Introduction Details Current research Conclusion

F*: Prove your Programs

Chantal Keller

June, 17th 2014

o :

: informatiques SFmathématiques

F*: Prove your Programs Chantal Keller 1/16

rrent resear

Introduction

Motivation

Spicyour
yaurc.y e below a i for individual

e by e
kandidates inany sther party.

REPUBLICAN

DEMOCRATIC

GREEN

LIBERTARIAN

PRESIDENTIAL ELECTORS
= n.u....... e pary o e Prosaet
o caniaes.

ARACK OBAMA, President
JOE BIDEN, Vice-President
DEMOCRATIC
JILL STEIN, President
CHERIHONKALA, Vice-President
Sreen

'GARY JOHNSON, President

JAMES P GRAY, Vice-President
LIBERTARIAN

[vt

Chantal Keller 2/ 16

Prove your Pro

Introduction

Details Current research Conclusion

Some solutions

Human:

readable code on the long term

clear specifications

paper proof

appropriate programming language

appropriate development environment (text editor, version
control system. . .)

Computer-aided:

unit tests
features of the programming languages: typing, warnings. ..

formal methods: mathematical specifications + proofs or/and
large tests

F*: Prove your Programs Chantal Keller 3/ 16

Introduction

Details Current research Conclusion

Some solutions

Human:

readable code on the long term

clear specifications

paper proof

appropriate programming language

appropriate development environment (text editor, version
control system. . .)

Computer-aided:

unit tests
features of the programming languages: typing, warnings. ..

formal methods: mathematical specifications + proofs or/and
large tests

F*: Prove your Programs Chantal Keller 3/ 16

Introduction Details Current research Conclusion

Formal methods

Two kinds of properties:

m “never goes wrong™: do not raise exceptions at runtime, no
illegal memory access, termination. . .

m functional soundness: match the specifications

F*: Prove your Programs Chantal Keller 4/ 16

Introduction Details Current research Conclusion

Formal methods

Two kinds of properties:

m “never goes wrong™: do not raise exceptions at runtime, no
illegal memory access, termination. . .

m functional soundness: match the specifications

F*: Prove your Programs Chantal Keller 4/ 16

Introduction Details Current research

Deductive verification

program

3 steps:

*: Prove your Programs Chantal Keller 5/ 16

Introduction Details Current research Conclusion
Deductive verification

annotated program

3 steps:

annotations: mathematical specifications

F*: Prove your Programs Chantal Keller 5/ 16

Introduction Details Current research Conclusion
Deductive verification

annotated program

proof obligations

3 steps:

annotations: mathematical specifications

generation of proof obligations

F*: Prove your Programs Chantal Keller 5/ 16

Introduction Details Current research Conclusion

Deductive verification

annotated program

proof obligations

/AN

automatic and
interactive provers

3 steps:

annotations: mathematical specifications
generation of proof obligations

prove them

F*: Prove your Programs Chantal Keller 5/ 16

Introduction Details Current research Conclusion

The F* language

F*:
m functional programming language: programs are functions. ..
m higher-order aspects: ...that can manipulate functions

m side effects: input/output, arrays. ..

The 3 steps:

m refinement types to express specifications

m weakest-preconditions calculus to transform specifications +
code into a formula to check

m transformation of the formula to be passed to automated
theorem provers

F*: Prove your Programs Chantal Keller 6 /16

Introduction Details Current research Conclusion

Step 1: refinement types

annotated program

proof obligations

/]

automatic and
interactive provers

m demo: toy example

m large application: miTLS

F*: Prove your Programs Chantal Keller 7/ 16

Introduction Details Current research

Step 2: weakest-preconditions calculus

annotated program

proof obligations

/

automatic and
interactive provers

*: Prove your Programs Chantal Keller 8/ 16

Introduction Details Current research Conclusion

Main idea

val f: x:T;{Pre(x)} — r:Ty{Post(x,r)}
let rec f x =

F*: Prove your Programs Chantal Keller 9/ 16

Introduction Details Current research Conclusion

Main idea -
// logical formulas

val f: x:T;{Pre(x)} — r:Ty{Post(x,r)}
let rec f x =

F*: Prove your Programs Chantal Keller 9/ 16

Introduction Details Current research Conclusion

Main idea -
// logical formulas

val f: x:T;{Pre(x)} — r:Ty{Post(x,r)}
let rec f x =

m given the code for f and the postcondition

m compute the weakest precondition WP(x) that implies the
postcondition after running f:

V x r. WP(x) = Post(x,r)

F*: Prove your Programs Chantal Keller 9/ 16

Introduction Details Current research Conclusion

Main idea -
// logical formulas

val f: x:T;{Pre(x)} — r:Ty{Post(x,r)}
let rec f x = ...

m given the code for f and the postcondition

m compute the weakest precondition WP(x) that implies the
postcondition after running f:

V x r. WP(x) = Post(x,r)

(Next step: show that the given precondition implies the computed
one.

Vx. Pre(x)=WP(x))

F*: Prove your Programs Chantal Keller 9/ 16

Introduction Details Current research Conclusion

Running example

val max: x:int — y:int —
z:int{z 2 x ANz 2y A (z=xVz=y)}
let max x y = if x > y then x else y

m Precondition: Pre(x,y) = true

m Postcondition: Post(x,y,z) =z>2xAz2yA(z=xVz=Yy)

F*: Prove your Programs Chantal Keller 10 / 16

Introduction Details Current research Conclusion

Running example

val max: x:int — y:int —
z:int{z 2 x ANz 2y A (z=xVz=y)}
let max x y = if x > y then x else y

m Precondition: Pre(x,y) = true

m Postcondition: Post(x,y,z) =z > x

F*: Prove your Programs Chantal Keller 10 / 16

Introduction Details Current research Conclusion

Running example

val max: x:int — y:int —
z:int{z 2 x ANz 2y A (z=xVz=y)}
let max x y = if x > y then x else y

m Precondition: Pre(x,y) = true
m Postcondition: Post(x,y,z) =z > x

How to show that (if x >y then x else y) > x?

F*: Prove your Programs Chantal Keller 10 / 16

Introduction Details Current research Conclusion

Running example

val max: x:int — y:int —
z:int{z 2 x ANz 2y A (z=xVz=y)}
let max x y = if x > y then x else y

m Precondition: Pre(x,y) = true
m Postcondition: Post(x,y,z) =z > x
How to show that (if x >y then x else y) > x?

m must be true in both branches, knowing the result of the test

F*: Prove your Programs Chantal Keller 10 / 16

Introduction Details Current research Conclusion

Running example

val max: x:int — y:int —
z:int{z 2 x ANz 2y A (z=xVz=y)}
let max x y = if x > y then x else y

m Precondition: Pre(x,y) = true
m Postcondition: Post(x,y,z) =z > x
How to show that (if x >y then x else y) > x?

m must be true in both branches, knowing the result of the test

mleft: x >y =x>x

F*: Prove your Programs Chantal Keller 10 / 16

Introduction Details Current research Conclusion

Running example

val max: x:int — y:int —
z:int{z 2 x ANz 2y A (z=xVz=y)}
let max x y = if x > y then x else y

m Precondition: Pre(x,y) = true
m Postcondition: Post(x,y,z) =z > x
How to show that (if x >y then x else y) > x?

m must be true in both branches, knowing the result of the test
mleft: x >y =x>x
mright: x<y=y>x

F*: Prove your Programs Chantal Keller 10 / 16

Introduction Details Current research Conclusion

Running example

val max: x:int — y:int —
z:int{z 2 x ANz 2y A (z=xVz=y)}
let max x y = if x > y then x else y

m Precondition: Pre(x,y) = true
m Postcondition: Post(x,y,z) =z > x
How to show that (if x >y then x else y) > x?

m must be true in both branches, knowing the result of the test
mleft: x >y =x>x
mright: x<y=y>x

The weakest preconditionis: (x >y = x> x) A (x <y =y > x)

F*: Prove your Programs Chantal Keller 10 / 16

Introduction Details Current research Conclusion

In general

Proceed step by step on the code:

m here we have applied the rule:

WP(if b then e; else e, P) =
(b = WP(ey, P)) A (= b = WP(ey, P))

m other rules for the other constructions of the language (loops,
assignments, let rec...)

F*: Prove your Programs Chantal Keller 11 / 16

Introduction Details Current research Conclusion

Step 3: prove the final formula

annotated program

proof obligations

automatic and
interactive provers

Check that ¥x. Pre(x)=WP(x):

true = x>y > x 2 x) A (x<y=y =X

F*: Prove your Programs Chantal Keller 12 / 16

Introduction Details Current research Conclusion

Step 3: prove the final formula

annotated program

proof obligations

automatic and
interactive provers

Check that ¥x. Pre(x)=WP(x):

true = x>y = x =2 x) A x <y =y >=xV

F*: Prove your Programs Chantal Keller 12 / 16

Introduction Details Current research Conclusion

In general

Automatically:

m SMT solvers (Z3, Alt-Ergo, veriT, CVC3, ...): theory
reasoning (accesses in arrays, arithmetic, ...)

m first-order provers (Vampire, E-prover, ...): quantifiers

Interactively:

m interactive theorem provers (Coq, Isabelle, PVS, ...):
expressivity and safety

F*: Prove your Programs Chantal Keller 13 / 16

Introduction Details Current research Conclusion

Current research
F*:
m higher-order aspects: gives higher-order goal

m functions in the logic must be total: automatically guess
totality

m increase confidence in the final check: automatically re-check
SMT solver’'s answers in proof assistants (SMTCoq)

m provide back-ends for various languages (JavaScript,

OCaml...)

Other topics:

m make these software more accessible
m increase expressivity and automation in the final check

m distributed programs

F*: Prove your Programs Chantal Keller 14 / 16

Introduction Details Current research Conclusion

Recommendations

Correctness w.r.t specifications:

m specs might not be what you expect (demo)

m specs might be hard to express (eg. user interface)

Time consuming, but:

m very strong safety

m fun!

F*: Prove your Programs Chantal Keller 15 / 16

Introduction Details Current research Conclusion

Prove your programs

Many different tools for formal methods:

m deductive verification

m interactive theorem provers
m software synthesis

m model checking

m abstract interpretation

Enter a bug-free world!

F*: Prove your Programs Chantal Keller 16 / 16

