

REDUCED ORDER MODEL IN CARDIAC ELECTROPHYSIOLOGY

Elisa SCHENONE ^{‡,*}

[‡] REO team, Inria Paris-Rocquencourt *Laboratoire Jacques-Louis Lions

Elisa SCHENONE

Numerical simulation of biological flows

Blood flow modelling

Cardiac electrophysiology

Inria Junior Seminar

Elisa SCHENONE

Respiration modelling

Past talks: Jessica Oakes

Numerical simulation of biological flows

Blood flow modelling

Cardiac electrophysiology

Elisa SCHENONE

Inria Junior Seminar

Respiration modelling

Past talks: Jessica Oakes

PhD project: Inverse problems and reduced models in cardiac electrophysiology

- ✓ Supervisors:
- Muriel BOULAKIA and Jean-Frédéric GERBEAU ✓ Subjects:
- Simulation of realistic Electrocardiograms (with Annabelle Collin)
- Parameters estimation
- Reduced order models and inverse problems with POD
- Reduced order models with Approximated Lax Pairs (with Damiano Lombardi)
- Inverse problems

PhD project: Inverse problems and reduced models in cardiac electrophysiology

- ✓ Supervisors: Muriel BOULAKIA and Jean-Frédéric GERBEAU ✓ Subjects:
- Simulation of realistic Electrocardiograms (with Annabelle Collin)
- Parameters estimation
- Reduced order models and inverse problems with POD
- Reduced order models with Approximated Lax Pairs (with Damiano Lombardi)
- Inverse problems

Summary

Bidomain Model equations V PDEs numerical approximation Finite Element Methods (overview) Reduced Order Methods ✓ Numerical Results Conclusions and Perspectives

Elisa SCHENONE

Inria Junior Seminar

From 9 measures to 12 leads

$\mathbf{I} = u_T(L) - u_T(R)$	$aVR = 1.5(u_T(R) - u_w)$	$V1 = u_T(V_1) - u_w$
$II = u_T(F) - u_T(R)$ $III = u_T(F) - u_T(L)$	$aVL = 1.5(u_T(L) - u_w)$ $aVF = 1.5(u_T(F) - u_w)$	$\vdots \\ \mathbf{V6} = u_T(V_6) - u_w$

[Collin, Gerbeau, Schenone - 2014]

Elisa SCHENONE

-1.0

Inria Junior Seminar

From 9 measures to 12 leads $\mathbf{I} = u_T(L) - u_T(R)$ $aVR = 1.5(u_T(R) - u_w)$ $V1 = u_T(V_1) - u_w$ $II = u_T(F) - u_T(R)$ $aVL = 1.5(u_T(L) - u_w)$ $aVF = 1.5(u_T(F) - u_w)$ $III = u_T(F) - u_T(L)$ $V6 = u_T(V_6) - u_w$

[Collin, Gerbeau, Schenone - 2014]

Elisa SCHENONE

-1.0

Inria Junior Seminar

From 9 measures to 12 leads $\mathbf{I} = u_T(L) - u_T(R)$ $aVR = 1.5(u_T(R) - u_w)$ $V1 = u_T(V_1) - u_w$ $II = u_T(F) - u_T(R)$ $aVL = 1.5(u_T(L) - u_w)$ $aVF = 1.5(u_T(F) - u_w)$ $III = u_T(F) - u_T(L)$ $V6 = u_T(V_6) - u_w$

[Collin, Gerbeau, Schenone - 2014]

Bidomain equations

 $A_m \left(C_m \frac{\partial v_m}{\partial t} + I_{ion}(v_m, w) \right) - \operatorname{div}(\bar{\bar{\sigma}}_I \nabla v_m) - \operatorname{div}(\bar{\bar{\sigma}}_I \nabla u_E) = A_m I_{app} \\ -\operatorname{div}((\bar{\bar{\sigma}}_I + \bar{\bar{\sigma}}_E) \nabla u_E) - \operatorname{div}(\bar{\bar{\sigma}}_I \nabla v_m) = 0 \\ \frac{\partial w}{\partial t} - g(v_m, w) = 0$ $\Omega_{\mathrm{H,i}}$ $\Omega_{\rm H}$

Elisa SCHENONE

Inria Junior Seminar

Bidomain equations

 $A_m \left(C_m \frac{\partial v_m}{\partial t} + I_{ion}(v_m, w) \right) - \operatorname{div}(\bar{\sigma}_I \nabla v_m) - \operatorname{div}(\bar{\sigma}_I \nabla u_E) = A_m I_{app} \\ -\operatorname{div}((\bar{\sigma}_I + \bar{\sigma}_E) \nabla u_E) - \operatorname{div}(\bar{\sigma}_I \nabla v_m) = 0 \\ \frac{\partial w}{\partial t} - g(v_m, w) = 0$

Elisa SCHENONE

Inria Junior Seminar

$$w) = 0$$

$$\Gamma_{m}$$

$$\Omega_{H,e}$$

$$Mitchell-Schaeffer (MS)$$

$$I_{ion}(u,w) = w \frac{u^{2}(1-u)}{\tau_{in}} - \frac{u}{\tau_{out}}$$

$$g(u,w) = \begin{cases} \frac{1-w}{\tau_{open}} & u \leq u_{gate} \\ -\frac{w}{\tau_{close}} & u > u_{gate} \end{cases}$$

17th June 2014

FEM space

Elisa SCHENONE

FEM space

Elisa SCHENONE

Inria Junior Seminar

17th June 2014

Inria Junior Seminar

Elisa SCHENONE

Elisa SCHENONE

FEM versus ROM

$$\begin{array}{c}
\mathbf{FEM space} \\
V_{\mathcal{N}} \equiv \operatorname{span}\{v_{1}, \dots, v_{\mathcal{N}}\} \subset V \\
\dim(V_{\mathcal{N}}) = \mathcal{N} \\
\mathbf{u} = \sum_{i} u_{i}v_{i}(x), \quad u_{i} = \langle u, v_{i} \rangle \\
\end{array}$$

$$\begin{array}{c}
\mathbf{u} = \sum_{i} u_{i}v_{i}(x), \quad u_{i} = \langle u, v_{i} \rangle \\
\end{array}$$

$$\begin{array}{c}
\Phi_{N} = [\varphi_{1} \dots \varphi_{N} \\
\mathbf{u} = \Phi_{N}^{T} \\
\end{array}$$

Elisa SCHENONE

Inria Junior Seminar

ROM space $V_N \equiv \operatorname{span}\{\varphi_1, \ldots, \varphi_N\} \subset V_{\mathcal{N}}$ $\dim(V_N) = N \ll \mathcal{N}$ $\widetilde{\mathbf{u}} = \sum \widetilde{u}_i \varphi_i(x), \quad \widetilde{u}_i = \langle u, \varphi_i \rangle$

17th June 2014

Proper Orthogonal Decomposition (POD) A "classical" approach to Reduced Order Models Use information given by FEM solution(s) to build a suitable basis

Elisa SCHENONE

Proper Orthogonal Decomposition (POD) A "classical" approach to Reduced Order Models Use information given by FEM solution(s) to build a suitable basis I.Solve with FEM the problem(s) $\partial_t u = F(u, \partial_x^{(n)}, \pi), \text{ in } \Omega \times [0, T] \subset \mathbb{R}^d \times \mathbb{R}_+$

Proper Orthogonal Decomposition (POD) A "classical" approach to Reduced Order Models Use information given by FEM solution(s) to build a suitable basis I.Solve with FEM the problem(s) 2.Co

$$\partial_t u = F(u, \partial_x^{(n)}, \pi), \text{ in } \Omega \times [0, T] \subset \mathbb{R}^d \times \mathbb{R}_+$$

ollect snapshots of FEM solution(s) in a matrix
$$S = (\mathbf{u}^1, \dots, \mathbf{u}^p) \in \mathbb{R}^{\mathcal{N} \times p} \qquad \mathbf{u}^i = \begin{bmatrix} u(x_1, t_i) \\ \vdots \\ u(x_{\mathcal{N}}, t_i) \end{bmatrix} \in \mathbb{R}^{\mathcal{N}}, \forall i = 1, \dots, \mathcal{N}$$

Proper Orthogonal Decomposition (POD) A "classical" approach to Reduced Order Models Use information given by FEM solution(s) to build a suitable basis I.Solve with FEM the problem(s) 2.Co

$$\begin{array}{l} \partial_t u = F(u,\partial_x^{(n)},\pi), \mbox{ in } \Omega\times [0,T]\subset \mathbb{R}^d\times \mathbb{R}_+\\ \mbox{ollect snapshots of FEM solution(s) in a matrix}\\ S = (\mathbf{u}^1,\ldots,\mathbf{u}^p)\in \mathbb{R}^{\mathcal{N}\times p} \qquad \mathbf{u}^i = \begin{bmatrix} u(x_1,t_i)\\ \vdots\\ u(x_{\mathcal{N}},t_i) \end{bmatrix} \in \mathbb{R}^{\mathcal{N}}, \ \forall i=1,\ldots,\mathcal{N}\\ \mbox{ompute Singular Value Decomposition (SVD) of the matrix}\\ S = \Phi \Sigma \Psi^T, \ \Sigma = \mathrm{diag}(\sigma_i)\\ \mbox{ep first eigenvectors as ROM basis functions}\\ \mbox{reproduce events described by the FEM solution(s)} \end{array}$$

3.Co

4.Ke

Can

POD application in Cardiac Electrophysiology Simulation of a myocardial infarction

- Infarcted tissue: damaged area which cannot be activated
 - → to build the POD basis, we use a FEM solution with <u>NO infarction</u>

POD application in Cardiac Electrophysiology Simulation of a myocardial infarction

Infarcted tissue: damaged area which cannot be activated → to build the POD basis, we use a FEM solution with <u>NO infarction</u>

FEM (79,537 basis)

Elisa SCHENONE

Inria Junior Seminar

(100 basis)

Elisa SCHENONE

Inria Junior Seminar

00 basis)

POD application in Cardiac Electrophysiology Simulation of a myocardial infarction

An efficient POD to simulate an infarction in any point of the heart to build the POD basis, we use many FEM solutions with infarction

- An efficient POD to simulate an infarction in any point of the heart to build the POD basis, we use many FEM solutions with infarction
- healthy FEM solution $S_h = \begin{bmatrix} \mathbf{u}_h^1 | \mathbf{u}_h^2 | \dots | \mathbf{u}_h^{N_T} \end{bmatrix} \in \mathbb{R}^{\mathcal{N} \times N_T}$ infarct I FEM solution $S_{I_1} = \begin{bmatrix} \mathbf{u}_{I_1}^1 | \mathbf{u}_{I_1}^2 | \dots | \mathbf{u}_{I_1}^{N_T} \end{bmatrix} \in \mathbb{R}^{\mathcal{N} \times N_T}$ • infarct 2 FEM solution $S_{I_2} = [\mathbf{u}_{I_2}^1 | \mathbf{u}_{I_2}^2 | \dots | \mathbf{u}_{I_2}^{N_T}] \in \mathbb{R}^{N \times N_T}$

• infarct m FEM solution $S_{I_m} = \left[\mathbf{u}_{I_m}^1 | \mathbf{u}_{I_m}^2 | \dots | \mathbf{u}_{I_m}^{N_T} \right] \in \mathbb{R}^{N \times N_T}$ compute the SVD on an enlarged matrix $S = \left| S_h | S_{I_1} | S_{I_2} | \dots | S_{I_m} \right| \in \mathbb{R}^{\mathcal{N} \times (m+1)N_T}$

Elisa SCHENONE

POD application in Cardiac Electrophysiology Simulation of a myocardial infarction

An efficient POD to simulate an infarction in any point of the heart to build the POD basis, we use many FEM solutions with infarction

FEM (79,537 basis)

Elisa SCHENONE

Inria Junior Seminar

(100 basis)

Elisa SCHENONE

Inria Junior Seminar

17th June 2014

(100 basis)

ALP (Approximated Lax Pairs) method A new approach to Reduced Order Models

Solve a generic PDE system for any set of parameters

 $\partial_t u = F(u, \partial_x^{(n)}, \pi), \text{ in } \Omega \times [0, T] \subset \mathbb{R}^d \times \mathbb{R}_+$

Define a time evolving modal expansion

$$\hat{u} = \sum_{i=1}^{N} \beta_i(t) \varphi_i(x,t)$$

 \mathcal{X}

Elisa SCHENONE

ALP method Summary

Solve a generic PDE system for any set of parameters

$$\begin{cases} \partial_t u = F(u), \\ u(t=0) = u_0, \end{cases}$$

- Method
 - I.Choose an initial basis
 - 2. Define the basis evolution
 - 3.Representation in the reduced space

$\Omega \times [0,T]$ $\mathbf{\Omega}$

ALP method I. Choose an initial basis, 2. Define the basis evolution

I. Definition of the basis using PDE solution

I.I) Choose of an operator $\mathcal{L} \longrightarrow Schrödinger$ $\mathcal{L}_{\chi}(u)\varphi = -\Delta\varphi - \chi u\varphi$

Solution of $\partial_t u \stackrel{\cdot}{=} F(u)$

- 1.2) Solve the eigenvalue problem $\mathcal{L}_{\chi}(u)\varphi_m = \lambda_m \varphi_m$ 1.3) The initial basis is $(\varphi_m)_m > 1$
- 2. Find an operator \mathcal{M} s.t. $\partial_t \varphi_m(t) = \mathcal{M}(t) \varphi_m(t)$

$\mathcal{L}(u)\varphi_m(t) = \lambda_m(t)\varphi_m(t)$

ALP method in electrophysiology Discretization of bidomain equations

- Bidomain equations + FhN model $A_m C_m \partial_t v_m = f(v_m, u_E, w)$

$$q(v_m, u_E) =$$

where
$$f(v_m, u_E, w) = A_m sv_m (v_m - a)(1 - v_m)$$

 $g(v_m, w) = \epsilon(\gamma v_m - w)$
 $q(v_m, u_E) = -\operatorname{div}((\sigma_I + \sigma_E)\nabla u_E) - \epsilon$

Write the solution in the RO space

$$\hat{v}_m = \sum_{i=1}^N \beta_i(t)\varphi_i(x,t) \qquad \qquad \hat{w} = \sum_{i=1}^N \mu_i(t)\varphi_i(x,t) \qquad \qquad \hat{w}_i(t)\varphi_i(x,t) \qquad \qquad \hat{w}_i(t)\varphi$$

Elisa SCHENONE

Inria Junior Seminar

$\partial_t w = g(v_m, w)$

 $) - A_m w + \operatorname{div}(\sigma_I \nabla v_m) + \operatorname{div}(\sigma_I \nabla u_E) + A_m I_{app})$ $\operatorname{div}(\sigma_I \nabla v_m)$

 $\hat{u}_E = \sum_{i=1}^{N} \xi_i(t) \varphi_i(x,t)$ $(t)\varphi_i(x,t)$ $\eta_i(t)\varphi_i(x,t) \qquad q(\hat{v}_m,\hat{u}_E) = E\hat{v}_m + Q\hat{u}_E$

ALP method in electrophysiology Discretization of bidomain equations

Update of ALP solution	$ \begin{cases} \dot{\beta} + M\beta - \gamma = 0 \\ \dot{\mu} + M\mu - \eta = 0 \\ E\beta + Q\xi = 0 \end{cases} $
Update of eigenvalue	$\dot{\lambda}_i + \chi \sum_{m=1}^N T_{iim} \gamma_m =$
Update of matrices/tensors	$egin{array}{lll} \dot{B} &= [M,B] & \dot{T} \ \dot{E} &= [M,E] & \dot{T} \ \dot{Q} &= [M,Q] & \dot{Y} \end{array}$
Update of evolution operator	$M_{ij} = \frac{\chi}{\lambda_j - \lambda_i} \sum_{m=1}^{N} \frac{\chi}{m}$
Compute new equation RHS	$\gamma = \gamma(eta, \xi, \mu)$ $\eta = \eta(eta, \mu)$

Elisa SCHENONE

$$=0, \quad i=1\ldots N$$

$$= \{M, T\}^{(3)}$$

(s) = $\{M, T^{(s)}\}^{(3)}$
= $\{M, Y\}^{(4)}$

$$T_{ijm}\gamma_m, \quad i,j=1\dots N$$

Numerical results (1) Bidomain equations in a 2D mesh

FEM solution

2D mesh with 5978 vertices

ALP solution

- Initial basis computed with FEM solution (at t = 5 msec)
- Number of ROM modes N=25

POD solution

- POD built from a homogeneous parameters simulation
- Number of ROM modes N=25
- Number of FEM snapshots = 100, with sampling time 0.5 msec

[Gerbeau, Lombardi, Schenone - 2014]

17th June 2014

|7

Numerical results (1) Bidomain equations in a 2D mesh

Time = 5.00 ms

Elisa SCHENONE

Inria Junior Seminar

[Gerbeau, Lombardi, Schenone - 2014]

Numerical results (2) Bidomain equations in 2D - heterogeneous parameters

- FEM solution
 - 2D mesh with 5978 vertices
 - heterogeneous parameter s=s(x)

ALP solution

- Initial basis computed with FEM solution (at t = 5 msec)
- Number of ROM modes N=25
- heterogeneous parameter s=s(x)

POD solution

- POD built from a homogeneous parameters simulation
- Number of ROM modes N=25
- Number of FEM snapshots = 100, with sampling time 0.5 msec

$I(V_{\rm m}, w) = s(x)u(u - a)(u - 1) + w$

[Gerbeau, Lombardi, Schenone - 2014]

Numerical results (2) Bidomain equations in 2D - heterogeneous parameters

Time = 5.00 ms

FEM (5,978 basis)

Elisa SCHENONE

Inria Junior Seminar

[Gerbeau, Lombardi, Schenone - 2014]

Numerical results (3) Bidomain equations in 2D - source term

- FEM solution
 - 2D mesh with 5978 vertices
 - \rightarrow ectopic pacemaker (source at t = 0 msec + t = 60 msec)

ALP solution

- Initial basis computed with FEM solution (at t = 5 msec)
- Number of ROM modes N=25
- ectopic pacemaker (source at t = 60 msec)

POD solution

- POD built from a homogeneous parameters simulation
- Number of ROM modes N=25
- Number of FEM snapshots = 100, with sampling time 0.5 msec

[Gerbeau, Lombardi, Schenone - 2014]

Numerical results (3) Bidomain equations in 2D - source term

Time = 5.00 ms

FEM (5,978 basis)

Elisa SCHENONE

Inria Junior Seminar

[Gerbeau, Lombardi, Schenone - 2014]

Conclusions

- Numerical simulations make presentations nice and colorful
- Cardiac electrophysiology equations are complicated
- FEM are boring
- ROM are much more fun.
 - ... but use them carefully!
- POD does not always work and often need many FEM solutions to give good results

• A lot of things are still to do ... maybe during my post-doc!

ALP does not need an a priori knowledge of the solution, no data-base is needed

A special thank to the organizers for these two years working together!

Elisa SCHENONE

