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Optimization is everywhere

I Fit parameters of a model (statistics/machine learning,
physics, bio-informatics...).

I Allocate ressources optimally (finance, transportation,
operations research...).

I Any application when you think about it.

I Mathematically, an optimization problem is defined as
minimizing a function f of a variable x subject to a set of
constraints x ∈ Q.

I Of course x can be multidimensional.



Why convex?

I Optimization is everywhere, but most problems are very hard
to solve!

I On the other hand: convex optimization problems can be
solved globally and efficiently.

I Convex optimization problem: convex cost function and
convex domain/constraints.
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Convex optimization is a technology, for reasonable sized
problems

I Many efficient and user-friendly solvers, including CVX,
Mosek etc.

I Work very fast (micro second to few seconds) and give 10−12

accuracy solutions for problems of dimension < 1000.

I For bigger problems, use algorithms specifically tuned for the
problem and parallelization when possible.



What about non convex problems?

Optimization is everywhere, but most problems are not convex!
Non convex optimization:

I finds local optima, with no guarantee on global optimality

I often relies on heuristics

I can work well in practice, but not in a systematic way.
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Convex addict

I Can’t we go back to the nice convex world?

I For some non-convex problems, it is possible to write a
“relaxation” which gives an approximate solution to the
original problem.

I When they work, relaxations can provide both good results
and theoretical guarantees on hard problems.



How to relax a problem?

I Typical framework: convex objective function with non convex
constraints.

I Relaxed problem: suppress non convex constraints/take the
convex hull of the domain.

I Example: relax set of permutation matrices by set of doubly
stochastic matrices (non-negative matrices whose rows and
columns sum to one).



How to relax a problem?

I Project solution of relaxed problem on original set to get a
feasible point.

I Get lower bound on the original problem: get an idea of how
far you are from the true solution.

f (x relax) ≤ f (xoptimal) ≤ f (xprojected)

I For some problems it is possible to quantify the “tightness” of
their relaxations.



Part two: a glimpse on my work.



Seriation
The Seriation Problem.

Randomly ordered movie.

Image similarity matrix (true & observed)

Reconstructed movie.



Seriation

I Pairwise similarity information Aij on n variables.

I Suppose the data has a serial structure, i.e. there is an
order π such that

Aπ(i)π(j) decreases with |i − j | (R-matrix)

Recover π?
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Shotgun gene sequencing
C1P has direct applications in shotgun gene sequencing.

I Genomes are cloned multiple times and randomly cut into
shorter reads
(∼ a few hundred base pairs), which are fully sequenced.

I Reorder the reads to recover the genome.

(from Wikipedia. . . )



Exact solution in the noiseless case

A “magical” result : the Fiedler vector reorders a R-matrix
in the noiseless case!

Spectral Seriation. Define the Laplacian of A as
LA = diag(A1)− A, the Fiedler vector of A is written

f = argmin
1T x=0,
‖x‖2=1

xTLAx .

and is the second smallest eigenvector of the Laplacian.

Theorem [Atkins, Boman, Hendrickson, et al., 1998]

Spectral seriation. Suppose A ∈ Sn is a pre-R matrix, with a
simple Fiedler value whose Fiedler vector f has no repeated values.
Suppose that Π ∈ P is such that the permuted Fielder vector Πv is
monotonic, then ΠAΠT is an R-matrix.



Convex relaxation
I Combinatorial objective:

min
π∈P

n∑
i ,j=1

Aπ(i)π(j)(i − j)2 = yTΠTLAΠy

where LA is the Laplacian of A and y = (1, . . . , n)T .
I Π permutation matrix if and only Π is both doubly

stochastic and orthogonal.
I Set of doubly stochastic matrices is convex hull of

permutation matrices
I Relax set of permutations by removing orthogonality

constraint: [Fogel, Jenatton, Bach, and d’Aspremont, 2013]

minimize yTΠTLAΠy
subject to eT1 Πy + 1 ≤ eTn Πy ,

Π1 = 1, ΠT1 = 1
Π ≥ 0,

in the variable Π ∈ Rn×n.



Convex relaxation

I Actually need a little more to make it work.

I Can add a priori information on the order we want to recover
(e.g. we know that element i should be at distance d from
element j).

I More robust to noise than spectral seriation, but not exact in
noiseless case.

I Not yet scalable to datasets > 1000 points, but can use
spectral seriation first and then refine with convex relaxation.



Numerical experiments



DNA

Reorder the read similarity matrix to solve C1P on 250 000 reads
from human chromosome 22.

# reads ×# reads matrix measuring the number of common
k-mers between read pairs, reordered according to the spectral
ordering.
The matrix is 250 000 × 250 000, we zoom in on two regions.



DNA

250 000 reads from human chromosome 22.

Spectral Spectral + QP

Recovered read position versus true read position for the spectral
solution and the spectral solution followed by semi-supervised
seriation.
We see that the number of misplaced reads significantly decreases
in the semi-supervised seriation solution.



Dead people

Row ordering, 70 artifacts × 59 graves matrix [Kendall, 1971].
Find the chronology of the 59 graves by making artifact
occurrences contiguous in columns.

Kendall Spectral QP

The Hodson’s Munsingen dataset: column ordering given by
Kendall (left), Fiedler solution (center), best unsupervised QP
solution from 100 experiments with different Y , based on
combinatorial objective (right).
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