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Some solutions

Human:

readable code on the long term

clear specifications

paper proof

appropriate programming language

appropriate development environment (text editor, version
control system. . .)

Computer-aided:

unit tests
features of the programming languages: typing, warnings. ..

formal methods: mathematical specifications + proofs or/and
large tests
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Formal methods

Two kinds of properties:

m “never goes wrong™: do not raise exceptions at runtime, no
illegal memory access, termination. . .

m functional soundness: match the specifications
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3 steps:
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Deductive verification

annotated program

proof obligations

/AN

automatic and
interactive provers

3 steps:

annotations: mathematical specifications
generation of proof obligations

prove them
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The F* language

F*:
m functional programming language: programs are functions. ..
m higher-order aspects: ...that can manipulate functions

m side effects: input/output, arrays. ..

The 3 steps:

m refinement types to express specifications

m weakest-preconditions calculus to transform specifications +
code into a formula to check

m transformation of the formula to be passed to automated
theorem provers
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Step 1: refinement types

annotated program

proof obligations

/]

automatic and
interactive provers

m demo: toy example

m large application: miTLS
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Step 2: weakest-preconditions calculus

annotated program

proof obligations

/

automatic and
interactive provers
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Main idea

val f: x:T;{Pre(x)} — r:Ty{Post(x,r)}
let rec f x =
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Main idea -
// logical formulas

val f: x:T;{Pre(x)} — r:Ty{Post(x,r)}
let rec f x =

m given the code for f and the postcondition

m compute the weakest precondition WP(x) that implies the
postcondition after running f:

V x r. WP(x) = Post(x,r)
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Main idea -
// logical formulas

val f: x:T;{Pre(x)} — r:Ty{Post(x,r)}
let rec f x = ...

m given the code for f and the postcondition

m compute the weakest precondition WP(x) that implies the
postcondition after running f:

V x r. WP(x) = Post(x,r)

(Next step: show that the given precondition implies the computed
one.

Vx. Pre(x)=WP(x))
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Running example

val max: x:int — y:int —
z:int{z 2 x ANz 2y A (z=xVz=y)}
let max x y = if x > y then x else y

m Precondition: Pre(x,y) = true

m Postcondition: Post(x,y,z) =z>2xAz2yA(z=xVz=Yy)
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Running example

val max: x:int — y:int —
z:int{z 2 x ANz 2y A (z=xVz=y)}
let max x y = if x > y then x else y

m Precondition: Pre(x,y) = true
m Postcondition: Post(x,y,z) =z > x

How to show that (if x >y then x else y) > x?
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Running example

val max: x:int — y:int —
z:int{z 2 x ANz 2y A (z=xVz=y)}
let max x y = if x > y then x else y

m Precondition: Pre(x,y) = true
m Postcondition: Post(x,y,z) =z > x
How to show that (if x >y then x else y) > x?

m must be true in both branches, knowing the result of the test
mleft: x >y =x>x
mright: x<y=y>x

The weakest preconditionis: (x >y = x> x) A (x <y =y > x)
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In general

Proceed step by step on the code:

m here we have applied the rule:

WP(if b then e; else e, P) =
(b = WP(ey, P)) A (= b = WP(ey, P))

m other rules for the other constructions of the language (loops,
assignments, let rec...)
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Step 3: prove the final formula

annotated program

proof obligations

automatic and
interactive provers

Check that ¥x. Pre(x)=WP(x):

true = x>y > x 2 x) A (x<y=y =X
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In general

Automatically:

m SMT solvers (Z3, Alt-Ergo, veriT, CVC3, ...): theory
reasoning (accesses in arrays, arithmetic, ...)

m first-order provers (Vampire, E-prover, ...): quantifiers

Interactively:

m interactive theorem provers (Coq, Isabelle, PVS, ...):
expressivity and safety
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Current research
F*:
m higher-order aspects: gives higher-order goal

m functions in the logic must be total: automatically guess
totality

m increase confidence in the final check: automatically re-check
SMT solver’'s answers in proof assistants (SMTCoq)

m provide back-ends for various languages (JavaScript,

OCaml...)

Other topics:

m make these software more accessible
m increase expressivity and automation in the final check

m distributed programs
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Recommendations

Correctness w.r.t specifications:

m specs might not be what you expect (demo)

m specs might be hard to express (eg. user interface)

Time consuming, but:

m very strong safety

m fun!
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Prove your programs

Many different tools for formal methods:

m deductive verification

m interactive theorem provers
m software synthesis

m model checking

m abstract interpretation

Enter a bug-free world!
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