Probabilistic analysis of algorithms

Henning Sulzbach

INRIA Junior Seminar, Paris-Rocquencourt, January 2014

RAP - Réseaux, algorithmes et probabilités

About myself

May 2012: PhD in mathematics at the

Goethe University Frankfurt, supervisor: Ralph Neininger

June 2012 - August 2013: Post-Doc at the Goethe University Frankfurt and at the McGill University of Montréal

Since Sept. 2013: FMSP (Fondation Sciences Mathématiques de Paris) Post-Doc fellowship at IN-RIA with host Nicolas Broutin.

Outline

1. Probabilistic analysis of algorithms

2. The Quicksort routine

3. Partial match retrieval

Analysis of algorithms

Goal: Estimate the computational complexity of algorithms and computational problems

Examples:

Basic algorithms: sorting & searching

Data structures: insertion, deletion, searching, ...

Approximation algorithms: traveling salesman problem, ...

Analysis of algorithms

Goal: Estimate the computational complexity of algorithms and computational problems

Complexity: storage and/or running-time

Motivation:

- rigorous verification of the performance
- separation of efficient and inefficient algorithms
- estimate quality of approximation algorithms
- improve known algorithms

Probabilistic analysis of algorithms

Classical approach: Complexity is measured in terms of the *worst-case* behavior

Random input data: average instead of worst-case behavior

 X_n : complexity for input of size n (n large). Study

- $\mathbb{E}[X_n]$ (mean behavior)
- $\sigma_n^2 := Var(X_n)$ (standard deviation)
- $\mathbb{P}(X_n \ge 2\mathbb{E}[X_n])$ (large deviations)
- As $X_n \mathbb{E}[X_n] \approx \sigma_n$, the limit

$$\lim_{n\to\infty}\mathbb{P}\left(X_{n}-\mathbb{E}\left[X_{n}\right]\leq x\sigma_{n}\right)=F(x)$$

is plausible to exist.

An important example:

 $X_n = \#$ of heads in *n* coin tosses:

$$\mathbb{E}\left[X_n\right] = \frac{1}{2}n$$
, $\sigma_n = \frac{1}{2}\sqrt{n}$ and

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{X_n - \mathbb{E}\left[X_n\right]}{\sigma_n} \le x\right) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-t^2/2} dt$$

We say

$$\frac{X_n - \mathbb{E}\left[X_n\right]}{\sigma_n} \to \mathcal{N}$$

in distribution as $n \to \infty$ where

$$\mathbb{P}\left(\mathcal{N}\leq x\right)=\Phi(x).$$

The analysis of algorithms at Rocquencourt

Project ALGO (1989 - 2012) with head

Philippe Flajolet (1948 - 2011)

Today: ALGO → RAP

Bob Sedgewick's online course:

https://www.coursera.org/course/algs4partI

Input: n distinct numbers, say $1, \ldots, n$

Task: list of numbers in increasing order

Routine:

- 1. Compare all elements to the first element.
- 2. Proceed recursively in sublists until all lists have size 0 or 1.

Input: n distinct numbers, say $1, \ldots, n$

Task: list of numbers in increasing order

Routine:

- 1. Compare all elements to the first element.
- 2. Proceed recursively in sublists until all lists have size 0 or 1.

Input: n distinct numbers, say $1, \ldots, n$

Task: list of numbers in increasing order

Routine:

- 1. Compare all elements to the first element.
- 2. Proceed recursively in sublists until all lists have size 0 or 1.

2 1 3 4 5 6

Input: n distinct numbers, say $1, \ldots, n$

Task: list of numbers in increasing order

Routine:

- 1. Compare all elements to the first element.
- 2. Proceed recursively in sublists until all lists have size 0 or 1.

2 1 3 4 5 6

Input: n distinct numbers, say $1, \ldots, n$

Task: list of numbers in increasing order

Routine:

- 1. Compare all elements to the first element.
- 2. Proceed recursively in sublists until all lists have size 0 or 1.

Aim: Analyze the complexity of Quicksort

Analysis of Quicksort

A common choice for the complexity of Quicksort is the number of executed key comparisons X_n sorting a list of size n.

Model: input data is permuted uniformly at random

Results (Knuth 1973):

- $\mathbb{E}[X_n] \sim 2n \log n$,
- $\sigma_n \sim cn$ for $c = \sqrt{7 2\pi^2/3} = 0.6485...$

Theorem (Régnier '89, Rösler '91)

There exists a r.v. Y with $\mathbb{E}[Y] = 0$ and $\sigma_Y = 1$ such that

$$Y_n := \frac{X_n - \mathbb{E}[X_n]}{\sigma_n} \to Y$$

in distribution, that is $\mathbb{P}(Y_n \leq x) \to \mathbb{P}(Y \leq x)$ for all $x \in \mathbb{R}$.

The shape of Y

Y admits a density f, i.e. $\mathbb{P}(Y \leq x) = \int_{-\infty}^{x} f(t)dt$

• f is bounded (≤ 16) (Janson, Fill 2000)

Conjecture (Knessl, Szpankowski 1997): Very roughly,

$$\mathbb{P}(Y \ge x) \sim e^{-\alpha x \log x}, \quad x \to \infty, \alpha > 0$$

$$\mathbb{P}(Y \le x) \sim e^{-\beta e^{-\gamma x}}, \quad x \to -\infty, \beta, \gamma > 0$$

Remember $\mathbb{P}(N \geq x) \sim e^{-x^2/2}$.

A first step: The recurrence

For two random quantities Z, Z', write $Z \stackrel{d}{=} Z$ if, for all x,

$$\mathbb{P}\left(Z\leq x\right)=\mathbb{P}\left(Z'\leq x\right).$$

Then, with L_n = size of the left sublist,

$$X_n \stackrel{d}{=} X_{L_n}^{(1)} + X_{n-L_n-1}^{(2)} + n - 1.$$

- L_n is uniformly distributed on $\{0, \ldots, n-1\}$,
- $(X_k^{(1)})$ and $(X_k^{(2)})$ are distributed like (X_k)
- $(L_n, (X_k^{(1)}), (X_k^{(2)}))$ are independent

Very often, a distributional recurrence relation is the first step of the analysis.

Quicksort is an algorithm of type divide and conquer.

Input: Set of elements with m different parameters.

Output: Subset of elements where $1 \le i < m$ parameters are given.

Example:

Find people having certain characteristics in a data base

Here: quadtree with two-parameter space $[0,1]^2$.

Two-dimensional Quadtree

0.73, 0.17

Task: Find values with first coordinate s = 0.2

 $C_n(s)$: number of visited nodes retrieving $\{s,*\}$.

Model: data points independent and uniformly distributed on $[0,1]^2$

Simulations

n = 100

Simulations

n = 500

Simulations

n = 1000

A first result

Theorem (Flajolet et al. '93)

Let ξ be uniformly distributed on [0,1], independent of the tree. Then, as $n \to \infty$,

$$\mathbb{E}\left[C_n(\xi)\right]\sim cn^{\beta},$$

$$\beta = \frac{\sqrt{17 - 3}}{2} = 0.561 \dots, c > 0$$

Theorem (Curien, Joseph '12)

For
$$s \in (0,1)$$
, as $n \to \infty$, we have $\mathbb{E}\left[C_n(s)\right] \sim c'(s(1-s))^{\beta/2} n^{\beta}$

Open: variance, limit distribution, behavior of $C_n(s)$ and $\sup_s C_n(s)$ (worst-case).

Simulations of C_n/n^{β} , n = 500

Simulations of C_n/n^{β} , n = 500

A limit theorem

Theorem (Broutin, Neininger, S.)

In distribution

$$rac{C_n(s)}{n^{eta}} o Y(s)$$

as random continuous functions where $\mathbb{E}[Y(s)] = c'(s(1-s))^{\beta/2}$.

Corollaries

- $\frac{C_n(s)}{n^\beta} \to Y(s)$ for any fixed $s \in [0,1]$,
- $\frac{C_n(\xi)}{n^{\beta}} \to Y(\xi)$ with a uniform ξ ,
- the supremum is of the same order as the average-case,

$$\frac{\sup_{s} C_n(s)}{n^{\beta}} \to \sup_{s} Y(s),$$

and $\mathbb{E}\left[\exp\left(\lambda\sup_{s}Y(s)\right)\right]<\infty$ for all $\lambda>0$.

- $\operatorname{Var} C_n(s) \sim c_1(s(1-s))^\beta n^{2\beta}$ with $c_1 = 0.136 \dots$
- $VarC_n(\xi) \sim c_2 n^{2\beta}$ with $c_2 = 0.447...$

But what happens at s = 0?

The results say little at the boundary for $C_n(0) \ll n^{\beta}$ as $n \to \infty$.

Theorem (Flajolet et al. '93, Curien, Joseph '12)

As
$$n \to \infty$$
,

$$\mathbb{E}\left[C_n(0)\right] \sim \kappa n^{\sqrt{2}-1}$$

and $C_n(0)/n^{\sqrt{2}-1} \to C$ for some r.v. C. Note

$$0.414... = \sqrt{2} - 1 < \beta$$

•

An intuitive explanation

$$I_n^0 \stackrel{d}{=} \operatorname{Bin}(n-1, UV) \sim nUV$$

$$J_n^0 \stackrel{d}{=} \operatorname{Bin}(n-1, U(1-V)) \sim nU(1-V)$$

$$I_n^* \stackrel{d}{=} Bin(n-1, XV) \sim nXV$$

$$J_n^* \stackrel{d}{=} Bin(n-1, X(1-V)) \sim nX(1-V)$$

$$X = \begin{cases} U & \xi < U \\ 1-U & \xi > U \end{cases}$$

Note: $\mathbb{P}(X > x) \ge \mathbb{P}(U > x)$, X is larger than U.

Conclusions

Summary:

- Sophisticated mathematical tools allow precise statements with rigorous proofs about the complexity of algorithms and operations in data structures for large input sizes.
- Conversely, the analysis of algorithms leads to the development of new mathematical ideas.

MERCI