On Boolean Functions in Symmetric Cryptography

Valentin Suder
(Advisor: Pascale Charpin)

Project-Team SECRET

valentin.suder@inria.fr

Project-Team SECRET

SEcurité CRyptographie E_{t} Transmission.

Outline

Backgrounds
History
Preliminaries
Definitions
Boolean Functions
Vectorial Boolean Functions
Symmetric Cryptography
Block Ciphers
Cryptographic Properties
Design Problem
Practical Requirements
APN Permutations

George Boole

- 2 November 1815 - 8 December 1864.
- English mathematician, philosopher and logician.
- known as a founder of the field of Computer Science.

George Boole

- 2 November 1815 - 8 December 1864.
- English mathematician, philosopher and logician.
- known as a founder of the field of Computer Science.
- Notable contribution: Boolean Algebra.

[^0]
Boolean Algebra

- Possible values of the variables: TRUE or FALSE.
- Basic operations: AND, OR and NOT.

AND	FALSE	TRUE		OR	FALSE	TRUE
FALSE	FALSE	FALSE		FALSE	FALSE	TRUE
TRUE	FALSE	TRUE		TRUE	TRUE	TRUE
			NOT			
			FALSE	TRUE		
			TRUE	FALSE		

Many other operations can be built from these basic operations.

Boolean Algebra

First introduced by G. Boole in "An Investigation of the Laws of Thought", 1854.

The term "Boolean Algebra" is suggested by Sheffer in 1913.

Boolean Algebra (a.k.a. digital logic) is fundamental in Computer Science, Set Theory, Statistics...

Backgrounds

Preliminaries

Example

Is taking my umbrella a good option?

Example

Is taking my umbrella a good option?

1. Is it raining?

Example

Is taking my umbrella a good option?

1. Is it raining?

2. Bad weather forecast?

Example

Is taking my umbrella a good option?

1. Is it raining?
2. Bad weather forecast?
3. But ... do I go by car?

Example

Is taking my umbrella a good option?

1. Is it raining?
2. Bad weather forecast?
3. But ...do I go by car?

Rain	x	\checkmark	\times	\checkmark	\times	\checkmark	\times	\checkmark
Bad weather forecast	x	x	\checkmark	\checkmark	x	\times	\checkmark	\checkmark
Car	x	x	x	x	\checkmark	\checkmark	\checkmark	\checkmark
Umbrella	x	\checkmark	\checkmark	\checkmark	x	x	x	x

Definitions

Boolean Functions

Binary Representation

$\mathbb{F}_{2}=(\{0,1\}, \oplus, \cdot)$: Finite Field of 2 elements.

$1,0 \longleftrightarrow$ TRUE, FALSE,
\oplus (addition modulo 2$) \longleftrightarrow$ XOR (Exclusive OR),
$\cdot \longleftrightarrow$ AND.

Remark:

$$
\operatorname{XOR}(A, B)=\operatorname{OR}(\operatorname{AND}(A, \operatorname{NOT}(B)), \operatorname{AND}(\operatorname{NOT}(A), B)) .
$$

XOR	FALSE	TRUE
FALSE	FALSE	TRUE
TRUE	TRUE	FALSE

Boolean Functions

Truth table of a Boolean function.

x_{0}	0	1	0	1	0	1	0	1
x_{1}	0	0	1	1	0	0	1	1
x_{2}	0	0	0	0	1	1	1	1
$f\left(x_{0}, x_{1}, x_{2}\right)$	0	1	1	1	0	0	0	0

Definition

A Boolean function of n variables is a function from \mathbb{F}_{2}^{n} into \mathbb{F}_{2}.

$$
\begin{array}{cccc}
f: & \mathbb{F}_{2}^{n} & \rightarrow & \mathbb{F}_{2} \\
\left(x_{0}, \ldots, x_{n-1}\right) & \mapsto & f\left(x_{0}, \ldots, x_{n-1}\right) .
\end{array}
$$

Boolean Functions

Value vector of f : word of 2^{n} bits consisting of every $f(x)$, for $x \in \mathbb{F}_{2}^{n}$.
Example: $f\left(x_{0}, x_{1}, x_{2}\right)=(0,1,1,1,0,0,0,0)$.
Definition [Hamming weight]
The Hamming weight of a Boolean function $f, w t(f)$, is the binary weight of its value vector.

Example: $w t(f)=w t(0,1,1,1,0,0,0,0)=3$.

A Boolean function of n variables is balanced if and only if $w t(f)=2^{n-1}$.

Algebraic Normal Form (ANF)

Proposition

Any Boolean function f of n variables has a unique multivariate polynomial representation:

$$
f\left(x_{0}, \ldots, x_{n-1}\right)=\bigoplus_{u=\left(u_{0}, \ldots, u_{n-1}\right) \in \mathbb{F}_{2}^{n}} a_{u} x^{u}, \quad x^{u}=\prod_{i=0}^{n-1} x_{i}^{u_{i}}
$$

and $a_{u} \in \mathbb{F}_{2}$.
Example:

$$
\begin{aligned}
x^{110} & =x_{0} x_{1} \\
f\left(x_{0}, x_{1}, x_{2}\right) & =x_{0} \oplus x_{0} x_{1} \oplus x_{0} x_{1} x_{2}
\end{aligned}
$$

Moreover, the coefficients of the ANF and the value of f satisfy:

$$
a_{u}=\bigoplus_{x \preceq u} f(x) \text { and } f(u)=\bigoplus_{x \preceq u} a_{x},
$$

where $x \preceq u$ if and only if $x_{i} \leq u_{i}$ for all i.

Example

x_{0}	0	1	0	1	0	1	0	1
x_{1}	0	0	1	1	0	0	1	1
x_{2}	0	0	0	0	1	1	1	1
$f\left(x_{0}, x_{1}, x_{2}\right)$	0	1	1	1	0	0	0	0

$$
\begin{aligned}
& a_{000}=f(000)=0 \\
& a_{100}=f(000) \oplus f(100)=1 \\
& a_{010}=f(000) \oplus f(010)=1 \\
& a_{110}=f(000) \oplus f(100) \oplus f(010) \oplus f(110)=1 \\
& a_{001}=f(000) \oplus f(001)=0 \\
& a_{101}=f(000) \oplus f(100) \oplus f(001) \oplus f(101)=1 \\
& a_{011}=f(000) \oplus f(010) \oplus f(001) \oplus f(011)=1 \\
& a_{111}=\bigoplus_{x \in \mathbb{F}_{2}^{3}} f(x)=w t(f)(\bmod 2)=1 .
\end{aligned}
$$

Then $\quad f(x)=x_{0} \oplus x_{1} \oplus x_{0} x_{1} \oplus x_{0} x_{2} \oplus x_{1} x_{2} \oplus x_{0} x_{1} x_{2}$.

Definitions

Vectorial Boolean Functions

Vectorial Boolean Functions

Definition [Vectorial Boolean Function]

A vectorial Boolean function of n inputs and m outputs ((n, m) function) is a function from \mathbb{F}_{2}^{n} into \mathbb{F}_{2}^{m} :

$$
\begin{array}{lccc}
F: & \mathbb{F}_{2}^{n} & \rightarrow & \mathbb{F}_{2}^{m} \\
& \left(x_{0}, \ldots, x_{n-1}\right) & \mapsto & \left(y_{0}, \ldots, y_{m-1}\right) .
\end{array}
$$

The Boolean functions $f_{i}:\left(x_{0}, \ldots, x_{n-1}\right) \mapsto y_{i}, 0 \leq i \leq m-1$, are called the coordinate functions.

Linear combinations of the coordinate functions:

$$
x \mapsto \lambda \cdot\left(f_{0}(x), \ldots, f_{m-1}(x)\right), \lambda \in \mathbb{F}_{2}^{m}, \lambda \neq 0,
$$

are called the component functions.

Proposition

An (n, n)-function is a permutation of \mathbb{F}_{2}^{n} if and only if all its component functions are balanced.

Example of a Vectorial Boolean Function

 $n=4$| 0 | \leftrightarrow | $(0,0,0,0)$ | 8 | \leftrightarrow |
| :--- | :--- | :--- | :--- | :--- |
| 1 | \leftrightarrow | $(1,0,0,0)$ | 9 | \leftrightarrow |
| | \leftrightarrow | $(1,0,0,1)$ | | |
| 3 | $\leftrightarrow(0,1,0,0)$ | a | \leftrightarrow | $(0,1,0,1)$ |
| 4 | $\leftrightarrow(1,1,0,0)$ | b | \leftrightarrow | $(1,1,0,1)$ |
| 5 | $\leftrightarrow(1,0,1,0)$ | c | \leftrightarrow | $(0,0,1,1)$ |
| 6 | $\leftrightarrow(0,1,1,0)$ | d | \leftrightarrow | $(1,0,1,1)$ |
| 7 | $\leftrightarrow(1,1,1,0)$ | e | \leftrightarrow | $(0,1,1,1)$ |
| | | f | \leftrightarrow | $(1,1,1,1)$ |

Example of a Vectorial Boolean Function

 $n=4$| x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | f |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $S_{0}(x)$ | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| $S_{1}(x)$ | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| $S_{2}(x)$ | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| $S_{3}(x)$ | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |

$x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right):$
$S_{0}(x)=1+x_{0}+x_{2}+x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2} x_{3}$
$S_{1}(x)=1+x_{3}+x_{0} x_{1}+x_{0} x_{2}+x_{0} x_{3}+x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}$
$S_{2}(x)=1+x_{1}+x_{3}+x_{0} x_{1}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}$
$S_{3}(x)=1+x_{2}+x_{3}+x_{0} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2} x_{3}$

Identifying \mathbb{F}_{2}^{n} with the Finite Field $\mathbb{F}_{2^{n}}$

Let α be a root of an irreducible polynomial of degree n over \mathbb{F}_{2}. The Finite Field $\mathbb{F}_{2^{n}}$ consists of every linear combinations of elements $1, \alpha, \ldots, \alpha^{n-1}$ over \mathbb{F}_{2}.

$$
\begin{aligned}
\varphi: \mathbb{F}_{2}^{n} & \simeq \mathbb{F}_{2^{n}} \\
\left(x_{0}, \ldots, x_{n-1}\right) & \mapsto \sum_{i=0}^{n-1} x_{i} \alpha^{i},
\end{aligned}
$$

Example: $n=4, \alpha$ a root of the irreducible polynomial $1+x+x^{4}$.

	0	1	2	3	4	5	6	7
\mathbb{F}_{2}^{4}	$(0,0,0,0)$	$(1,0,0,0)$	$(0,1,0,0)$	$(1,1,0,0)$	$(0,0,1,0)$	$(1,0,1,0)$	$(0,1,1,0)$	$(1,1,1,0)$
$\mathbb{F}_{2^{4}}$	0	1	α	$1+\alpha$	α^{2}	$1+\alpha^{2}$	$\alpha+\alpha^{2}$	$1+\alpha+\alpha^{2}$
$\mathbb{F}_{2^{4}}$	0	1	α	α^{4}	α^{2}	α^{8}	α^{5}	α^{10}
	8	9	a	b	c	d	e	f
\mathbb{F}_{2}^{4}	$(0,0,0,1)$	$(1,0,0,1)$	$(0,1,0,1)$	$(1,1,0,1)$	$(0,0,1,1)$	$(1,0,1,1)$	$(0,1,1,1)$	$(1,1,1,1)$
$\mathbb{F}_{2^{4}}$	α^{3}	$1+\alpha^{3}$	$\alpha+\alpha^{3}$	$1+\alpha+\alpha^{3}$	$\alpha^{2}+\alpha^{3}$	$1+\alpha^{2}+\alpha^{3}$	$\alpha+\alpha^{2}+\alpha^{3}$	$1+\alpha+\alpha^{2}+\alpha^{3}$
$\mathbb{F}_{2^{4}}$	α^{3}	α^{14}	α^{9}	α^{7}	α^{6}	α^{13}	α^{11}	α^{12}

Univariate Polynomial Representation

Proposition

Any (n, n)-function F admits a unique univariate polynomial representation over $\mathbb{F}_{2^{n}}$, of degree at most $2^{n}-1$:

$$
F(x)=\sum_{i=0}^{2^{n}-1} c_{i} x^{i}, \quad c_{i} \in \mathbb{F}_{2^{n}}
$$

Univariate Polynomial Representation

Example: $n=4$
α a root of the primitive polynomial $1+x+x^{4}$.

x	0	1	α	α^{2}	α^{3}	α^{4}	α^{5}	α^{6}	α^{7}	α^{8}	α^{9}	α^{10}	α^{11}	α^{12}	α^{13}	α^{14}
$S(x)$	α^{12}	α^{11}	α^{7}	α^{5}	0	α^{6}	α^{10}	α^{2}	α^{9}	α^{13}	α^{14}	α^{3}	1	α^{8}	α	α^{4}

$$
\begin{aligned}
S(x)= & \alpha^{12}+\alpha^{2} x+\alpha^{13} x^{2}+\alpha^{6} x^{3}+\alpha^{10} x^{4}+\alpha x^{5}+\alpha^{10} x^{6}+\alpha^{2} x^{7} \\
& +\alpha^{9} x^{8}+\alpha^{4} x^{9}+\alpha^{7} x^{10}+\alpha^{7} x^{11}+\alpha^{5} x^{12}+x^{13}+\alpha^{6} x^{14} .
\end{aligned}
$$

Symmetric Cryptography

Block Ciphers

Block Ciphers

$M \in \mathbb{F}_{2}^{m}$: plaintext,
$C \in \mathbb{F}_{2}^{m}:$ ciphertext, $K \in \mathbb{F}_{2}^{k}$: key.

Block Cipher

$$
\begin{aligned}
E: \quad \mathbb{F}_{2}^{m} \times \mathbb{F}_{2}^{k} & \rightarrow \mathbb{F}_{2}^{m} \\
(M, K) & \mapsto E(M, K)=C .
\end{aligned}
$$

For a fixed key $K \in \mathbb{F}_{2}^{k}$, $E_{K}(M) \mapsto C$, is a permutation of \mathbb{F}_{2}^{m}.

Block Ciphers

$M \in \mathbb{F}_{2}^{m}:$ plaintext,
$C \in \mathbb{F}_{2}^{m}$: ciphertext, $K \in \mathbb{F}_{2}^{k}$: key.

Block Cipher

$$
\begin{aligned}
E: \quad \mathbb{F}_{2}^{m} \times \mathbb{F}_{2}^{k} & \rightarrow \mathbb{F}_{2}^{m} \\
(M, K) & \mapsto E(M, K)=C .
\end{aligned}
$$

For a fixed key $K \in \mathbb{F}_{2}^{k}$, $E_{K}(M) \mapsto C$, is a permutation of \mathbb{F}_{2}^{m}.

Problems? In practice: $m \geq 64$ and $k \geq 80$

- For one key K, E_{K} permutes 2^{64} elements!

Block Ciphers

$M \in \mathbb{F}_{2}^{m}:$ plaintext,
$C \in \mathbb{F}_{2}^{m}$: ciphertext, $K \in \mathbb{F}_{2}^{k}$: key.

Block Cipher

$$
\begin{aligned}
E: \quad \mathbb{F}_{2}^{m} \times \mathbb{F}_{2}^{k} & \rightarrow \mathbb{F}_{2}^{m} \\
(M, K) & \mapsto E(M, K)=C .
\end{aligned}
$$

For a fixed key $K \in \mathbb{F}_{2}^{k}$, $E_{K}(M) \mapsto C$, is a permutation of \mathbb{F}_{2}^{m}.

Problems? In practice: $m \geq 64$ and $k \geq 80$

- For one key K, E_{K} permutes 2^{64} elements!
- 2^{80} different permutations!

Substitution Permutation Networks

Add Round Key

$$
\mathbb{F}_{2}^{m} \times \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}
$$

$$
(M, \text { SubK }) \mapsto M \oplus \text { SubK. }
$$

$M=\left(M_{0}, \ldots, M_{m / n-1}\right), M_{i} \in \mathbb{F}_{2}^{n}$ (word).

SBox (substitution)

Nonlinear Permutation:

$$
\begin{aligned}
S: & \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n} \\
& M_{i} \mapsto\left(S_{0}\left(M_{i}\right), \ldots, S_{n-1}\left(M_{i}\right)\right) .
\end{aligned}
$$

In practice: $n=4,8$.
Permutation (diffusion)
Linear Permutation:

$$
\mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}
$$

Example of an SBox

$$
n=4
$$

Multivariate:

x	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
$S_{0}(x)$	1	0	1	0	0	1	1	0	0	1	1	0	0	0	1	1
$S_{1}(x)$	1	1	1	0	1	0	1	0	0	1	0	1	0	1	0	0
$S_{2}(x)$	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1
$S_{3}(x)$	1	1	1	1	0	1	0	1	0	0	1	1	0	0	0	0

Univariate:

x	0	1	α	α^{2}	α^{3}	α^{4}	α^{5}	α^{6}	α^{7}	α^{8}	α^{9}	α^{10}	α^{11}	α^{12}	α^{13}	α^{14}
$S(x)$	α^{12}	α^{11}	α^{7}	α^{5}	0	α^{6}	α^{10}	α^{2}	α^{9}	α^{13}	α^{14}	α^{3}	1	α^{8}	α	α^{4}

Example of an SBox

$$
n=4
$$

Multivariate:
$S_{0}(x)=1+x_{0}+x_{2}+x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2} x_{3}$
$S_{1}(x)=1+x_{3}+x_{0} x_{1}+x_{0} x_{2}+x_{0} x_{3}+x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}$
$S_{2}(x)=1+x_{1}+x_{3}+x_{0} x_{1}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}$
$S_{3}(x)=1+x_{2}+x_{3}+x_{0} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2} x_{3}$

Univariate:

$$
\begin{aligned}
S(x)= & \alpha^{12}+\alpha^{2} x+\alpha^{13} x^{2}+\alpha^{6} x^{3}+\alpha^{10} x^{4}+\alpha x^{5}+\alpha^{10} x^{6}+\alpha^{2} x^{7} \\
& +\alpha^{9} x^{8}+\alpha^{4} x^{9}+\alpha^{7} x^{10}+\alpha^{7} x^{11}+\alpha^{5} x^{12}+x^{13}+\alpha^{6} x^{14}
\end{aligned}
$$

Symmetric Cryptography

Cryptographic Properties

Algebraic Degree of a Vectorial Boolean Function

Algebraic Degree

- The algebraic degree of a Boolean function

$$
\begin{aligned}
& f(x)=\bigoplus_{u \in \mathbb{F}_{2}^{n}} a_{u} x^{u} \text { is } \\
& \qquad \operatorname{deg}_{a l g}(f)=\max _{u \in \mathbb{F}_{2}^{n}}\left\{w t(u) \mid a_{u}=1\right\} .
\end{aligned}
$$

Example: $f\left(x_{0}, x_{1}, x_{2}\right)=x_{0} \oplus x_{0} x_{1} \oplus x_{0} x_{1} x_{2}$.
The Hamming weight of a Boolean function of n variables f, $w t(f)$, is odd if and only if $\operatorname{deg}_{\text {alg }}(f)=n$.

Algebraic Degree

- The algebraic degree of a (n, m)-function F with coordinates f_{0}, \ldots, f_{m-1} is

$$
\operatorname{deg}_{a l g}(F)=\max _{0 \leq i \leq m-1} \operatorname{deg}_{a l g}\left(f_{i}\right)
$$

Algebraic Degree

SBox: $S=\left(S_{0}, \ldots, S_{n-1}\right)$.
Plaintext: $x=\left(x_{0}, \ldots, x_{n-1}\right)$ (known).
Key: $\kappa=\left(k_{0}, \ldots, k_{n-1}\right)$ (unknown).

For all coordinate functions S_{i},

Nonlinear system of m equations and m unknowns.

$$
S_{i}(x+\kappa)=\bigoplus_{u} s_{u}(x+\kappa)^{u} .
$$

Example: $n=4$,

$$
\begin{aligned}
(x+\kappa)^{0110} & =\left(x_{1} \oplus k_{1}\right) \cdot\left(x_{2} \oplus k_{2}\right) \\
& =x_{1} x_{2} \oplus x_{1} k_{2} \oplus x_{2} k_{1} \oplus k_{1} k_{2} .
\end{aligned}
$$

Algebraic Degree

SBox: $S=\left(S_{0}, \ldots, S_{n-1}\right)$.
Plaintext: $x=\left(x_{0}, \ldots, x_{n-1}\right)$ (known).
Key: $\kappa=\left(k_{0}, \ldots, k_{n-1}\right)$ (unknown).

For all coordinate functions S_{i},

$$
S_{i}(x+\kappa)=\bigoplus_{u} s_{u}(x+\kappa)^{u} .
$$

Example: $n=4$,

$$
\begin{aligned}
(x+\kappa)^{0110} & =\left(x_{1} \oplus k_{1}\right) \cdot\left(x_{2} \oplus k_{2}\right) \\
& =x_{1} x_{2} \oplus y_{0} \oplus y_{1} \oplus y_{2}
\end{aligned}
$$

Nonlinear system of m equations and m unknowns.

Linear system of m equations and $>m$ unknowns.
The lower the algebraic degree is, the less unknowns we have, the easier to resolve the system is.

Univariate degree

Univariate Degree

- The univariate degree of a (n, n)-function $F(x)=\sum_{i=0}^{2^{n}-1} c_{i} x^{i}$ is

$$
\operatorname{deg}(F)=\max _{0 \leq i \leq 2^{n}-1}\left\{i \mid c_{i} \neq 0\right\} .
$$

Remark:
The algebraic degree of a function $F(x)=\sum_{i=0}^{2^{n}-1} c_{i} x^{i}$ is

$$
\operatorname{deg}_{\mathrm{alg}}(F)=\max _{0 \leq i \leq 2^{n}-1}\left\{w t(i) \mid c_{i} \neq 0\right\} .
$$

Univariate Degree

The univariate degree of the SBox, $\operatorname{deg}(S)$, influences the univariate degree of the cipher E_{K} (and does not depend on K).

If $\operatorname{deg}\left(E_{K}^{-1}\right)=d$ is "sufficiently" low
\Downarrow
with $d+1$ pairs $\left(C_{i}, M_{i}\right)$ of ciphertext/plaintext we can interpolate a unique polynomial E^{\prime} of degree d such that $E^{\prime}\left(C_{i}\right)=M_{i}, 0 \leq i \leq d$.

Univariate Degree

The univariate degree of the SBox, $\operatorname{deg}(S)$, influences the univariate degree of the cipher E_{K} (and does not depend on K).

If $\operatorname{deg}\left(E_{K}^{-1}\right)=d$ is "sufficiently" low

In conclusion, for every $C \in \mathbb{F}_{2^{m}}$,

$$
E^{\prime}(C)=E_{K}^{-1}(C)=M
$$

with $d+1$ pairs $\left(C_{i}, M_{i}\right)$ of
ciphertext/plaintext we can interpolate a unique polynomial E^{\prime} of degree d such that $E^{\prime}\left(C_{i}\right)=M_{i}, 0 \leq i \leq d$.

Differential Property

Definition

The differential uniformity of an SBox S is defined as

$$
\delta(S)=\max _{a \neq 0, b \in \mathbb{F}_{2^{n}}} \#\{x \mid S(x)+S(x+a)=b\} .
$$

$$
y+y^{\prime}=?
$$

S is Almost Perfect Nonlinear (APN) if and only if $\delta(S)=2$.

Design Problem

Practical Requirements

What do we want for a "good" SBox?

What do we want for a "good" SBox?

- a high algebraic degree,

What do we want for a "good" SBox?

- a high algebraic degree,
- a high univariate degree,

What do we want for a "good" SBox?

- a high algebraic degree,
- a high univariate degree,
- a "low" differential uniformity,

What do we want for a "good" SBox?

- a high algebraic degree,
- a high univariate degree,
- a "low" differential uniformity,
- a "good" hardware/sofware implementation,

What do we want for a "good" SBox?

- a high algebraic degree,
- a high univariate degree,
- a "low" differential uniformity,
- a "good" hardware/sofware implementation,

What do we want for a "good" SBox?

- a high algebraic degree,
- a high univariate degree,
- a "low" differential uniformity,
- a "good" hardware/sofware implementation,
+ a permutation,

What do we want for a "good" SBox?

- a high algebraic degree,
- a high univariate degree,
- a "low" differential uniformity,
- a "good" hardware/sofware implementation,
+ a permutation,
+ an inverse verifying all of these requirements (!!) We already know that $\delta(S)=\delta\left(S^{-1}\right)$.

Design Problem

APN Permutations

APN Permutations on $\mathbb{F}_{2^{n}}$

- n is odd: x^{r} for some (few) integers r. When $3 \mid n$ but $9 \nmid n$, one of the shape $x^{s}+\gamma x^{t}$.

APN Permutations on $\mathbb{F}_{2^{n}}$

- n is odd: x^{r} for some (few) integers r. When $3 \mid n$ but $9 \nmid n$, one of the shape $x^{s}+\gamma x^{t}$.
- $n=4$: No APN Permutations.

APN Permutations on $\mathbb{F}_{2^{n}}$

- n is odd: x^{r} for some (few) integers r.

When $3 \mid n$ but $9 \nmid n$, one of the shape $x^{s}+\gamma x^{t}$.

- $n=4$: No APN Permutations.
- $n=6$: Dillon's function ['09]:

$$
\begin{aligned}
D(x)= & \alpha^{36} x^{60}+\alpha^{44} x^{58}+\alpha^{40} x^{57}+\alpha^{55} x^{56}+\alpha^{26} x^{54}+\alpha^{23} x^{53} \\
& +\alpha^{36} x^{52}+\alpha^{23} x^{51}+\alpha^{17} x^{50}+\alpha^{54} x^{49}+\alpha^{14} x^{48} \\
& +\alpha^{21} x^{46}+\alpha^{53} x^{45}+\alpha^{21} x^{44}+\alpha^{7} x^{43}+\alpha^{57} x^{42} \\
& +\alpha^{8} x^{41}+\alpha^{10} x^{40}+\alpha^{12} x^{39}+\alpha^{20} x^{38}+\alpha^{52} x^{37} \\
& +\alpha^{46} x^{36}+\alpha^{27} x^{35}+\alpha^{44} x^{34}+\alpha^{18} x^{33}+\alpha^{57} x^{32} \\
& +\alpha^{28} x^{30}+\alpha^{44} x^{29}+\alpha^{42} x^{28}+\alpha^{26} x^{27}+\alpha^{20} x^{26} \\
& +\alpha^{10} x^{25}+\alpha^{45} x^{24}+x^{23}+\alpha^{7} x^{22}+\alpha^{57} x^{21}+\alpha^{21} x^{20} \\
& +\alpha^{22} x^{19}+\alpha^{6} x^{17}+\alpha^{8} x^{16}+\alpha^{43} x^{15}+\alpha^{42} x^{13} \\
& +\alpha^{47} x^{12}+\alpha^{56} x^{11}+\alpha^{38} x^{10}+\alpha^{36} x^{8}+\alpha^{47} x^{7} \\
& +\alpha^{4} x^{6}+\alpha^{8} x^{5}+\alpha^{23} x^{4}+\alpha^{39} x^{3}+\alpha^{52} x^{2}+\alpha^{59} x
\end{aligned}
$$

APN Permutations on $\mathbb{F}_{2^{n}}$

- n is odd: x^{r} for some (few) integers r.

When $3 \mid n$ but $9 \nmid n$, one of the shape $x^{s}+\gamma x^{t}$.

- $n=4$: No APN Permutations.
- $n=6$: Dillon's function ['09]:

$$
\begin{aligned}
D(x)= & \alpha^{36} x^{60}+\alpha^{44} x^{58}+\alpha^{40} x^{57}+\alpha^{55} x^{56}+\alpha^{26} x^{54}+\alpha^{23} x^{53} \\
& +\alpha^{36} x^{52}+\alpha^{23} x^{51}+\alpha^{17} x^{50}+\alpha^{54} x^{49}+\alpha^{14} x^{48} \\
& +\alpha^{21} x^{46}+\alpha^{53} x^{45}+\alpha^{21} x^{44}+\alpha^{7} x^{43}+\alpha^{57} x^{42} \\
& +\alpha^{8} x^{41}+\alpha^{10} x^{40}+\alpha^{12} x^{39}+\alpha^{20} x^{38}+\alpha^{52} x^{37} \\
& +\alpha^{46} x^{36}+\alpha^{27} x^{35}+\alpha^{44} x^{34}+\alpha^{18} x^{33}+\alpha^{57} x^{32} \\
& +\alpha^{28} x^{30}+\alpha^{44} x^{29}+\alpha^{42} x^{28}+\alpha^{26} x^{27}+\alpha^{20} x^{26} \\
& +\alpha^{10} x^{25}+\alpha^{45} x^{24}+x^{23}+\alpha^{7} x^{22}+\alpha^{57} x^{21}+\alpha^{21} x^{20} \\
& +\alpha^{22} x^{19}+\alpha^{6} x^{17}+\alpha^{8} x^{16}+\alpha^{43} x^{15}+\alpha^{42} x^{13} \\
& +\alpha^{47} x^{12}+\alpha^{56} x^{11}+\alpha^{38} x^{10}+\alpha^{36} x^{8}+\alpha^{47} x^{7} \\
& +\alpha^{4} x^{6}+\alpha^{8} x^{5}+\alpha^{23} x^{4}+\alpha^{39} x^{3}+\alpha^{52} x^{2}+\alpha^{59} x
\end{aligned}
$$

- $n \geq 8$: ???

Thank you!

[^0]: GEORGE BODLE

