Probabilistic analysis of algorithms

Henning Sulzbach

INRIA Junior Seminar, Paris-Rocquencourt, January 2014

RAP - Réseaux, algorithmes et probabilités
About myself

May 2012: PhD in mathematics at the Goethe University Frankfurt, supervisor: Ralph Neininger

June 2012 - August 2013: Post-Doc at the Goethe University Frankfurt and at the McGill University of Montréal

Since Sept. 2013: FMSP (Fondation Sciences Mathématiques de Paris) Post-Doc fellowship at INRIA with host Nicolas Broutin.
Outline

1. Probabilistic analysis of algorithms
2. The Quicksort routine
3. Partial match retrieval
Analysis of algorithms

Goal: Estimate the computational complexity of algorithms and computational problems

Examples:

Basic algorithms: sorting & searching

Data structures: insertion, deletion, searching, ...

Approximation algorithms: traveling salesman problem, ...
Analysis of algorithms

Goal: Estimate the computational complexity of algorithms and computational problems

Complexity: storage and/or running-time

Motivation:

- rigorous verification of the performance
- separation of efficient and inefficient algorithms
- estimate quality of approximation algorithms
- improve known algorithms
Probabilistic analysis of algorithms

Classical approach: Complexity is measured in terms of the worst-case behavior.

Random input data: average instead of worst-case behavior.

\(X_n \): complexity for input of size \(n \) (\(n \) large). Study

- \(\mathbb{E}[X_n] \) (mean behavior)
- \(\sigma_n^2 := \text{Var}(X_n) \) (standard deviation)
- \(\mathbb{P}(X_n \geq 2\mathbb{E}[X_n]) \) (large deviations)
- As \(X_n - \mathbb{E}[X_n] \approx \sigma_n \), the limit

\[
\lim_{n \to \infty} \mathbb{P}(X_n - \mathbb{E}[X_n] \leq x\sigma_n) = F(x)
\]

is plausible to exist.
An important example:

\[X_n = \# \text{ of heads in } n \text{ coin tosses:} \]

\[\mathbb{E}[X_n] = \frac{1}{2} n, \sigma_n = \frac{1}{2} \sqrt{n} \text{ and} \]

\[\lim_{n \to \infty} \mathbb{P}\left(\frac{X_n - \mathbb{E}[X_n]}{\sigma_n} \leq x \right) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt \]

We say

\[\frac{X_n - \mathbb{E}[X_n]}{\sigma_n} \to \mathcal{N} \]

in distribution as \(n \to \infty \) where

\[\mathbb{P}(\mathcal{N} \leq x) = \Phi(x). \]
The analysis of algorithms at Rocquencourt

Project ALGO (1989 - 2012) with head

Philippe Flajolet (1948 - 2011)

Today: ALGO \rightarrow RAP

Bob Sedgewick’s online course:
https://www.coursera.org/course/algs4partI
The Quicksort algorithm (Hoare 1962)

Input: \(n \) distinct numbers, say \(1, \ldots, n \)

Task: list of numbers in increasing order

Routine:

1. Compare all elements to the first element.
2. Proceed recursively in sublists until all lists have size 0 or 1.
The Quicksort algorithm (Hoare 1962)

Input: \(n \) distinct numbers, say \(1, \ldots, n \)

Task: list of numbers in increasing order

Routine:

1. Compare all elements to the first element.
2. Proceed recursively in sublists until all lists have size 0 or 1.
The Quicksort algorithm (Hoare 1962)

Input: \(n \) distinct numbers, say 1, \ldots, \(n \)

Task: list of numbers in increasing order

Routine:

1. Compare all elements to the first element.
2. Proceed recursively in sublists until all lists have size 0 or 1.
The Quicksort algorithm (Hoare 1962)

Input: n distinct numbers, say $1, \ldots, n$

Task: list of numbers in increasing order

Routine:

1. Compare all elements to the first element.
2. Proceed recursively in sublists until all lists have size 0 or 1.
The Quicksort algorithm (Hoare 1962)

Input: n distinct numbers, say $1, \ldots, n$

Task: list of numbers in increasing order

Routine:

1. Compare all elements to the first element.
2. Proceed recursively in sublists until all lists have size 0 or 1.

Aim: Analyze the complexity of Quicksort
Analysis of Quicksort

A common choice for the complexity of Quicksort is the number of executed key comparisons X_n sorting a list of size n.

Model: input data is permuted uniformly at random

Results (Knuth 1973):

- $\mathbb{E}[X_n] \sim 2n \log n$,
- $\sigma_n \sim cn$ for $c = \sqrt{7 - 2\pi^2/3} = 0.6485\ldots$

Theorem (Régnier ’89, Rösler ’91)

There exists a r.v. Y with $\mathbb{E}[Y] = 0$ and $\sigma_Y = 1$ such that

$$Y_n := \frac{X_n - \mathbb{E}[X_n]}{\sigma_n} \rightarrow Y$$

in distribution, that is $\mathbb{P}(Y_n \leq x) \rightarrow \mathbb{P}(Y \leq x)$ for all $x \in \mathbb{R}$.
The shape of Y

Y admits a density f, i.e. $\mathbb{P}(Y \leq x) = \int_{-\infty}^{x} f(t)dt$

- f is bounded (≤ 16)
 (Janson, Fill 2000)

Conjecture (Knessl, Szpankowski 1997): Very roughly,

$$\mathbb{P}(Y \geq x) \sim e^{-\alpha x \log x}, \quad x \to \infty, \alpha > 0$$

$$\mathbb{P}(Y \leq x) \sim e^{-\beta e^{-\gamma x}}, \quad x \to -\infty, \beta, \gamma > 0$$

Remember $\mathbb{P}(\mathcal{N} \geq x) \sim e^{-x^2/2}$.
A first step: The recurrence

For two random quantities Z, Z', write $Z \overset{d}{=} Z$ if, for all x,

$$P(Z \leq x) = P(Z' \leq x).$$

Then, with $L_n = \text{size of the left sublist}$,

$$X_n \overset{d}{=} X_{L_n}^{(1)} + X_{n-L_n-1}^{(2)} + n - 1.$$

- L_n is uniformly distributed on $\{0, \ldots, n - 1\}$,
- $(X_k^{(1)})$ and $(X_k^{(2)})$ are distributed like (X_k)
- $(L_n, (X_k^{(1)}), (X_k^{(2)}))$ are independent

Very often, a distributional recurrence relation is the first step of the analysis.

Quicksort is an algorithm of type \textit{divide and conquer}.
Partial match retrieval

Input: Set of elements with \(m \) different parameters.

Output: Subset of elements where \(1 \leq i < m \) parameters are given.

Example:

- Find people having certain characteristics in a data base

Here: quadtree with two-parameter space \([0, 1]^2\).
Quadtree - construction

Two-dimensional Quadtree
Quadtree - construction

Two-dimensional Quadtree
Quadtree - construction

Two-dimensional Quadtree

0.73, 0.17
Quadtree - construction

Two-dimensional Quadtree

Diagram of a two-dimensional quadtree with values 0.73 and 0.17 at the root node.
Quadtrees - construction

Two-dimensional Quadtree

0.73, 0.17

0.1, 0.86
Quadtree - construction

Two-dimensional Quadtree
Quadtree - construction

Two-dimensional Quadtree
Quadtrees - construction

Two-dimensional Quadtree

0.8, 0.69
Quadtree - construction

Two-dimensional Quadtree
Partial match retrieval

Task: Find values with first coordinate $s = 0.2$
Task: Find values with first coordinate $s = 0.2$
Partial match retrieval

Task: Find values with first coordinate \(s = 0.2 \)
Task: Find values with first coordinate $s = 0.2$
Partial match retrieval

Task: Find values with first coordinate $s = 0.2$
Partial match retrieval

Task: Find values with first coordinate $s = 0.2$
Partial match retrieval

Task: Find values with first coordinate \(s = 0.2 \)
Partial match retrieval

Task: Find values with first coordinate $s = 0.2$
Task: Find values with first coordinate $s = 0.2$
Partial match retrieval

Task: Find values with first coordinate $s = 0.2$

$C_n(s)$: number of visited nodes retrieving $\{s, *\}$.

Model: data points independent and uniformly distributed on $[0, 1]^2$
Simulations

\[n = 100 \]
Simulations

\[n = 500 \]
Simulations

\[n = 1000 \]
A first result

Theorem (Flajolet et al. ’93)

Let ξ be uniformly distributed on $[0, 1]$, independent of the tree.
Then, as $n \to \infty$,

$$\mathbb{E}[C_n(\xi)] \sim cn^\beta,$$

$$\beta = \frac{\sqrt{17} - 3}{2} = 0.561 \ldots, c > 0$$

Theorem (Curien, Joseph ’12)

For $s \in (0, 1)$, as $n \to \infty$, we have $\mathbb{E}[C_n(s)] \sim c'(s(1 - s))^{\beta/2}n^\beta$

Open: variance, limit distribution, behavior of $C_n(s)$ and $\sup_s C_n(s)$ (worst-case).
Simulations of C_n / n^β, $n = 500$
Simulations of C_n/n^β, $n = 500$
A limit theorem

Theorem (Broutin, Neininger, S.)

In distribution

\[\frac{C_n(s)}{n^\beta} \rightarrow Y(s) \]

as random continuous functions where \(\mathbb{E}[Y(s)] = c'(s(1 - s))^{\beta/2} \).
Corollaries

- \(\frac{C_n(s)}{n^{\beta}} \to Y(s) \) for any fixed \(s \in [0, 1] \),
- \(\frac{C_n(\xi)}{n^{\beta}} \to Y(\xi) \) with a uniform \(\xi \),
- the supremum is of the same order as the average-case,

\[
\sup_s \frac{C_n(s)}{n^{\beta}} \to \sup_s Y(s),
\]

and \(\mathbb{E} [\exp (\lambda \sup_s Y(s))] < \infty \) for all \(\lambda > 0 \).
- \(\text{Var} C_n(s) \sim c_1 (s(1 - s))^{\beta} n^{2\beta} \) with \(c_1 = 0.136 \ldots \)
- \(\text{Var} C_n(\xi) \sim c_2 n^{2\beta} \) with \(c_2 = 0.447 \ldots \).
But what happens at \(s = 0 \)?

The results say little at the boundary for \(C_n(0) \ll n^\beta \) as \(n \to \infty \).

Theorem (Flajolet et al. ’93, Curien, Joseph ’12)

As \(n \to \infty \),

\[
\mathbb{E}[C_n(0)] \sim \kappa n^{\sqrt{2} - 1}
\]

and \(C_n(0)/n^{\sqrt{2} - 1} \to C \) for some r.v. \(C \). Note

\[
0.414 \ldots = \sqrt{2} - 1 < \beta
\]
An intuitive explanation

\[I_n^0 \overset{d}{=} \text{Bin}(n-1, UV) \sim nUV \]

\[J_n^0 \overset{d}{=} \text{Bin}(n-1, U(1-V)) \sim nU(1-V) \]

\[I_n^* \overset{d}{=} \text{Bin}(n-1, XV) \sim nXV \]

\[J_n^* \overset{d}{=} \text{Bin}(n-1, X(1-V)) \sim nX(1-V) \]

\[X = \begin{cases}
U & \xi < U \\
1 - U & \xi > U
\end{cases} \]

Note: \(\mathbb{P}(X > x) \geq \mathbb{P}(U > x) \), \(X \) is larger than \(U \).
Conclusions

Summary:

- Sophisticated mathematical tools allow *precise* statements with *rigorous* proofs about the complexity of algorithms and operations in data structures for large input sizes.
- Conversely, the analysis of algorithms leads to the development of new mathematical ideas.

MERCI