
Automatic Inference of Ranking Functions
by Abstract Interpretation

Caterina Urban

Project-Team ANTIQUE Département d’Informatique

INRIA Paris-Rocquencourt École Normale Supérieure

18th March 2014
INRIA Junior Seminar

INRIA Paris-Rocquencourt, France



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Project-Team ANTIQUE

ANalyse StaTIQUE par Interprétation Abstraite

2 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Why?
Outline

Proving Program Termination? Why?

3 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Why?
Outline

Proving Program Termination? Why?

3 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Why?
Outline

Outline

ranking functions1

functions that strictly decrease at each program step. . .
. . . and that are bounded from below

idea: computation of ranking functions by abstract interpretation2

family of abstract domains for program termination

piecewise-defined ranking functions
backward invariance analysis
sufficient conditions for termination

instances based on affine ranking functions3

1Floyd - Assigning Meanings to Programs (1967)
2Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
3Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

4 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Why?
Outline

Outline

ranking functions1

functions that strictly decrease at each program step. . .
. . . and that are bounded from below

idea: computation of ranking functions by abstract interpretation2

family of abstract domains for program termination

piecewise-defined ranking functions
backward invariance analysis
sufficient conditions for termination

instances based on affine ranking functions3

1Floyd - Assigning Meanings to Programs (1967)
2Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
3Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

4 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Why?
Outline

Outline

ranking functions1

functions that strictly decrease at each program step. . .
. . . and that are bounded from below

idea: computation of ranking functions by abstract interpretation2

family of abstract domains for program termination

piecewise-defined ranking functions
backward invariance analysis
sufficient conditions for termination

instances based on affine ranking functions3

1Floyd - Assigning Meanings to Programs (1967)
2Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
3Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

4 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Why?
Outline

Outline

ranking functions1

functions that strictly decrease at each program step. . .
. . . and that are bounded from below

idea: computation of ranking functions by abstract interpretation2

family of abstract domains for program termination

piecewise-defined ranking functions
backward invariance analysis
sufficient conditions for termination

instances based on affine ranking functions3

1Floyd - Assigning Meanings to Programs (1967)
2Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
3Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

4 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Why?
Outline

Abstract Interpretation4

〈C,vC〉

S

JPK

" %

〈A,vA〉

S#

JP#K

α(JPK)

α

γ(JP#K)

γ

4Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. (POPL 1977)

5 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Why?
Outline

Abstract Interpretation4

〈C,vC〉

S

JPK

〈A,vA〉

S#

JP#K

α

γ

α(JPK)

α

γ(JP#K)

γ

4Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. (POPL 1977)

5 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Why?
Outline

Abstract Interpretation4

〈C,vC〉

S

JPK

〈A,vA〉

S#

JP#K

α(JPK)

α

γ(JP#K)

γ

4Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. (POPL 1977)

5 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Why?
Outline

Abstract Interpretation4

〈C,vC〉

S

JPK

〈A,vA〉

S#

JP#K

α(JPK)

α

γ(JP#K)

γ

4Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. (POPL 1977)

5 / 22



Concrete Semantics



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

program 7→ trace semantics

finite traces Σ+

infinite traces Σ∞

β final states

Σ states τ transition relation

7 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

program 7→ trace semantics 7→ termination semantics

Example

0

0

1 0

0

2
1 0

0

2
1 0

0

idea = define a ranking function
that counts the number of program steps

from the end of the program

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
8 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

program 7→ trace semantics 7→ termination semantics

Example

0

0

1 0

0

2
1 0

0

2
1 0

0

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
8 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

program 7→ trace semantics 7→ termination semantics

Example

0

0

1 0

0

2
1 0

0

2
1 0

0

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
8 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

program 7→ trace semantics 7→ termination semantics

Example

0

0

1 0

0

2
1 0

0

2
1 0

0

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
8 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

program 7→ trace semantics 7→ termination semantics

Example

0

0

1 0

0

2
1 0

0

2
1 0

0

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
8 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

program 7→ trace semantics 7→ termination semantics

Example

0

0

1 0

0

2
1 0

0

2
1 0

0

the termination semantics
extracts the well-founded part
of the program transition relation

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
8 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

program 7→ trace semantics 7→ termination semantics

Example

0

0

1 0

0

2
1 0

0

2
1 0

0

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
8 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

Example

int : x

x := ?

while (x ≥ 0) do

x := x − 1

od

0 . . . 0 1

0

2

1

0

. . .

n

n − 1

1

0

. . .

the termination semantic
is not computable!

9 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Trace Semantics
Termination Semantics

Example

int : x

x := ?

while (x ≥ 0) do

x := x − 1

od

0 . . . 0 1

0

2

1

0

. . .

n

n − 1

1

0

. . .

the termination semantic
is not computable!

9 / 22



Piecewise-Defined Ranking Functions



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Termination Semantics Abstract Termination Semantics

γ

States Abstract Domain S

Functions Abstract Domain F

Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

x

5 9

11 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Termination Semantics

〈Σ ⇀ O,v〉
Abstract Termination Semantics

〈V,vV〉

γ

States Abstract Domain S

Functions Abstract Domain F

Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

x

5 9

11 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Termination Semantics

〈Σ ⇀ O,v〉
Abstract Termination Semantics

〈V,vV〉

γ

States Abstract Domain S

Functions Abstract Domain F

Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

x

5 9

11 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Termination Semantics

〈Σ ⇀ O,v〉
Abstract Termination Semantics

〈V,vV〉

γ

States Abstract Domain S

Functions Abstract Domain F

Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

x

5 9

11 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Why Piecewise-Defined Ranking Functions?

Example

int : x

while 1(x 6= 0) {

if 2(x < 0) { 3x := x + 1; } else { 4x := x − 1; }

}5

f (x) ,


−3x + 1 x < 0

1 x = 0

3x + 1 x > 0

Example

int : x

while 1(x ≥ 0) {
2x := −2x + 10;

}3

f (x) ,



1 x < 0

5 0 ≤ x ≤ 2

9 x = 3

7 4 ≤ x ≤ 5

3 5 < x

12 / 22



Affine Ranking Functions



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Affine Ranking Functions Domain

〈Σ ⇀ O,v〉 〈V , P(S × F),vV〉

γ

States Abstract Domain
S , Intervals Abstract Domain

Functions Abstract Domain
F , {⊥F} ∪ {f | f ∈ Zn → N} ∪ {>F}
where f ≡ f (x1, . . . , xn) = m1x1 + · · ·+ mnxn + q

x

5 9

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Cousot&Cousot - Static Determination of Dynamic Properties of Programs (1976)
14 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Affine Ranking Functions Domain

〈Σ ⇀ O,v〉 〈V , P(S × F),vV〉

γ

States Abstract Domain
S , Intervals Abstract Domain

Functions Abstract Domain
F , {⊥F} ∪ {f | f ∈ Zn → N} ∪ {>F}
where f ≡ f (x1, . . . , xn) = m1x1 + · · ·+ mnxn + q

x

5 9

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Cousot&Cousot - Static Determination of Dynamic Properties of Programs (1976)
14 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Affine Ranking Functions Domain

〈Σ ⇀ O,v〉 〈V , P(S × F),vV〉

γ

States Abstract Domain
S , Intervals Abstract Domain

Functions Abstract Domain
F , {⊥F} ∪ {f | f ∈ Zn → N} ∪ {>F}
where f ≡ f (x1, . . . , xn) = m1x1 + · · ·+ mnxn + q

x

5 9

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Cousot&Cousot - Static Determination of Dynamic Properties of Programs (1976)
14 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x > 0) {
2x := x − 1

}3

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before termination

we take into account
x ≤ 0 and we have

1 step to termination

we consider the assignment
x := x − 1 and we are

at 2 steps to termination

we consider x > 0
and we do the join tV
we do the widening OV

the analysis gives true
as sufficient precondition

for termination

1

2 3

x ≤ 0

x ≤ 0

x := x − 1

x := x − 1

x > 0

x > 0

x

x

1

x

1

x

1 3

x

0

x

0

x

0 2

x

0 2

x

0 2 4

x

0 2

15 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x > 0) {
2x := x − 1

}3

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before termination

we take into account
x ≤ 0 and we have

1 step to termination

we consider the assignment
x := x − 1 and we are

at 2 steps to termination

we consider x > 0
and we do the join tV
we do the widening OV

the analysis gives true
as sufficient precondition

for termination

1

2 3

x ≤ 0

x ≤ 0

x := x − 1

x := x − 1

x > 0

x > 0

x

x

1

x

1

x

1 3

x

0

x

0

x

0 2

x

0 2

x

0 2 4

x

0 2

15 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x > 0) {
2x := x − 1

}3

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before termination

we take into account
x ≤ 0 and we have

1 step to termination

we consider the assignment
x := x − 1 and we are

at 2 steps to termination

we consider x > 0
and we do the join tV
we do the widening OV

the analysis gives true
as sufficient precondition

for termination

1

2 3

x ≤ 0

x ≤ 0

x := x − 1

x := x − 1

x > 0

x > 0

x

x

1

x

1

x

1 3

x

0

x

0

x

0 2

x

0 2

x

0 2 4

x

0 2

15 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x > 0) {
2x := x − 1

}3

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before termination

we take into account
x ≤ 0 and we have

1 step to termination

we consider the assignment
x := x − 1 and we are

at 2 steps to termination

we consider x > 0
and we do the join tV
we do the widening OV

the analysis gives true
as sufficient precondition

for termination

1

2 3

x ≤ 0

x ≤ 0

x := x − 1

x := x − 1 x > 0

x > 0

x

x

1

x

1

x

1 3

x

0

x

0

x

0 2

x

0 2

x

0 2 4

x

0 2

15 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x > 0) {
2x := x − 1

}3

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before termination

we take into account
x ≤ 0 and we have

1 step to termination

we consider the assignment
x := x − 1 and we are

at 2 steps to termination

we consider x > 0
and we do the join tV

we do the widening OV

the analysis gives true
as sufficient precondition

for termination

1

2 3

x ≤ 0

x ≤ 0

x := x − 1

x := x − 1 x > 0

x > 0

x

x

1

x

1

x

1 3

x

0

x

0

x

0 2

x

0 2

x

0 2 4

x

0 2

15 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x > 0) {
2x := x − 1

}3

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before termination

we take into account
x ≤ 0 and we have

1 step to termination

we consider the assignment
x := x − 1 and we are

at 2 steps to termination

we consider x > 0
and we do the join tV
we do the widening OV

the analysis gives true
as sufficient precondition

for termination

1

2 3

x ≤ 0

x ≤ 0

x := x − 1

x := x − 1

x > 0

x > 0

x

x

1

x

1

x

1 3

x

0

x

0

x

0 2

x

0 2

x

0 2 4

x

0 2

15 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x > 0) {
2x := x − 1

}3

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before termination

we take into account
x ≤ 0 and we have

1 step to termination

we consider the assignment
x := x − 1 and we are

at 2 steps to termination

we consider x > 0
and we do the join tV

we do the widening OV

the analysis gives true
as sufficient precondition

for termination

1

2 3

x ≤ 0

x ≤ 0

x := x − 1

x := x − 1

x > 0

x > 0

x

x

1

x

1

x

1 3

x

0

x

0

x

0 2

x

0 2

x

0 2 4

x

0 2

15 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x > 0) {
2x := x − 1

}3

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before termination

we take into account
x ≤ 0 and we have

1 step to termination

we consider the assignment
x := x − 1 and we are

at 2 steps to termination

we consider x > 0
and we do the join tV
we do the widening OV

the analysis gives true
as sufficient precondition

for termination

1

2 3

x ≤ 0

x ≤ 0

x := x − 1

x := x − 1

x > 0

x > 0

x

x

1

x

1

x

1 3

x

0

x

0

x

0 2

x

0 2

x

0 2 4

x

0 2

15 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x > 0) {
2x := x − 1

}3

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before termination

we take into account
x ≤ 0 and we have

1 step to termination

we consider the assignment
x := x − 1 and we are

at 2 steps to termination

we consider x > 0
and we do the join tV
we do the widening OV

the analysis gives true
as sufficient precondition

for termination

1

2 3

x ≤ 0

x ≤ 0

x := x − 1

x := x − 1

x > 0

x > 0

x

x

1

x

1

x

1 3

x

0

x

0

x

0 2

x

0 2

x

0 2 4

x

0 2

15 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

segmentation unification

Example

x
4

+

x
2

=

x
2 4

join: tV

widening: OV

backward assignments: ASSIGNV

16 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

segmentation unification

join: tV

Example

x
1 5

tV

x
1 5

=

x
1 5

widening: OV

backward assignments: ASSIGNV

16 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

segmentation unification

join: tV

widening: OV

Example

x
6 11

OOOV

x
3 6 11

=

x

6 11

backward assignments: ASSIGNV

16 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

segmentation unification

join: tV

widening: OV

Example

x
6 11

OOOV

x

3

6 11

=

x

6 11

backward assignments: ASSIGNV

16 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

segmentation unification

join: tV

widening: OV

Example

x
6 11

OOOV

x

3

6 11

=

x
6 11

backward assignments: ASSIGNV

16 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

segmentation unification

join: tV

widening: OV

backward assignments: ASSIGNV

Example

x
7

x := x + [0, 5]
=⇒

x
2 6

7

16 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

segmentation unification

join: tV

widening: OV

backward assignments: ASSIGNV

Example

x
7

x := x + [0, 5]
=⇒

x

2 6

7

16 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Termination Semantics

〈Σ ⇀ O,v〉
Abstract Termination Semantics

〈V,vV〉

γ

Theorem (Soundness)

the abstract termination semantics is sound
to prove the termination of programs

17 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x ≤ 10) do

if 2(x > 6) then
3x := x + 2

fi

od4

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before terminationwe take into account
x > 10 and we have now

1 step to termination

we consider the assignment x := x + 2
or the test x ≤ 6 and we are now

at 2 steps to termination

we consider x > 6
and we do the join

we consider x ≤ 10
and we do the join
we do the widening

the analysis provides x > 6
as sufficient precondition

for termination

1

2

3

4

x > 10

x > 10

x ≤ 10

x ≤ 10

x ≤ 6

x := x + 2

x ≤ 6

x := x + 2

x > 6

x > 6

x

0

x

10

x

8 10

x

6 8 10

x

6

x

6 10

x

6 8 10

x

10

x

8 10

x

6 8 10

x

6 8 10

x

6 8 10

x

6 8 10

18 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x ≤ 10) do

if 2(x > 6) then
3x := x + 2

fi

od4

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before terminationwe take into account
x > 10 and we have now

1 step to termination

we consider the assignment x := x + 2
or the test x ≤ 6 and we are now

at 2 steps to termination

we consider x > 6
and we do the join

we consider x ≤ 10
and we do the join
we do the widening

the analysis provides x > 6
as sufficient precondition

for termination

1

2

3

4

x > 10

x > 10

x ≤ 10

x ≤ 10

x ≤ 6

x := x + 2

x ≤ 6

x := x + 2

x > 6

x > 6

x

0

x

10

x

8 10

x

6 8 10

x

6

x

6 10

x

6 8 10

x

10

x

8 10

x

6 8 10

x

6 8 10

x

6 8 10

x

6 8 10

18 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x ≤ 10) do

if 2(x > 6) then
3x := x + 2

fi

od4

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before termination

we take into account
x > 10 and we have now

1 step to termination

we consider the assignment x := x + 2
or the test x ≤ 6 and we are now

at 2 steps to termination

we consider x > 6
and we do the join

we consider x ≤ 10
and we do the join
we do the widening

the analysis provides x > 6
as sufficient precondition

for termination

1

2

3

4

x > 10

x > 10

x ≤ 10

x ≤ 10

x ≤ 6

x := x + 2

x ≤ 6

x := x + 2

x > 6

x > 6

x

0

x

10

x

8 10

x

6 8 10

x

6

x

6 10

x

6 8 10

x

10

x

8 10

x

6 8 10

x

6 8 10

x

6 8 10

x

6 8 10

18 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x ≤ 10) do

if 2(x > 6) then
3x := x + 2

fi

od4

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before termination

we take into account
x > 10 and we have now

1 step to termination

we consider the assignment x := x + 2
or the test x ≤ 6 and we are now

at 2 steps to termination

we consider x > 6
and we do the join

we consider x ≤ 10
and we do the join
we do the widening

the analysis provides x > 6
as sufficient precondition

for termination

1

2

3

4

x > 10

x > 10

x ≤ 10

x ≤ 10

x ≤ 6

x := x + 2

x ≤ 6

x := x + 2

x > 6

x > 6

x

0

x

10

x

8 10

x

6 8 10

x

6

x

6 10

x

6 8 10

x

10

x

8 10

x

6 8 10

x

6 8 10

x

6 8 10

x

6 8 10

18 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x ≤ 10) do

if 2(x > 6) then
3x := x + 2

fi

od4

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before terminationwe take into account
x > 10 and we have now

1 step to termination

we consider the assignment x := x + 2
or the test x ≤ 6 and we are now

at 2 steps to termination

we consider x > 6
and we do the join

we consider x ≤ 10
and we do the join
we do the widening

the analysis provides x > 6
as sufficient precondition

for termination

1

2

3

4

x > 10

x > 10

x ≤ 10

x ≤ 10x ≤ 6

x := x + 2

x ≤ 6

x := x + 2

x > 6

x > 6

x

0

x

10

x

8 10

x

6 8 10

x

6

x

6 10

x

6 8 10

x

10

x

8 10

x

6 8 10

x

6 8 10

x

6 8 10

x

6 8 10

18 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x ≤ 10) do

if 2(x > 6) then
3x := x + 2

fi

od4

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before terminationwe take into account
x > 10 and we have now

1 step to termination

we consider the assignment x := x + 2
or the test x ≤ 6 and we are now

at 2 steps to termination

we consider x > 6
and we do the join

we consider x ≤ 10
and we do the join
we do the widening

the analysis provides x > 6
as sufficient precondition

for termination

1

2

3

4

x > 10

x > 10

x ≤ 10

x ≤ 10

x ≤ 6

x := x + 2

x ≤ 6

x := x + 2

x > 6

x > 6

x

0

x

10

x

8 10

x

6 8 10

x

6

x

6 10

x

6 8 10

x

10

x

8 10

x

6 8 10

x

6 8 10

x

6 8 10

x

6 8 10

18 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x ≤ 10) do

if 2(x > 6) then
3x := x + 2

fi

od4

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before terminationwe take into account
x > 10 and we have now

1 step to termination

we consider the assignment x := x + 2
or the test x ≤ 6 and we are now

at 2 steps to termination

we consider x > 6
and we do the join

we consider x ≤ 10
and we do the join

we do the widening
the analysis provides x > 6
as sufficient precondition

for termination

1

2

3

4

x > 10

x > 10

x ≤ 10

x ≤ 10x ≤ 6

x := x + 2

x ≤ 6

x := x + 2

x > 6

x > 6

x

0

x

10

x

8 10

x

6 8 10

x

6

x

6 10

x

6 8 10

x

10

x

8 10

x

6 8 10

x

6 8 10

x

6 8 10

x

6 8 10

18 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x ≤ 10) do

if 2(x > 6) then
3x := x + 2

fi

od4

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before terminationwe take into account
x > 10 and we have now

1 step to termination

we consider the assignment x := x + 2
or the test x ≤ 6 and we are now

at 2 steps to termination

we consider x > 6
and we do the join

we consider x ≤ 10
and we do the join
we do the widening

the analysis provides x > 6
as sufficient precondition

for termination

1

2

3

4

x > 10

x > 10

x ≤ 10

x ≤ 10

x ≤ 6

x := x + 2

x ≤ 6

x := x + 2

x > 6

x > 6

x

0

x

10

x

8 10

x

6 8 10

x

6

x

6 10

x

6 8 10

x

10

x

8 10

x

6 8 10

x

6 8 10

x

6 8 10

x

6 8 10

18 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x ≤ 10) do

if 2(x > 6) then
3x := x + 2

fi

od4

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before terminationwe take into account
x > 10 and we have now

1 step to termination

we consider the assignment x := x + 2
or the test x ≤ 6 and we are now

at 2 steps to termination

we consider x > 6
and we do the join

we consider x ≤ 10
and we do the join

we do the widening

the analysis provides x > 6
as sufficient precondition

for termination

1

2

3

4

x > 10

x > 10

x ≤ 10

x ≤ 10

x ≤ 6

x := x + 2

x ≤ 6

x := x + 2

x > 6

x > 6

x

0

x

10

x

8 10

x

6 8 10

x

6

x

6 10

x

6 8 10

x

10

x

8 10

x

6 8 10

x

6 8 10

x

6 8 10

x

6 8 10

18 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x ≤ 10) do

if 2(x > 6) then
3x := x + 2

fi

od4

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before terminationwe take into account
x > 10 and we have now

1 step to termination

we consider the assignment x := x + 2
or the test x ≤ 6 and we are now

at 2 steps to termination

we consider x > 6
and we do the join

we consider x ≤ 10
and we do the join
we do the widening

the analysis provides x > 6
as sufficient precondition

for termination

1

2

3

4

x > 10

x > 10

x ≤ 10

x ≤ 10

x ≤ 6

x := x + 2

x ≤ 6

x := x + 2

x > 6

x > 6

x

0

x

10

x

8 10

x

6 8 10

x

6

x

6 10

x

6 8 10

x

10

x

8 10

x

6 8 10

x

6 8 10

x

6 8 10

x

6 8 10

18 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Example

int : x

while 1(x ≤ 10) do

if 2(x > 6) then
3x := x + 2

fi

od4

we map each point
to a function of x giving
an upper bound on the
steps before termination

we start at the end
with 0 steps

before terminationwe take into account
x > 10 and we have now

1 step to termination

we consider the assignment x := x + 2
or the test x ≤ 6 and we are now

at 2 steps to termination

we consider x > 6
and we do the join

we consider x ≤ 10
and we do the join
we do the widening

the analysis provides x > 6
as sufficient precondition

for termination

1

2

3

4

x > 10

x > 10

x ≤ 10

x ≤ 10

x ≤ 6

x := x + 2

x ≤ 6

x := x + 2

x > 6

x > 6

x

0

x

10

x

8 10

x

6 8 10

x

6

x

6 10

x

6 8 10

x

10

x

8 10

x

6 8 10

x

6 8 10

x

6 8 10

x

6 8 10

18 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

http://www.di.ens.fr/~urban/FuncTion.html

written in OCaml

19 / 22

http://www.di.ens.fr/~urban/FuncTion.html


Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Affine Ranking Functions
Implementation

Experiments

Benchmarks: 87 terminating C programs collected from the literature

Tools:

AProVE

T2

Ultimate Büchi Automizer

Results:

Tot FuncTion AProVE T2 Ultimate Time Timeouts

FuncTion 51 − 8 8 3 6s 5
AProVE 60 17 − 7 2 35s 19

T2 73 30 20 − 3 2s 0
Ultimate 79 31 21 9 − 9s 1

20 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Conclusions

family of abstract domains for program termination

piecewise-defined ranking functions
backward invariance analysis
sufficient conditions for termination

instances based on natural-valued functions

affine ranking functions

instances based on ordinal-valued functions

ordinals remove the burden of finding lexicographic orders
analysis not limited to programs with linear computational complexity

Future Work

more abstract domains (e.g., non-linear ranking functions)

other liveness properties

complexity analysis

21 / 22



Introduction
Concrete Semantics

Piecewise-Defined Ranking Functions
Conclusion and Future Work

Conclusions

family of abstract domains for program termination

piecewise-defined ranking functions
backward invariance analysis
sufficient conditions for termination

instances based on natural-valued functions

affine ranking functions

instances based on ordinal-valued functions

ordinals remove the burden of finding lexicographic orders
analysis not limited to programs with linear computational complexity

Future Work

more abstract domains (e.g., non-linear ranking functions)

other liveness properties

complexity analysis

21 / 22



Thank You!

Questions?

“. . . the purpose of abstraction is not to be
vague, but to create a new semantic level in

which one can be absolutely precise.”
(Edsger Dijkstra)


	Introduction
	Why?
	Outline

	Concrete Semantics
	Trace Semantics
	Termination Semantics

	Piecewise-Defined Ranking Functions
	Affine Ranking Functions
	Implementation

	Conclusion and Future Work

