Caterina Urban

F 4
: informatics g7 mathematics
Project-Team ANTIQUE Département d’'Informatique
INRIA Paris-Rocquencourt Ecole Normale Supérieure

18th March 2014
INRIA Junior Seminar
INRIA Paris-Rocquencourt, France

Project-Team ANTIQUE

AN TIQUE

Abstract Interpretation

approximation
formal metg‘gifi automated

approximare APplications systems
PP Y

.. behaviors properties mathematical -
compile time . rigorous qllalll'y
relizbiliy SEMANTIC -
computer it inference

UATANLees opnpopg thec’r)’] sound
TCSCaTCh SOftWal'C 0ols

static analysis
semantics-based

Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Proving Program Termination? Why?

30GB Zunes all over the waorld fail en masse | TechCrunch

—Tc News TCTV Events

nuary 26, 2014, at 11:59 p.m. fote for your favorite startup her

Qe

ANNOUNCEMENT Crunchies voting ends on Sund;

30GB Zunes all over the world fail en masse

Matt Burns

- m:z\ o Tweet 0 ﬁsham]

It seems that a random bug is affecting a bunch, if not every, 30GB
Zunes. Real early this morning, a bunch of Zune 30s just stopped
working. No official word from Redmond on this one yet but we
might have a gadget Y2K going on here. Fan boards and support
forums all have the same mantra saying that at 2:00 AM this
morning, the Zune 30s reset on their own and doesn't fully reboot.
We're sure Microsoft will get flooded with angry Zune owners as soon
as the phone lines open up for the last time in 2008. More as we get
it.

Update 2: The solution is ... kind of weak: let your Zune run out of battery and itll be fixed when

you wake up tomorrow and charge it. 3

N
N}

Introduction
Concrete Semantics Why?

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Proving Program Termination? Why?
f;l \g‘m n\ &) [&] (2] (#] @Z G b; e — [Reader | |§1
= Zune bug explained in detail

Devin Coldewey

= o] wiwea 2 [share | ©

Earlier today, the sound of thousands of Zune owners crying out in terror made ripples
across the blogosphere. The response from Microsoft is to wait until tomorrow and all will
be well. You're probably wandering, what kind of bug fixes itself?

3c Well, I've got the code here and it's very simple, really; if you've taken an introductory
programming class, you'll see the error right away.
=
while (days > 365)
{
It seg if (IsLeapYear(year))
Zung ¢ .
if (days > 366)
work {
mlgh days -= 366;
year += 1;

foru)
mori }
We'rs else

{
as th days -= 365;
it year += 1;

}
Upd b
vouy You can see the details here, but the important bit is that today, the day count is 366. As you can 3/22

Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions Outline
Conclusion and Future Work

Outline

e ranking functions!

e functions that strictly decrease at each program step. ..
o ...and that are bounded from below

LFloyd - Assigning Meanings to Programs (1967)

Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions Outline
Conclusion and Future Work

Outline

e ranking functions!

e functions that strictly decrease at each program step. ..
o ...and that are bounded from below

e idea: computation of ranking functions by abstract interpretation?

LFloyd - Assigning Meanings to Programs (1967)
2Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions Outline
Conclusion and Future Work

Outline

e ranking functions!

e functions that strictly decrease at each program step. ..
o ...and that are bounded from below

e idea: computation of ranking functions by abstract interpretation?

o family of abstract domains for program termination
o piecewise-defined ranking functions
o backward invariance analysis
o sufficient conditions for termination

LFloyd - Assigning Meanings to Programs (1967)
2Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions Outline
Conclusion and Future Work

Outline

e ranking functions!

e functions that strictly decrease at each program step. ..
o ...and that are bounded from below

e idea: computation of ranking functions by abstract interpretation?

o family of abstract domains for program termination
o piecewise-defined ranking functions
o backward invariance analysis
o sufficient conditions for termination

@ instances based on

LFloyd - Assigning Meanings to Programs (1967)
2Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
3Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions Outline
Conclusion and Future Work

Abstract Interpretation®

(C,Ec)

[P

#Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. (POPL 1977)

Introduction
Outline

Abstract Interpretation®

(C,Cc) : (A, Cp)

#Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. (POPL 1977)

Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions Outline
Conclusion and Future Work

Abstract Interpretation®

(C,Ec)

#Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. (POPL 1977)

Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions Outline
Conclusion and Future Work

Abstract Interpretation®
<C7EC>

g
- o([PD)

N S#

#Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. (POPL 1977)

Introduction

Concrete Semantics Trace Semantics
Piecewise-Defined Ranking Functions
Conclusion and Future Work

NN s 3 final states
o ¢ ‘

—

finite traces 2+

infinite traces X*° > : = SR

> states T transition relation

~
N
N}

Introduction

Concrete Semantics
Piecewise-Defined Ranking Functions
Conclusion and Future Work

Termination Semantics

idea = define a ranking function

that counts the number of program steps .

from the end of the program

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

Introduction

Concrete Semantics
Piecewise-Defined Ranking Functions
Conclusion and Future Work

Termination Semantics

Example

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

Introduction

Concrete Semantics
Piecewise-Defined Ranking Functions
Conclusion and Future Work

Termination Semantics

Example

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

Introduction

Concrete Semantics
Piecewise-Defined Ranking Functions
Conclusion and Future Work

Termination Semantics

Example

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

Introduction

Concrete Semantics
Piecewise-Defined Ranking Functions
Conclusion and Future Work

Termination Semantics

Example

0 1 -0 1 0 1 0
2 2
0 0 0 0

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

Introduction

Concrete Semantics
Piecewise-Defined Ranking Functions
Conclusion and Future Work

Termination Semantics

the termination semantics
extracts the well-founded part

0 1 -0 1 -0 1 0
2 2
0 0 0 0

~ ~
~

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

Introduction

Concrete Semantics
Piecewise-Defined Ranking Functions
Conclusion and Future Work

Termination Semantics

Example
0 10 1 0 1 0
2 2
0 0 0 0

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions Termination Semantics
Conclusion and Future Work

int : x

x:= 7

while (> 0) do
X : -1

od

Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions Termination Semantics
Conclusion and Future Work

int : x

x:= 7

while (> 0) do
X : -1

od

. the termination semantic

| is not computable! |

Piecewise-Defined Ranking Functions

ermination Semantics

11/22

Piecewise-Defined Ranking Functions
Conclusion and Future Work

ermination Semantics
(r—0,5)

@ Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

ermination Semantics
(r—0,5)

@ States Abstract Domain ¢— T S— 7 S

@ Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

ermination Semantics
(r—0,5)

@ States Abstract Domain

@ Functions Abstract Domain

S

@ Piecewise-Defined Ranking Functions Abstract Domain

F
V(S,F)

Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Why Piecewise-Defined Ranking Functions?

int : x
while *(x # 0) { R
f(x) 2 -
if2(x <0) {*x:=x+1; }else { *x:=x—-1; } () ! x=0
)5 3x+1 x>0

. 1 x<0
Int : x 5 0<x<?2
while '(x > 0) { fx)2{9 x=3
2x::—2x+10; 7 4<x<5
}3 3 bh<x

Affine Ranking Functions
Implementation

Affine Ranking Functions Domain

(V£P(SxF),Cy)

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Affine Ranking Functions

Implementation

Affine Ranking Functions Domain

(V£P(SxF),Cy)

=

o States Abstract Domain
o S £ Intervals Abstract Domain

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)
Cousot& Cousot - Static Determination of Dynamic Properties of Programs (1976)

Affine Ranking Functions
Implementation

Affine Ranking Functions Domain

(V£P(SxF),Cy)

o States Abstract Domain 5 9
o S £ Intervals Abstract Domain
o Functions Abstract Domain
o FE2{le} U {f|feZ" =N} U {T¢}
where f = f(x1,..., %) = mixi + -+ Maxa + g

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)
Cousot& Cousot - Static Determination of Dynamic Properties of Programs (1976)

Affine Ranking Functions
Implementation

int : x x<0
while “(x > 0) {

x =x-1 lx>0
x:=x—1

we map each point
to a function of x giving
an on the
steps before termination

Affine Ranking Functions
Implementation

int: x X <0
while (x>0
(){ x:=x-1 lx>0
x:=x—1

we start at the end
with O steps
before termination

I I I I BN
4

Affine Ranking Functions
Implementation

ES
H
we take into account |
x < 0 and we have “
1 step to termination | 4
T T T T X
0
int - X x<0
while “(x > 0) {
x:=x-1 lx >0
x:=x—1

I I I I BN
4

Affine Ranking Functions
Implementation

e
0
Int : x x<0
while “(x > 0) {
x:=x—1 lx >0
xi=x—1
1+
} |
H
H
H 4
we consider the assignment :%F::::% x H
! H

x := x — 1 and we are
at 2 steps to termination “

Affine Ranking Functions
Implementation

ES
|
we consider x > 0 “
and we do the join Ll U
ZJL::::% $%
L
0
int: x x <0
while (x>0
() { x:=x—1 lx >0
x:=x—1
/W\
} u
H
H
| N
T 1T, H
T K H
1 H

| .

Affine Ranking Functions
Implementation

ES
|
H
H
HH+~
0 2
int: x X <0
while (x>0
(){ x:=x—1 lx>0
x:=x—1

we do the widening Vy

int : x
while “(x > 0) {

xi=x—-1
} 4

Affine Ranking Functions
Implementation

1
|
H
|
=1
02
x<0
x =x-1 lx >0
1
T |

Affine Ranking Functions
Implementation

A
|
|
=,
024
int: x X <0
while (x>0
() { x:=x—1 lx >0
x:=x—1
4
} H
H
H
| N
ITT 1T, H
T K |
13 H

Affine Ranking Functions
Implementation

A
|
|
=
02
int : x X <0
while “(x > 0) {
x:=x-—1 lx >0
x=x-1
4
} u
H
H
| 4
the analysis gives =%F::::% x H
13 H

as
for termination “

Affine Ranking Functions
Implementation

o segmentation unification

J—L + J—L :
X X X
4 2

o join: Uy
o widening: Vy
o backward assignments: ASSIGNy

Affine Ranking Functions
Implementation

@ segmentation unification

o join: Uy

o widening: Vy
o backward assignments: ASSIGNy

Affine Ranking Functions
Implementation

o segmentation unification
o join: Uy

o widening: Vy

6 11

o backward assignments: ASSIGNy

Affine Ranking Functions
Implementation

o segmentation unification

o join: Uy

o widening: Vy

6 11 6 11

o backward assignments: ASSIGNy

Affine Ranking Functions
Implementation

o segmentation unification

o join: Uy

o widening: Vy

6 11 6 11

o backward assignments: ASSIGNy

Affine Ranking Functions
Implementation

@ segmentation unification

o join: Uy

o widening: Vy

o backward assignments: ASSIGNy

Affine Ranking Functions
Implementation

@ segmentation unification

o join: Uy

o widening: Vy

o backward assignments: ASSIGNy

Affine Ranking Functions
Implementation

ermination Semantics Abstract Termination Semantics
(X —0,C)

the abstract termination semantics is
to prove the termination of programs

Affine Ranking Functions
Implementation

x> 10
TN

int: x
while “(x <10) do x<6 lx<10

if “(x > 6) then

X =x+2
X::X+2
fi lx>6

od

Affine Ranking Functions
Implementation

we map each point
to a function of x giving
an on the
steps before termination

x> 10
TN

int: x
while “(x <10) do x<6 lx<10

if “(x > 6) then

X =x+2
X::X+2
fi lx>6

od

int : x
while “(x < 10) do
if “(x > 6) then
X =x+2
fi
od

Affine Ranking Functions
Implementation

we start at the end
with 0 steps
before termination

o4t

X =x+2

we take into account
x > 10 and we have now
1 step to termination

int : x
while “(x < 10) do
if “(x > 6) then
X =x+2
fi
od

X =x+2

Affine Ranking Functions
Implementation

A
H
|
T |
|
H i > X
| o
RN x>10
T i’ Py
int : x
while (XSlO) do x < 6 lx<10
if “(x > 6) then
N X:=x+2
X:i=x+2 H
fi H lx > 6
H
od I =
T H
6 |
we consider the assignment x := x + 2 “
or the test x < 6 and we are now 4%22222% X

at 2 steps to termination 10

Affine Ranking Functions
Implementation

4
H
|
W H
H
H i > X
| o
RN x>10
T i’ Py
int : x
while “(x < 10) do <6 lx<10
if “(x > 6) then
N X =x+2
Xi=x+2 H
fi H lx >6
Od JL:::::% X ™
T H
6 10 H
H
we consider x > 6 JHL
and we do the join L

we consider x < 10
and we do the join

int : x
while “(x < 10) do
if “(x > 6) then
X =x+2
fi
od

Affine Ranking Functions
Implementation

N
|
H
|
i » X
0
T x x> 10
8 10 7\
x<6 lx <10
X =x+2
lx >6
— 5 X 4
10 |
|
.

int : x

while “(x < 10) do

od

if “(x > 6) then
X:=x+2
fi

Affine Ranking Functions
Implementation

4
|
|
|
i > X
0
T x x> 10
7\
x<6 lx <10
Xx:=x+2
lx >6
— 5 X 4
6 810 H
|
mummand

we do the widening

int : x
while “(x < 10) do
if “(x > 6) then
X =x+2
fi
od

Affine Ranking Functions
Implementation

N
|
H
|
i » X
0
O x x> 10
6 810 7\
x<6 lx <10
X =x+2
lx >6
—_— s x 4
6 8 10 H
|
.

int : x

while “(x < 10) do

od

if “(x > 6) then
X:=x+2
fi

Affine Ranking Functions
Implementation

N
|
H
|
i » X
0
T x x> 10
N
x<6 lx <10
Xx:=x+2
lx > 6
s x ’“‘
6 8 10 H
|
.

Affine Ranking Functions
Implementation

4
H
H
N H
: : H
the analysis provides x > 6 “ “
as | ” ’x
e H 0
for termination |
i I = x > 10
6 810 7\
int : x
while (XSlO) do x <6 lx<10
if “(x > 6) then
N X =x+2
X:i=x+2 H
fi H lx >6
H
od
INEEEEE -
6 8 10 H
|
TS

Introduction

Concrete Semantics
Piecewise-Defined Ranking Functions Implementation

Conclusion and Future Work

@ written in OCaml

8006 FuncTion 2

An Abstract Domain Functor for Termination

Welcome to FuncTion's web interface!

Type your program:

or choose a predefined example: | Choose File
Analyze

Forward option(s):

- Widening delay: |2

Backward option(s):

» Partiion Abstract Domain: | Intervals
* Function Absiract Domain: | Affine Functions +
@ Ordinal-Valued Functions
» Maximum Degree: |2
« Widening delay: 3

19/22

http://www.di.ens.fr/~urban/FuncTion.html

Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions Implementation
Conclusion and Future Work

Experiments

Benchmarks: 87 terminating C programs collected from the literature

Tools:
e AProVE
e T2

@ Ultimate Biichi Automizer

Results:

[[Tot [FuncTion | AProVE [T2 [Ultimate [Time [Timeouts |
FuncTion 51 — 8 8 3 6s 5
AProVE 60 17 — 7 2 35s 19

T2 73 30 20 — 3 2s 0
Ultimate 79 31 21 9 — 9s 1

Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Conclusions

o family of abstract domains for program termination
o piecewise-defined ranking functions
e backward invariance analysis
o sufficient conditions for termination

@ instances based on
o affine ranking functions
@ instances based on ordinal-valued functions

e ordinals remove the burden of finding lexicographic orders
e analysis not limited to programs with linear computational complexity

N
N
N}

Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Conclusions

o family of abstract domains for program termination
o piecewise-defined ranking functions
e backward invariance analysis
o sufficient conditions for termination

@ instances based on
o affine ranking functions
@ instances based on ordinal-valued functions

e ordinals remove the burden of finding lexicographic orders
e analysis not limited to programs with linear computational complexity

Future Work

e more abstract domains (e.g., non-linear ranking functions)
@ other liveness properties

@ complexity analysis

N
N
>

Questions?

“...the purpose of abstraction is not to be
vague, but to create a new semantic level in
which one can be absolutely precise.”
(Edsger Dijkstra)

	Introduction
	Why?
	Outline

	Concrete Semantics
	Trace Semantics
	Termination Semantics

	Piecewise-Defined Ranking Functions
	Affine Ranking Functions
	Implementation

	Conclusion and Future Work

