On Boolean Functions in Symmetric Cryptography

Valentin Suder (Advisor: Pascale Charpin)

Project-Team SECRET

valentin.suder@inria.fr

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography

December 17, 2013 1 / 36

Project-Team SECRET

SEcurité CRyptographie Et Transmission.

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography

Outline

Backgrounds History Preliminaries

Definitions

Boolean Functions Vectorial Boolean Functions

Symmetric Cryptography

Block Ciphers Cryptographic Properties

Design Problem

Practical Requirements APN Permutations

George Boole

- ▶ 2 November 1815 8 December 1864.
- English mathematician, philosopher and *logician*.
- known as a founder of the field of Computer Science.

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography Decer

December 17, 2013 4 / 36

George Boole

- ▶ 2 November 1815 8 December 1864.
- English mathematician, philosopher and *logician*.
- known as a founder of the field of Computer Science.
- Notable contribution: Boolean Algebra.

Boolean Algebra

- Possible values of the variables: TRUE or FALSE.
- Basic operations: AND, OR and NOT.

AND	FALSE	TRUE	OR	FALSE	TRUE
FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
TRUE	FALSE	TRUE	TRUE	TRUE	TRUE
			NOT		
		FALSE	TRUE		
		TRUE	FALSE		

Many other operations can be built from these basic operations.

Boolean Algebra

First introduced by G. Boole in "An Investigation of the Laws of Thought", 1854.

The term "Boolean Algebra" is suggested by *Sheffer* in 1913.

Boolean Algebra (a.k.a. *digital logic*) is fundamental in Computer Science, Set Theory, Statistics...

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography

December 17, 2013 6 / 36

Backgrounds Preliminaries

Backgrounds

Preliminaries

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography

December 17, 2013 7 / 36

Is taking my umbrella a good option?

Is taking my umbrella a good option?

1. Is it raining?

Is taking my umbrella a good option?

- 1. Is it raining?
- 2. Bad weather forecast?

Is taking my umbrella a good option?

- 1. Is it raining?
- 2. Bad weather forecast?
- 3. But ... do I go by car?

Is taking my umbrella a good option?

- 1. Is it raining?
- 2. Bad weather forecast?

3. But ... do I go by car?

Rain	х	\checkmark	х	\checkmark	x	\checkmark	x	\checkmark
Bad weather forecast	x	x	\checkmark	\checkmark	x	x	\checkmark	\checkmark
Car	x	x	x	x	\checkmark	\checkmark	\checkmark	\checkmark
Umbrella	х	\checkmark	\checkmark	\checkmark	X	X	X	X

Definitions Boolean Functions

Definitions

Boolean Functions

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography

December 17, 2013 9 / 36

Binary Representation

 $\mathbb{F}_2 = (\{0,1\},\oplus,\cdot)$: Finite Field of 2 elements.

$$\begin{array}{c} 1, 0 \longleftrightarrow \mathsf{TRUE}, \ \mathsf{FALSE}, \\ \oplus \ (\mathsf{addition\ modulo\ } 2) \longleftrightarrow \mathsf{XOR\ } (\mathsf{Exclusive\ OR}), \\ \cdot \longleftrightarrow \mathsf{AND}. \end{array}$$

Remark:

XOR(A, B) = OR(AND(A, NOT(B)), AND(NOT(A), B)).

XOR	FALSE	TRUE
FALSE	FALSE	TRUE
TRUE	TRUE	FALSE

Boolean Functions

Truth table of a Boolean function.

<i>x</i> ₀	0	1	0	1	0	1	0	1
<i>x</i> ₁	0	0	1	1	0	0	1	1
<i>x</i> ₂	0	0	0	0	1	1	1	1
$f(x_0, x_1, x_2)$	0	1	1	1	0	0	0	0

Definition

A *Boolean function* of *n* variables is a function from \mathbb{F}_2^n into \mathbb{F}_2 .

$$f: \quad \mathbb{F}_2^n \quad \to \quad \mathbb{F}_2 \\ (x_0, \dots, x_{n-1}) \quad \mapsto \quad f(x_0, \dots, x_{n-1}).$$

Boolean Functions

Value vector of f: word of 2^n bits consisting of every f(x), for $x \in \mathbb{F}_2^n$. Example: $f(x_0, x_1, x_2) = (0, 1, 1, 1, 0, 0, 0, 0)$. Definition [Hamming weight] The Hamming weight of a Boolean function f, wt(f), is the binary weight of its value vector.

Example: wt(f) = wt(0, 1, 1, 1, 0, 0, 0, 0) = 3.

A Boolean function of *n* variables is *balanced* if and only if $wt(f) = 2^{n-1}$.

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography December 17, 2013 12 / 36

Algebraic Normal Form (ANF)

Proposition

Any Boolean function f of n variables has a unique multivariate polynomial representation:

$$f(x_0,...,x_{n-1}) = \bigoplus_{u=(u_0,...,u_{n-1})\in\mathbb{F}_2^n} a_u x^u, \qquad x^u = \prod_{i=0}^{n-1} x_i^{u_i},$$

and $a_u \in \mathbb{F}_2$.

Example:

$$x^{110} = x_0 x_1$$

$$f(x_0, x_1, x_2) = x_0 \oplus x_0 x_1 \oplus x_0 x_1 x_2.$$

Moreover, the coefficients of the ANF and the value of f satisfy:

$$a_u = \bigoplus_{x \leq u} f(x) \text{ and } f(u) = \bigoplus_{x \leq u} a_x,$$

where $x \preceq u$ if and only if $x_i \leq u_i$ for all *i*. Valentin Suder (Inria) On Boolean Functions in Symmetric Cryptography Decem

Valentin Suder (Inria) On Boolean Functions in Symmetric Cryptography December 17, 2013 14 / 36

Then
$$f(x) = x_0 \oplus x_1 \oplus x_0 x_1 \oplus x_0 x_2 \oplus x_1 x_2 \oplus x_0 x_1 x_2$$
.

$$a_{111}=igoplus_{x\in \mathbb{F}_2^3}f(x)=wt(f) \pmod{2}=1.$$

$$a_{011} = f(000) \oplus f(010) \oplus f(001) \oplus f(011) = 1$$

$$a_{001} = f(000) \oplus f(001) = 0$$

$$a_{101} = f(000) \oplus f(100) \oplus f(001) \oplus f(101) = 1$$

$$a_{110} = f(000) \oplus f(100) \oplus f(010) \oplus f(110) =$$

1

$$a_{010} = f(000) \oplus f(010) = 1$$

 $a_{010} = f(000) \oplus f(010) = 1$

$$a_{100} = f(000) \oplus f(100) = 1$$

$$a_{000} = f(000) = 0$$

$$a_{000} = f(000) = 0$$

Example

Definitions Vectorial Boolean Functions

Definitions

Vectorial Boolean Functions

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography December 17, 2013

Vectorial Boolean Functions

F

Definition [Vectorial Boolean Function]

A vectorial Boolean function of *n* inputs and *m* outputs ((n, m)-function) is a function from \mathbb{F}_2^n into \mathbb{F}_2^m :

The Boolean functions f_i : $(x_0, \ldots, x_{n-1}) \mapsto y_i$, $0 \le i \le m-1$, are called the coordinate functions.

Linear combinations of the *coordinate functions*:

$$x \mapsto \lambda \cdot (f_0(x), \dots, f_{m-1}(x)), \ \lambda \in \mathbb{F}_2^m, \ \lambda \neq 0,$$

are called the component functions.

Proposition

An (n, n)-function is a permutation of \mathbb{F}_2^n if and only if all its *component functions* are balanced.

Valentin Suder (Inria)

December 17, 2013 16 / 36

Example of a Vectorial Boolean Function n = 4

Example of a Vectorial Boolean Function n = 4

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
$S_0(x)$	1	0	1	0	0	1	1	0	0	1	1	0	0	0	1	1
$S_1(x)$	1	1	1	0	1	0	1	0	0	1	0	1	0	1	0	0
$S_2(x)$	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1
$S_3(x)$	1	1	1	1	0	1	0	1	0	0	1	1	0	0	0	0

$$x = (x_0, x_1, x_2, x_3)$$
:

$$\begin{split} S_0(x) &= 1 + x_0 + x_2 + x_3 + x_1x_2 + x_1x_3 + x_2x_3 + x_0x_2x_3 + x_1x_2x_3 \\ S_1(x) &= 1 + x_3 + x_0x_1 + x_0x_2 + x_0x_3 + x_0x_1x_2 + x_0x_1x_3 + x_0x_2x_3 \\ S_2(x) &= 1 + x_1 + x_3 + x_0x_1 + x_1x_2 + x_1x_3 + x_2x_3 + x_0x_1x_3 + x_0x_2x_3 \\ S_3(x) &= 1 + x_2 + x_3 + x_0x_2 + x_1x_3 + x_2x_3 + x_0x_2x_3 + x_1x_2x_3 \end{split}$$

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography December 17, 2013 17 / 36

Identifying \mathbb{F}_2^n with the Finite Field \mathbb{F}_{2^n}

Let α be a root of an *irreducible polynomial* of degree *n* over \mathbb{F}_2 . The Finite Field \mathbb{F}_{2^n} consists of every linear combinations of elements $1, \alpha, \ldots, \alpha^{n-1}$ over \mathbb{F}_2 .

$$\begin{array}{rcl} \varphi: & \mathbb{F}_2^n & \simeq & \mathbb{F}_{2^n} \\ (x_0, \dots, x_{n-1}) & \mapsto & \displaystyle\sum_{i=0}^{n-1} x_i \alpha^i, \end{array}$$

Example: n = 4, α a root of the *irreducible polynomial* $1 + x + x^4$.

	0	1	2	3	4	5	6	7
\mathbb{F}_2^4	(0, 0, 0, 0)	(1, 0, 0, 0)	(0, 1, 0, 0)	(1, 1, 0, 0)	(0, 0, 1, 0)	(1, 0, 1, 0)	(0, 1, 1, 0)	(1, 1, 1, 0)
\mathbb{F}_{2^4}	0	1	α	$1 + \alpha$	α^2	$1 + \alpha^2$	$\alpha + \alpha^2$	$1 + \alpha + \alpha^2$
\mathbb{F}_{2^4}	0	1	α	α^4	α^2	α^8	α^5	α ¹⁰
	8	9	а	Ь	С	d	е	f
\mathbb{F}_2^4	(0, 0, 0, 1)	(1, 0, 0, 1)	(0, 1, 0, 1)	(1, 1, 0, 1)	(0, 0, 1, 1)	(1, 0, 1, 1)	(0, 1, 1, 1)	(1, 1, 1, 1)
\mathbb{F}_{2^4}	α^3	$1 + \alpha^3$	$\alpha + \alpha^3$	$1 + \alpha + \alpha^3$	$\alpha^2 + \alpha^3$	$1 + \alpha^2 + \alpha^3$	$\alpha + \alpha^2 + \alpha^3$	$1 + \alpha + \alpha^2 + \alpha^3$
\mathbb{F}_{2^4}	α^3	α^{14}	α^9	α^7	α^6	α^{13}	α^{11}	α^{12}

Univariate Polynomial Representation

Proposition

Any (n, n)-function F admits a unique univariate polynomial representation over \mathbb{F}_{2^n} , of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} c_i x^i, \qquad c_i \in \mathbb{F}_{2^n}.$$

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography December 17, 2013 19 / 36

Univariate Polynomial Representation Example: n = 4

 α a root of the primitive polynomial $1 + x + x^4$.

$$\begin{split} S(x) &= \alpha^{12} + \alpha^2 x + \alpha^{13} x^2 + \alpha^6 x^3 + \alpha^{10} x^4 + \alpha x^5 + \alpha^{10} x^6 + \alpha^2 x^7 \\ &+ \alpha^9 x^8 + \alpha^4 x^9 + \alpha^7 x^{10} + \alpha^7 x^{11} + \alpha^5 x^{12} + x^{13} + \alpha^6 x^{14}. \end{split}$$

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography December 17, 2013 20 / 36

Symmetric Cryptography Block Ciphers

Symmetric Cryptography

Block Ciphers

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography December 17, 2013

Block Ciphers

$$\begin{split} & M \in \mathbb{F}_2^m: \text{ plaintext,} \\ & \mathcal{C} \in \mathbb{F}_2^m: \text{ ciphertext,} \\ & \mathcal{K} \in \mathbb{F}_2^k: \text{ key.} \end{split}$$

Block Cipher

$$E: \quad \mathbb{F}_2^m \times \mathbb{F}_2^k \quad \to \quad \mathbb{F}_2^m$$
$$(M, K) \quad \mapsto \quad E(M, K) = C.$$

For a fixed key $K \in \mathbb{F}_2^k$, $E_K(M) \mapsto C$, is a permutation of \mathbb{F}_2^m .

Block Ciphers

$$\begin{split} & \mathcal{M} \in \mathbb{F}_2^m: \text{ plaintext,} \\ & \mathcal{C} \in \mathbb{F}_2^m: \text{ ciphertext,} \\ & \mathcal{K} \in \mathbb{F}_2^k: \text{ key.} \end{split}$$

Block Cipher

$$E: \quad \mathbb{F}_2^m \times \mathbb{F}_2^k \quad \to \quad \mathbb{F}_2^m$$
$$(M, K) \quad \mapsto \quad E(M, K) = C.$$

For a fixed key $K \in \mathbb{F}_2^k$, $E_K(M) \mapsto C$, is a permutation of \mathbb{F}_2^m .

Problems? In practice: $m \ge 64$ and $k \ge 80$ (!!!)

For one key K, E_K permutes 2^{64} elements!

Valentin Suder (Inria)

December 17, 2013 22 / 36

Block Ciphers

$$\begin{split} & M \in \mathbb{F}_2^m: \text{ plaintext,} \\ & \mathcal{C} \in \mathbb{F}_2^m: \text{ ciphertext,} \\ & \mathcal{K} \in \mathbb{F}_2^k: \text{ key.} \end{split}$$

Block Cipher

$$E: \quad \mathbb{F}_2^m \times \mathbb{F}_2^k \quad \to \quad \mathbb{F}_2^m$$
$$(M, K) \quad \mapsto \quad E(M, K) = C.$$

For a fixed key $K \in \mathbb{F}_2^k$, $E_K(M) \mapsto C$, is a permutation of \mathbb{F}_2^m .

Problems? In practice: $m \ge 64$ and $k \ge 80$ (!!!) For one key K, E_K permutes 2^{64} elements! $\ge 2^{80}$ different permutations! Valentin Suder (Inria) On Boolean Functions in Symmetric Cryptography December 17, 2013 22 / 36

Substitution Permutation Networks

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography

Symmetric Cryptography Block Ciphers

Example of an SBox n = 4

Multivariate:

Univariate:

$$\frac{x \quad 0 \quad 1 \quad \alpha \quad \alpha^2 \quad \alpha^3 \quad \alpha^4 \quad \alpha^5 \quad \alpha^6 \quad \alpha^7 \quad \alpha^8 \quad \alpha^9 \quad \alpha^{10} \quad \alpha^{11} \quad \alpha^{12} \quad \alpha^{13} \quad \alpha^{14}}{S(x) \quad \alpha^{12} \quad \alpha^{11} \quad \alpha^7 \quad \alpha^5 \quad 0 \quad \alpha^6 \quad \alpha^{10} \quad \alpha^2 \quad \alpha^9 \quad \alpha^{13} \quad \alpha^{14} \quad \alpha^3 \quad 1 \quad \alpha^8 \quad \alpha \quad \alpha^4}$$

Example of an SBox n = 4

Multivariate:

$$\begin{split} S_0(x) &= 1 + x_0 + x_2 + x_3 + x_1x_2 + x_1x_3 + x_2x_3 + x_0x_2x_3 + x_1x_2x_3 \\ S_1(x) &= 1 + x_3 + x_0x_1 + x_0x_2 + x_0x_3 + x_0x_1x_2 + x_0x_1x_3 + x_0x_2x_3 \\ S_2(x) &= 1 + x_1 + x_3 + x_0x_1 + x_1x_2 + x_1x_3 + x_2x_3 + x_0x_1x_3 + x_0x_2x_3 \\ S_3(x) &= 1 + x_2 + x_3 + x_0x_2 + x_1x_3 + x_2x_3 + x_0x_2x_3 + x_1x_2x_3 \end{split}$$

Univariate:

$$\begin{aligned} \mathcal{S}(x) &= \alpha^{12} + \alpha^2 x + \alpha^{13} x^2 + \alpha^6 x^3 + \alpha^{10} x^4 + \alpha x^5 + \alpha^{10} x^6 + \alpha^2 x^7 \\ &+ \alpha^9 x^8 + \alpha^4 x^9 + \alpha^7 x^{10} + \alpha^7 x^{11} + \alpha^5 x^{12} + x^{13} + \alpha^6 x^{14}. \end{aligned}$$

Symmetric Cryptography Cryptographic Properties

Symmetric Cryptography

Cryptographic Properties

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography December 17, 2013

Symmetric Cryptography Cryptographic Properties

Algebraic Degree of a Vectorial Boolean Function

Algebraic Degree

► The algebraic degree of a Boolean function $f(x) = \bigoplus_{u \in \mathbb{F}_2^n} a_u x^u$ is

$$deg_{alg}(f) = \max_{u \in \mathbb{F}_2^n} \{ wt(u) \mid a_u = 1 \}.$$

Example: $f(x_0, x_1, x_2) = x_0 \oplus x_0 x_1 \oplus x_0 x_1 x_2$. The Hamming weight of a Boolean function of *n* variables *f*, wt(f), is odd if and only if $deg_{alg}(f) = n$.

Algebraic Degree

▶ The algebraic degree of a (n, m)-function F with coordinates f_0, \ldots, f_{m-1} is

$$deg_{alg}(F) = \max_{0 \le i \le m-1} deg_{alg}(f_i).$$

Algebraic Degree

SBox:
$$S = (S_0, \ldots, S_{n-1})$$
.
Plaintext: $x = (x_0, \ldots, x_{n-1})$ (known).
Key: $\kappa = (k_0, \ldots, k_{n-1})$ (unknown).

Nonlinear system of *m* equations and *m* unknowns.

For all coordinate functions S_i ,

$$S_i(x+\kappa) = \bigoplus_u s_u(x+\kappa)^u.$$

Example: n = 4,

$$(x+\kappa)^{0110} = (x_1 \oplus k_1) \cdot (x_2 \oplus k_2)$$
$$= x_1 x_2 \oplus x_1 k_2 \oplus x_2 k_1 \oplus k_1 k_2.$$

Algebraic Degree

SBox:
$$S = (S_0, \ldots, S_{n-1})$$
.
Plaintext: $x = (x_0, \ldots, x_{n-1})$ (known).
Key: $\kappa = (k_0, \ldots, k_{n-1})$ (unknown).

For all coordinate functions S_i ,

$$S_i(x+\kappa) = \bigoplus_u s_u(x+\kappa)^u.$$

Example: n = 4,

$$(x + \kappa)^{0110} = (x_1 \oplus k_1) \cdot (x_2 \oplus k_2)$$

= $x_1 x_2 \oplus y_0 \oplus y_1 \oplus y_2.$

Nonlinear system of *m* equations and *m* unknowns.

₩

Linear system of *m* equations and > *m* unknowns. The lower the *algebraic degree* is, the less unknowns we have, the easier to resolve the system is.

Univariate degree

Univariate Degree

► The univariate degree of a (n, n)-function F(x) = ∑_{i=0}^{2ⁿ-1} c_ixⁱ is

$$deg(F) = \max_{0 \le i \le 2^n - 1} \{i \mid c_i \neq 0\}.$$

Remark:

The algebraic degree of a function $F(x) = \sum_{i=0}^{2^n-1} c_i x^i$ is

$$deg_{alg}(F) = \max_{0 \le i \le 2^n - 1} \{wt(i) \mid c_i \neq 0\}.$$

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography December 17, 2013 29 / 36

Univariate Degree

The univariate degree of the SBox, deg(S), influences the univariate degree of the cipher E_K (and does not depend on K).

If
$$deg(E_{K}^{-1}) = d$$
 is "sufficiently" low

∜

with d + 1 pairs (C_i, M_i) of ciphertext/plaintext we can interpolate a unique polynomial E' of degree d such that $E'(C_i) = M_i$, $0 \le i \le d$.

Univariate Degree

The univariate degree of the SBox, deg(S), influences the univariate degree of the cipher E_K (and does not depend on K).

If
$$deg(E_{\mathcal{K}}^{-1}) = d$$
 is "sufficiently" low \Downarrow

with d + 1 pairs (C_i, M_i) of ciphertext/plaintext we can interpolate a unique polynomial E' of degree d such that $E'(C_i) = M_i$, $0 \le i \le d$.

In conclusion, for every $C \in \mathbb{F}_{2^m}$, $E'(C) = E_K^{-1}(C) = M.$

Differential Property

Definition

The differential uniformity of an SBox S is defined as

$$\delta(S) = \max_{a\neq 0, b\in \mathbb{F}_{2^n}} \#\{x \mid S(x) + S(x+a) = b\}.$$

S is Almost Perfect Nonlinear (APN) if and only if $\delta(S) = 2$.

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography

Design Problem Practical Requirements

Design Problem

Practical Requirements

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography December 17, 2013

Design Problem Practical Requirements

What do we want for a "good" SBox?

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography December 17, 20

December 17, 2013 33 / 36

Design Problem Practical Requirements

What do we want for a "good" SBox?

▶ a high algebraic degree,

- ► a high algebraic degree,
- a high univariate degree,

- a high algebraic degree,
- a high univariate degree,
- a "low" differential uniformity,

- a high algebraic degree,
- a high univariate degree,
- a "low" differential uniformity,
- a "good" hardware/sofware implementation,

- a high algebraic degree,
- a high univariate degree,
- a "low" differential uniformity,
- a "good" hardware/sofware implementation,

:

- a high algebraic degree,
- a high univariate degree,
- a "low" differential uniformity,
- a "good" hardware/sofware implementation,

+ a permutation,

:

- a high algebraic degree,
- a high univariate degree,
- a "low" differential uniformity,
- a "good" hardware/sofware implementation,

+ a permutation,

:

+ an inverse verifying all of these requirements (!!) We already know that $\delta(S) = \delta(S^{-1})$.

Design Problem APN Permutations

Design Problem

APN Permutations

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography December 17, 2013

n is odd: x^r for some (few) integers r. When 3|n but 9 ∤ n, one of the shape x^s + γx^t.

- n is odd: x^r for some (few) integers r. When 3|n but 9 ∤ n, one of the shape x^s + γx^t.
- n = 4: No APN Permutations.

 \triangleright *n* is odd: x^r for some (few) integers *r*. When 3|n but $9 \nmid n$, one of the shape $x^s + \gamma x^t$. n = 4: No APN Permutations. \blacktriangleright *n* = 6: Dillon's function ['09]: $D(x) = \alpha^{36}x^{60} + \alpha^{44}x^{58} + \alpha^{40}x^{57} + \alpha^{55}x^{56} + \alpha^{26}x^{54} + \alpha^{23}x^{53}$ $+ \alpha^{36}x^{52} + \alpha^{23}x^{51} + \alpha^{17}x^{50} + \alpha^{54}x^{49} + \alpha^{14}x^{48}$ $+ \alpha^{21}x^{46} + \alpha^{53}x^{45} + \alpha^{21}x^{44} + \alpha^{7}x^{43} + \alpha^{57}x^{42}$ $+ \alpha^{8} x^{41} + \alpha^{10} x^{40} + \alpha^{12} x^{39} + \alpha^{20} x^{38} + \alpha^{52} x^{37}$ $+ \alpha^{46}x^{36} + \alpha^{27}x^{35} + \alpha^{44}x^{34} + \alpha^{18}x^{33} + \alpha^{57}x^{32}$ $+ \alpha^{28} x^{30} + \alpha^{44} x^{29} + \alpha^{42} x^{28} + \alpha^{26} x^{27} + \alpha^{20} x^{26}$ $+ \alpha^{10} x^{25} + \alpha^{45} x^{24} + x^{23} + \alpha^{7} x^{22} + \alpha^{57} x^{21} + \alpha^{21} x^{20}$ $+ \alpha^{22} x^{19} + \alpha^{6} x^{17} + \alpha^{8} x^{16} + \alpha^{43} x^{15} + \alpha^{42} x^{13}$ $+ \alpha^{47} x^{12} + \alpha^{56} x^{11} + \alpha^{38} x^{10} + \alpha^{36} x^8 + \alpha^{47} x^7$ $+ \alpha^{4}x^{6} + \alpha^{8}x^{5} + \alpha^{23}x^{4} + \alpha^{39}x^{3} + \alpha^{52}x^{2} + \alpha^{59}x^{6}$

 \triangleright *n* is odd: x^r for some (few) integers *r*. When 3|n but $9 \nmid n$, one of the shape $x^s + \gamma x^t$. n = 4: No APN Permutations. \blacktriangleright *n* = 6: Dillon's function ['09]: $D(x) = \alpha^{36}x^{60} + \alpha^{44}x^{58} + \alpha^{40}x^{57} + \alpha^{55}x^{56} + \alpha^{26}x^{54} + \alpha^{23}x^{53}$ $+ \alpha^{36}x^{52} + \alpha^{23}x^{51} + \alpha^{17}x^{50} + \alpha^{54}x^{49} + \alpha^{14}x^{48}$ $+ \alpha^{21}x^{46} + \alpha^{53}x^{45} + \alpha^{21}x^{44} + \alpha^{7}x^{43} + \alpha^{57}x^{42}$ $+ \alpha^{8}x^{41} + \alpha^{10}x^{40} + \alpha^{12}x^{39} + \alpha^{20}x^{38} + \alpha^{52}x^{37}$ $+ \alpha^{46}x^{36} + \alpha^{27}x^{35} + \alpha^{44}x^{34} + \alpha^{18}x^{33} + \alpha^{57}x^{32}$ $+ \alpha^{28}x^{30} + \alpha^{44}x^{29} + \alpha^{42}x^{28} + \alpha^{26}x^{27} + \alpha^{20}x^{26}$ $+ \alpha^{10} x^{25} + \alpha^{45} x^{24} + x^{23} + \alpha^{7} x^{22} + \alpha^{57} x^{21} + \alpha^{21} x^{20}$ $+ \alpha^{22}x^{19} + \alpha^{6}x^{17} + \alpha^{8}x^{16} + \alpha^{43}x^{15} + \alpha^{42}x^{13}$ $+ \alpha^{47} x^{12} + \alpha^{56} x^{11} + \alpha^{38} x^{10} + \alpha^{36} x^8 + \alpha^{47} x^7$ $+ \alpha^{4}x^{6} + \alpha^{8}x^{5} + \alpha^{23}x^{4} + \alpha^{39}x^{3} + \alpha^{52}x^{2} + \alpha^{59}x^{3}$ ▶ n > 8: ???

Thank you!

Valentin Suder (Inria)

On Boolean Functions in Symmetric Cryptography December 17, 2013