F*: Prove your Programs

Chantal Keller

June, 17th 2014

Motivation

Some solutions

Human:

- readable code on the long term
- clear specifications
- paper proof
- appropriate programming language
- appropriate development environment (text editor, version control system...)

Computer-aided:

- unit tests
- features of the programming languages: typing, warnings...
- formal methods: mathematical specifications + proofs or/and large tests

Some solutions

Human:

- readable code on the long term
- clear specifications
- paper proof
- appropriate programming language
- appropriate development environment (text editor, version control system...)

Computer-aided:

- unit tests
- features of the programming languages: typing, warnings...
- formal methods: mathematical specifications + proofs or/and large tests

Formal methods

Two kinds of properties:

- "never goes wrong": do not raise exceptions at runtime, no illegal memory access, termination...
- functional soundness: match the specifications

Formal methods

Two kinds of properties:

- "never goes wrong": do not raise exceptions at runtime, no illegal memory access, termination...
- functional soundness: match the specifications

program

3 steps:

annotated program

3 steps:

1 annotations: mathematical specifications

3 steps:

- annotations: mathematical specifications
- generation of proof obligations

3 steps:

- annotations: mathematical specifications
- generation of proof obligations
- 3 prove them

The F* language

F*:

- functional programming language: programs are functions...
- higher-order aspects: ...that can manipulate functions
- side effects: input/output, arrays...

The 3 steps:

- refinement types to express specifications
- weakest-preconditions calculus to transform specifications + code into a formula to check
- transformation of the formula to be passed to automated theorem provers

Step 1: refinement types

- demo: toy example
- large application: miTLS

Step 2: weakest-preconditions calculus

val
$$f: x:T_1\{Pre(x)\} \rightarrow r:T_2\{Post(x,r)\}$$

let rec $f x = \dots$

val $f: x:T_1\{Pre(x)\} \rightarrow r:T_2\{Post(x,r)\}$ let rec $f: x = \dots$

- given the code for f and the postcondition
- compute the weakest precondition WP(x) that implies the postcondition after running f:

$$\forall x r. WP(x) \Rightarrow Post(x,r)$$

val $f: x:T_1\{Pre(x)\} \rightarrow r:T_2\{Post(x,r)\}$ let rec $f: x = \dots$

- given the code for f and the postcondition
- compute the weakest precondition WP(x) that implies the postcondition after running f:

$$\forall x r. WP(x) \Rightarrow Post(x,r)$$

(Next step: show that the given precondition implies the computed one.

$$\forall x. Pre(x) \Rightarrow WP(x)$$

Introduction

```
val max: x:int \rightarrow y:int \rightarrow z:int\{z \geqslant x \land z \geqslant y \land (z = x \lor z = y)\}
let max x y = if x > y then x else y
```

- Precondition: Pre(x,y) = true
- Postcondition: Post(x,y,z) = $z \ge x \land z \ge y \land (z = x \lor z = y)$

Introduction

```
val max: x:int \rightarrow y:int \rightarrow z:int\{z \geqslant x \land z \geqslant y \land (z = x \lor z = y)\}
let max x y = if x > y then x else y
```

- Precondition: Pre(x,y) = true
- Postcondition: Post(x,y,z) = $z \ge x$

Introduction

```
val max: x:int \rightarrow y:int \rightarrow z:int\{z \geqslant x \land z \geqslant y \land (z = x \lor z = y)\}
let max x y = if x > y then x else y
```

- Precondition: Pre(x,y) = true
- Postcondition: Post(x,y,z) = $z \ge x$

How to show that (if x > y then x else y) $\ge x$?

```
val max: x:int \rightarrow y:int \rightarrow z:int\{z \geqslant x \land z \geqslant y \land (z = x \lor z = y)\}
let max x y = if x > y then x else y
```

- Precondition: Pre(x,y) = true
- Postcondition: Post(x,y,z) = $z \ge x$

How to show that (if x > y then x else y) $\ge x$?

must be true in both branches, knowing the result of the test

```
val max: x:int \rightarrow y:int \rightarrow z:int\{z \geqslant x \land z \geqslant y \land (z = x \lor z = y)\}
let max x y = if x > y then x else y
```

- Precondition: Pre(x,y) = true
- Postcondition: Post(x,y,z) = $z \ge x$

How to show that (if x > y then x else y) $\ge x$?

- must be true in both branches, knowing the result of the test
- left: $x > y \Rightarrow x \geqslant x$

```
val max: x:int \rightarrow y:int \rightarrow z:int\{z \geqslant x \land z \geqslant y \land (z = x \lor z = y)\}
let max x y = if x > y then x else y
```

- Precondition: Pre(x,y) = true
- Postcondition: Post(x,y,z) = $z \ge x$

How to show that (if x > y then x else y) $\ge x$?

- must be true in both branches, knowing the result of the test
- left: $x > y \Rightarrow x \geqslant x$
- right: $x \leq y \Rightarrow y \geq x$

```
val max: x:int \rightarrow y:int \rightarrow z:int\{z \geqslant x \land z \geqslant y \land (z = x \lor z = y)\}
let max x y = if x > y then x else y
```

- Precondition: Pre(x,y) = true
- Postcondition: Post(x,y,z) = $z \ge x$

How to show that (if x > y then x else y) $\ge x$?

- must be true in both branches, knowing the result of the test
- left: $x > y \Rightarrow x \geqslant x$
- right: $x \leq y \Rightarrow y \geq x$

The weakest precondition is: $(x > y \Rightarrow x \ge x) \land (x \le y \Rightarrow y \ge x)$

In general

Proceed step by step on the code:

■ here we have applied the rule:

■ other rules for the other constructions of the language (loops, assignments, let rec...)

Step 3: prove the final formula

Check that $\forall x. Pre(x) \Rightarrow WP(x)$:

true
$$\Rightarrow$$
 $(x > y \Rightarrow x \geqslant x) \land (x \leqslant y \Rightarrow y \geqslant x)$

Step 3: prove the final formula

Check that $\forall x. Pre(x) \Rightarrow WP(x)$:

true
$$\Rightarrow$$
 $(x > y \Rightarrow x \geqslant x) \land (x \leqslant y \Rightarrow y \geqslant x) \checkmark$

F*: Prove your Programs

In general

Automatically:

- SMT solvers (Z3, Alt-Ergo, veriT, CVC3, ...): theory reasoning (accesses in arrays, arithmetic, ...)
- first-order provers (Vampire, E-prover, ...): quantifiers

Interactively:

■ interactive theorem provers (Coq, Isabelle, PVS, ...): expressivity and safety

Current research

F*:

- higher-order aspects: gives higher-order goal
- functions in the logic must be total: automatically guess totality
- increase confidence in the final check: automatically re-check SMT solver's answers in proof assistants (SMTCoq)
- provide back-ends for various languages (JavaScript, OCaml...)

Other topics:

- make these software more accessible
- increase expressivity and automation in the final check
- distributed programs

Recommendations

Correctness w.r.t specifications:

- specs might not be what you expect (demo)
- specs might be hard to express (eg. user interface)

Time consuming, but:

- very strong safety
- fun!

Prove your programs

Many different tools for formal methods:

- deductive verification
- interactive theorem provers
- software synthesis
- model checking
- abstract interpretation
-

Enter a bug-free world!