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Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
8 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

program 7→ trace semantics 7→ termination semantics

Example

0

0

1 0

0

2
1 0

0

2
1 0

0

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
8 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

program 7→ trace semantics 7→ termination semantics

Example

0

0

1 0

0

2
1 0

0

2
1 0

0

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
8 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

program 7→ trace semantics 7→ termination semantics

Example

0

0

1 0

0

2
1 0

0

2
1 0

0

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
8 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

program 7→ trace semantics 7→ termination semantics

Example

0

0

1 0

0

2
1 0

0

2
1 0

0

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
8 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

program 7→ trace semantics 7→ termination semantics

Example

0

0

1 0

0

2
1 0

0

2
1 0

0

the termination semantics
extracts the well-founded part
of the program transition relation

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
8 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

program 7→ trace semantics 7→ termination semantics

Example

0

0

1 0

0

2
1 0

0

2
1 0

0

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
8 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

Example

int : x

x := ?

while (x ≥ 0) do

x := x − 1

od

0 . . . 0 1

0

2

1

0

. . .

n

n − 1

1

0

. . .

the termination semantic
is not computable!

9 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

Example

int : x

x := ?

while (x ≥ 0) do

x := x − 1

od

0 . . . 0 1

0

2

1

0

. . .

n

n − 1

1

0

. . .

the termination semantic
is not computable!

9 / 22



Piecewise-Defined Ranking Functions



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Termination Semantics Abstract Termination Semantics

γ

States Abstract Domain S

Functions Abstract Domain F

Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

x

5 9

11 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Termination Semantics

〈Σ ⇀ O,v〉
Abstract Termination Semantics

〈V,vV〉

γ

States Abstract Domain S

Functions Abstract Domain F

Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

x

5 9

11 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Termination Semantics

〈Σ ⇀ O,v〉
Abstract Termination Semantics

〈V,vV〉

γ

States Abstract Domain S

Functions Abstract Domain F

Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

x

5 9

11 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Termination Semantics

〈Σ ⇀ O,v〉
Abstract Termination Semantics

〈V,vV〉

γ

States Abstract Domain S

Functions Abstract Domain F

Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

x

5 9

11 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Why Piecewise-Defined Ranking Functions?

Example

int : x

while 1(x 6= 0) {

if 2(x < 0) { 3x := x + 1; } else { 4x := x − 1; }

}5

f (x) ,


−3x + 1 x < 0

1 x = 0

3x + 1 x > 0

Example

int : x

while 1(x ≥ 0) {
2x := −2x + 10;

}3

f (x) ,



1 x < 0

5 0 ≤ x ≤ 2

9 x = 3

7 4 ≤ x ≤ 5

3 5 < x
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〈Σ ⇀ O,v〉 〈V , P(S × F),vV〉

γ

States Abstract Domain
S , Intervals Abstract Domain

Functions Abstract Domain
F , {⊥F} ∪ {f | f ∈ Zn → N} ∪ {>F}
where f ≡ f (x1, . . . , xn) = m1x1 + · · ·+ mnxn + q

x

5 9

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Cousot&Cousot - Static Determination of Dynamic Properties of Programs (1976)
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steps before termination
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x ≤ 0 and we have

1 step to termination

we consider the assignment
x := x − 1 and we are

at 2 steps to termination

we consider x > 0
and we do the join tV
we do the widening OV

the analysis gives true
as sufficient precondition

for termination
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γ

Theorem (Soundness)

the abstract termination semantics is sound
to prove the termination of programs
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Example

int : x

while 1(x ≤ 10) do

if 2(x > 6) then
3x := x + 2

fi

od4

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before terminationwe take into account
x > 10 and we have now

1 step to termination

we consider the assignment x := x + 2
or the test x ≤ 6 and we are now

at 2 steps to termination

we consider x > 6
and we do the join

we consider x ≤ 10
and we do the join
we do the widening

the analysis provides x > 6
as sufficient precondition

for termination

1

2

3

4
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x
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8 10
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x
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x
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x

10

x
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http://www.di.ens.fr/~urban/FuncTion.html

written in OCaml
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Experiments

Benchmarks: 87 terminating C programs collected from the literature

Tools:

AProVE

T2

Ultimate Büchi Automizer

Results:

Tot FuncTion AProVE T2 Ultimate Time Timeouts

FuncTion 51 − 8 8 3 6s 5
AProVE 60 17 − 7 2 35s 19

T2 73 30 20 − 3 2s 0
Ultimate 79 31 21 9 − 9s 1

20 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Conclusions
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piecewise-defined ranking functions
backward invariance analysis
sufficient conditions for termination

instances based on natural-valued functions

affine ranking functions

instances based on ordinal-valued functions

ordinals remove the burden of finding lexicographic orders
analysis not limited to programs with linear computational complexity

Future Work

more abstract domains (e.g., non-linear ranking functions)

other liveness properties

complexity analysis
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Thank You!

Questions?

“. . . the purpose of abstraction is not to be
vague, but to create a new semantic level in

which one can be absolutely precise.”
(Edsger Dijkstra)
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