
2 with the Finite Field F2n

Let α be a root of an irreducible polynomial of degree n over F2.
The Finite Field F2n consists of every linear combinations of
elements 1, α, . . . , αn−1 over F2.

ϕ : Fn
2 ' F2n

(x0, . . . , xn−1) 7→
n−1∑
i=0

xiα
i ,

Example: n = 4, α a root of the irreducible polynomial 1+ x + x4.

Valentin Suder (Inria) On Boolean Functions in Symmetric Cryptography December 17, 2013 18 / 36

0 1 2 3 4 5 6 7
F4
2 (0, 0, 0, 0) (1, 0, 0, 0) (0, 1, 0, 0) (1, 1, 0, 0) (0, 0, 1, 0) (1, 0, 1, 0) (0, 1, 1, 0) (1, 1, 1, 0)

F24 0 1 α 1 + α α2 1 + α2 α+ α2 1 + α+ α2

F24 0 1 α α4 α2 α8 α5 α10

8 9 a b c d e f
F4
2 (0, 0, 0, 1) (1, 0, 0, 1) (0, 1, 0, 1) (1, 1, 0, 1) (0, 0, 1, 1) (1, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1)

F24 α3 1 + α3 α+ α3 1 + α+ α3 α2 + α3 1 + α2 + α3 α+ α2 + α3 1 + α+ α2 + α3

F24 α3 α14 α9 α7 α6 α13 α11 α12



Definitions Vectorial Boolean Functions

Univariate Polynomial Representation

Proposition
Any (n, n)-function F admits a unique univariate polynomial repre-
sentation over F2n , of degree at most 2n − 1:

F (x) =
2n−1∑
i=0

cix i , ci ∈ F2n .
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Definitions Vectorial Boolean Functions

Univariate Polynomial Representation
Example: n = 4

α a root of the primitive polynomial 1 + x + x4.

x 0 1 α α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

S(x) α12 α11 α7 α5 0 α6 α10 α2 α9 α13 α14 α3 1 α8 α α4

S(x) = α12 + α2x + α13x2 + α6x3 + α10x4 + αx5 + α10x6 + α2x7

+ α9x8 + α4x9 + α7x10 + α7x11 + α5x12 + x13 + α6x14.
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Symmetric Cryptography Block Ciphers

Symmetric Cryptography

Block Ciphers
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Symmetric Cryptography Block Ciphers

Block Ciphers
M ∈ Fm

2 : plaintext,
C ∈ Fm

2 : ciphertext,
K ∈ Fk

2 : key.

Block Cipher
E : Fm

2 × Fk
2 → Fm

2

(M,K ) 7→ E (M,K ) = C .

For a fixed key K ∈ Fk
2 ,

EK (M) 7→ C , is a permutation of Fm
2 .

E

M

C

K

Problems? In practice: m ≥ 64 and k ≥ 80 (!!!)

I For one key K , EK permutes 264 elements!
I 280 different permutations!
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Symmetric Cryptography Block Ciphers

Substitution Permutation Networks

Add Round Key
Fm
2 xFm

2 → Fm
2

(M, SubK ) 7→ M ⊕ SubK .

M = (M0, . . . ,Mm/n−1), Mi ∈ Fn
2 (word).

SBox (substitution)
Nonlinear Permutation:
S : Fn

2 → Fn
2

Mi 7→ (S0(Mi), . . . ,Sn−1(Mi)).

In practice: n = 4, 8.
Permutation (diffusion)
Linear Permutation:

Fm
2 → Fm

2 .

b
b

b

bbb SSS

M

C

K

bbb SSS

Add Round Key

Add Round Key

Permutation

Permutation

K
ey

expansion
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Symmetric Cryptography Block Ciphers

Example of an SBox
n = 4

Multivariate:

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S0(x) 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1
S1(x) 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0
S2(x) 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1
S3(x) 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0

Univariate:

x 0 1 α α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

S(x) α12 α11 α7 α5 0 α6 α10 α2 α9 α13 α14 α3 1 α8 α α4

Valentin Suder (Inria) On Boolean Functions in Symmetric Cryptography December 17, 2013 24 / 36



Symmetric Cryptography Block Ciphers

Example of an SBox
n = 4

Multivariate:

S0(x) = 1 + x0 + x2 + x3 + x1x2 + x1x3 + x2x3 + x0x2x3 + x1x2x3
S1(x) = 1 + x3 + x0x1 + x0x2 + x0x3 + x0x1x2 + x0x1x3 + x0x2x3
S2(x) = 1 + x1 + x3 + x0x1 + x1x2 + x1x3 + x2x3 + x0x1x3 + x0x2x3
S3(x) = 1 + x2 + x3 + x0x2 + x1x3 + x2x3 + x0x2x3 + x1x2x3

Univariate:

S(x) = α12 + α2x + α13x2 + α6x3 + α10x4 + αx5 + α10x6 + α2x7

+ α9x8 + α4x9 + α7x10 + α7x11 + α5x12 + x13 + α6x14.
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Symmetric Cryptography Cryptographic Properties

Symmetric Cryptography

Cryptographic Properties

Valentin Suder (Inria) On Boolean Functions in Symmetric Cryptography December 17, 2013 26 / 36



Symmetric Cryptography Cryptographic Properties

Algebraic Degree of a Vectorial Boolean Function
Algebraic Degree

I The algebraic degree of a Boolean function
f (x) =

⊕
u∈Fn

2
auxu is

degalg(f ) = max
u∈Fn

2
{wt(u) | au = 1}.

Example: f (x0, x1, x2) = x0 ⊕ x0x1 ⊕ x0x1x2.
The Hamming weight of a Boolean function of n variables f ,
wt(f ), is odd if and only if degalg(f ) = n.

Algebraic Degree
I The algebraic degree of a (n,m)-function F with coordinates

f0, . . . , fm−1 is

degalg(F ) = max
0≤i≤m−1

degalg(fi).
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Symmetric Cryptography Cryptographic Properties

Algebraic Degree

SBox: S = (S0, . . . ,Sn−1).
Plaintext: x = (x0, . . . , xn−1) (known).
Key: κ = (k0, . . . , kn−1) (unknown).

For all coordinate functions Si ,

Si(x + κ) =
⊕

u
su(x + κ)u.

Example: n = 4,

(x + κ)0110 = (x1 ⊕ k1) · (x2 ⊕ k2)
= x1x2 ⊕ x1k2 ⊕ x2k1 ⊕ k1k2.

bbb SSS

Add Round Key

Permutation

Nonlinear system of m
equations and m unknowns.

⇓

Linear system of m equations
and > m unknowns.

The lower the algebraic degree
is, the less unknowns we have,

the easier to resolve the
system is.
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Symmetric Cryptography Cryptographic Properties

Univariate degree

Univariate Degree
I The univariate degree of a (n, n)-function F (x) =

∑2n−1
i=0 cix i

is
deg(F ) = max

0≤i≤2n−1
{i | ci 6= 0}.

Remark:
The algebraic degree of a function F (x) =

∑2n−1
i=0 cix i is

degalg(F ) = max
0≤i≤2n−1

{wt(i) | ci 6= 0}.
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Symmetric Cryptography Cryptographic Properties

Univariate Degree

The univariate degree of the SBox,
deg(S), influences the univariate degree

of the cipher EK
(and does not depend on K ).

If deg(E−1K ) = d is “sufficiently” low

⇓

with d + 1 pairs (Ci ,Mi) of
ciphertext/plaintext we can interpolate
a unique polynomial E ′ of degree d such

that E ′(Ci) = Mi , 0 ≤ i ≤ d .

bbb SSS

Add Round Key

Permutation

In conclusion, for every C ∈ F2m ,

E ′(C) = E−1K (C) = M.
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Symmetric Cryptography Cryptographic Properties

Differential Property
Definition
The differential uniformity of an SBox S is defined as

δ(S) = max
a 6=0, b∈F2n

#{x | S(x) + S(x + a) = b}.

S

x0

x1

x2

x3

y0

y1

y2

y3

S

x0 ⊕ a0 = x′
0 y′

0

y′
1

y′
2

y′
3

x1 ⊕ a1 = x′
1

x2 ⊕ a2 = x′
2

x3 ⊕ a3 = x′
3

y + y′ = ?

S is Almost Perfect Nonlinear (APN) if and only if δ(S) = 2.
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Design Problem Practical Requirements

Design Problem

Practical Requirements
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Design Problem Practical Requirements

What do we want for a “good” SBox?

I a high algebraic degree,
I a high univariate degree,
I a “low” differential uniformity,
I a “good” hardware/sofware implementation,

...

+ a permutation,
+ an inverse verifying all of these requirements (!!)

We already know that δ(S) = δ(S−1).
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Design Problem APN Permutations

APN Permutations on F2n

I n is odd: x r for some (few) integers r .
When 3|n but 9 - n, one of the shape x s + γx t .

I n = 4: No APN Permutations.
I n = 6: Dillon’s function [’09]:
D(x) =α36x60+α44x58+α40x57+α55x56+α26x54+α23x53

+ α36x52 + α23x51 + α17x50 + α54x49 + α14x48
+ α21x46 + α53x45 + α21x44 + α7x43 + α57x42
+ α8x41 + α10x40 + α12x39 + α20x38 + α52x37
+ α46x36 + α27x35 + α44x34 + α18x33 + α57x32
+ α28x30 + α44x29 + α42x28 + α26x27 + α20x26
+α10x25 +α45x24 + x23 +α7x22 +α57x21 +α21x20
+ α22x19 + α6x17 + α8x16 + α43x15 + α42x13
+ α47x12 + α56x11 + α38x10 + α36x8 + α47x7
+ α4x6 + α8x5 + α23x4 + α39x3 + α52x2 + α59x .

I n ≥ 8: ???

Valentin Suder (Inria) On Boolean Functions in Symmetric Cryptography December 17, 2013 35 / 36



Design Problem APN Permutations

APN Permutations on F2n

I n is odd: x r for some (few) integers r .
When 3|n but 9 - n, one of the shape x s + γx t .

I n = 4: No APN Permutations.

I n = 6: Dillon’s function [’09]:
D(x) =α36x60+α44x58+α40x57+α55x56+α26x54+α23x53

+ α36x52 + α23x51 + α17x50 + α54x49 + α14x48
+ α21x46 + α53x45 + α21x44 + α7x43 + α57x42
+ α8x41 + α10x40 + α12x39 + α20x38 + α52x37
+ α46x36 + α27x35 + α44x34 + α18x33 + α57x32
+ α28x30 + α44x29 + α42x28 + α26x27 + α20x26
+α10x25 +α45x24 + x23 +α7x22 +α57x21 +α21x20
+ α22x19 + α6x17 + α8x16 + α43x15 + α42x13
+ α47x12 + α56x11 + α38x10 + α36x8 + α47x7
+ α4x6 + α8x5 + α23x4 + α39x3 + α52x2 + α59x .

I n ≥ 8: ???

Valentin Suder (Inria) On Boolean Functions in Symmetric Cryptography December 17, 2013 35 / 36



Design Problem APN Permutations

APN Permutations on F2n

I n is odd: x r for some (few) integers r .
When 3|n but 9 - n, one of the shape x s + γx t .

I n = 4: No APN Permutations.
I n = 6: Dillon’s function [’09]:
D(x) =α36x60+α44x58+α40x57+α55x56+α26x54+α23x53

+ α36x52 + α23x51 + α17x50 + α54x49 + α14x48
+ α21x46 + α53x45 + α21x44 + α7x43 + α57x42
+ α8x41 + α10x40 + α12x39 + α20x38 + α52x37
+ α46x36 + α27x35 + α44x34 + α18x33 + α57x32
+ α28x30 + α44x29 + α42x28 + α26x27 + α20x26
+α10x25 +α45x24 + x23 +α7x22 +α57x21 +α21x20
+ α22x19 + α6x17 + α8x16 + α43x15 + α42x13
+ α47x12 + α56x11 + α38x10 + α36x8 + α47x7
+ α4x6 + α8x5 + α23x4 + α39x3 + α52x2 + α59x .

I n ≥ 8: ???

Valentin Suder (Inria) On Boolean Functions in Symmetric Cryptography December 17, 2013 35 / 36



Design Problem APN Permutations

APN Permutations on F2n

I n is odd: x r for some (few) integers r .
When 3|n but 9 - n, one of the shape x s + γx t .

I n = 4: No APN Permutations.
I n = 6: Dillon’s function [’09]:
D(x) =α36x60+α44x58+α40x57+α55x56+α26x54+α23x53

+ α36x52 + α23x51 + α17x50 + α54x49 + α14x48
+ α21x46 + α53x45 + α21x44 + α7x43 + α57x42
+ α8x41 + α10x40 + α12x39 + α20x38 + α52x37
+ α46x36 + α27x35 + α44x34 + α18x33 + α57x32
+ α28x30 + α44x29 + α42x28 + α26x27 + α20x26
+α10x25 +α45x24 + x23 +α7x22 +α57x21 +α21x20
+ α22x19 + α6x17 + α8x16 + α43x15 + α42x13
+ α47x12 + α56x11 + α38x10 + α36x8 + α47x7
+ α4x6 + α8x5 + α23x4 + α39x3 + α52x2 + α59x .

I n ≥ 8: ???
Valentin Suder (Inria) On Boolean Functions in Symmetric Cryptography December 17, 2013 35 / 36



Valentin Suder (Inria) On Boolean Functions in Symmetric Cryptography December 17, 2013 36 / 36

Thank you!
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