Mesh Adaptation, Fluid Dynamics and Aeronautics

Inria Junior Seminar

Victorien Menier (Gamma3 team)

November 18, 2014

My PhD

 Subject: Adaptive Methods for the Numerical Prediction of Viscous Phenomena and their Interactions. Application to Aeronautics.

Mesh adaptation: automatically taylored meshes.

My PhD

Subject: Adaptive Methods for the Numerical Prediction of Viscous Phenomena and their Interactions. Application to Aeronautics.

Navier-Stokes equations, turbulence modeling...

My PhD

 Subject: Adaptive Methods for the Numerical Prediction of Viscous Phenomena and their Interactions.
Application to Aeronautics.

Planes, wings, space shuttles...

Contents

1. Scientific Context

Mesh generation, numerical simulations and mesh adaptation.

2. Turbulent Viscous Flow Simulations

Flow solver, turbulence modeling, boundary layers etc.

3. Meshing Strategies for Viscous Simulations

(Parallel) mesh adaptation for turbulent flow simulations.

4. Adaptive Multigrid Methods

Coupling mesh adaptation and multigrid methods.

Scientific Context

Numerical Simulations Everywhere

Numerical Simulations Everywhere

Blast in a city

Numerical Simulations Everywhere

Sonic Boom Prediction

Numerical Simulation Pipeline

Gamma3 team's main research axes: Mesh generation and Computational Fluid Dynamics.

What is a mesh?

- Solving a Partial Differential Equation (P.D.E.) requires the discretization of the continuous problem.
 - The computational domain Ω is replaced by a union of elements such as quadrilaterals, triangles, tetrahedra, etc.

Conformal Not conformal

What a mesh is not

Visu meshes are not made for numerical simulations : they are not conformal and with no consideration for mesh quality

Mesh Generation is hard

- Problem: Given a surface mesh, "fill" the volume with vertices and tetrahedra
 - 3D complex geometries are challenging

Mesh generation is hard

Method 1 : Semi automatic

- The algorithm fails generating a conformal mesh
- The mesh obtained is manually corrected (add/delete mesh elements)

 \Rightarrow Months of "clicking" by an engineer.

Mesh generation is hard

Method 1 : Semi automatic

- The algorithm fails generating a conformal mesh
- The mesh obtained is manually corrected (add/delete mesh elements)

 \Rightarrow Months of "clicking" by an engineer.

Fully automatic mesh generation

- Method 2 : Fully automatic (Gamma3 team)
 - An algorithm robust enough to generate a valid volume mesh from any surface mesh
 - > 20 years of research (mathematics, informatics)
- Example at Inria : GHS3D is used by Dassault Systèmes (CATIA), Siemens, ANSYS, Autodesk, EDF, Safran, Alcan, etc.

Solution Computation

Flow solver: Modeling equations solved using the finite element or finite volume method.

I contribute to our in-house flow solver Wolf

$$\frac{\partial W}{\partial t} + \nabla \cdot \mathcal{F}(W) = \mathcal{S}(W)$$

Finite volume cells constructed on unstructured meshes:

$$\Omega_h = \bigcup_{i=1}^{N_T} K_i = \bigcup_{i=1}^{N_S} C_i$$

Solution Computation

- The solution is iteratively converged.
 - Example of evolution of a solution during a computation:

Analysis, Validation

The solutions obtained are compared with experimental data and other codes.

Mesh Adaptation, why?

Anisotropic physical phenomena located in small areas of the computational domain

- Aircraft: 36m. Domain: 2km.
- Required mesh size around the aircraft: 1mm
- Adapted mesh \rightarrow **0.1 Billion DoF**

Generation of Adapted Meshes

Main idea : change mesh generator's distance and volume computation.

Fundamental concept: Unit mesh

 $\mathcal{H} \text{ unit mesh } \iff \forall \mathbf{e}, \ \ell_{\mathcal{M}}(\mathbf{e}) \approx 1 \text{ and } \forall \mathcal{K}, \ |\mathcal{K}|_{\mathcal{M}} \approx \begin{cases} \sqrt{3}/4 & \text{in 2D} \\ \sqrt{2}/12 & \text{in 3D} \end{cases}$

Generation of an adapted mesh

Example of adapted mesh

Input : Metric Field

Output: Adapted mesh

 \mathcal{H} unit mesh $\iff \forall \mathbf{e}, \ \ell_{\mathcal{M}}(\mathbf{e}) \approx 1$

Mesh adaptation loop

- Mesh adaptation is a non linear problem
 - An iterative process is required to converge the couple mesh-solution

Example of an adapted mesh

Mesh adaptation of anisotropic supersonic shocks

 Mapping of the fluid's density (strong discontinuities around shocks)

Example of an adapted mesh

- Mesh adaptation of anisotropic supersonic shocks
 - Corresponding anisotropic adapted mesh

Turbulent Viscous Flow Simulations

Turbulent Viscous Flow Simulations

Inviscid vs. Viscous Simulations

- Inviscid simulations do not take into account the viscosity of the fluid.
 - Modelized by the Euler equations

- Viscous simulations do. And we couple them with turbulence modeling.
 - Modelized by the Navier-Stokes equations

My work consists in improving numerical methods and meshing strategies for turbulent viscous flow simulations.

Viscous Simulations, why?

- Two examples of targeted applications which require a viscous simulation and turbulence modeling:
 - Example 1 : Drag Prediction Workshop

- Drag: the aerodynamic force that opposes an aircraft's motion through the air
 - A fully turbulent simulation is mandatory

Viscous Simulations, why?

- Two examples of targeted applications which require a viscous simulation and turbulence modeling:
 - **Example 2 :** High Lift Prediction Workshop

- Lift : the force that directly opposes the weight of an airplane and holds it in the air
 - A fully turbulent simulation is mandatory

Turbulence modeling

"When I meet God, I am going to ask him two questions: Why relativity? And why turbulence? I really believe he will have an answer for the first."

- Heisenberg

Turbulence modeling using the Spalart-Allmaras one equation model:

$$\frac{\partial \rho \tilde{\nu}}{\partial t} + \underbrace{\mathbf{u} \cdot \nabla \rho \tilde{\nu}}_{convection} = \underbrace{c_{b1} \tilde{S} \rho \tilde{\nu}}_{production} - \underbrace{c_{w1} f_w \rho \left(\frac{\tilde{\nu}}{d}\right)^2}_{destruction} + \underbrace{\frac{\rho}{\sigma} \nabla \cdot \left((\nu + \tilde{\nu}) \nabla \tilde{\nu}\right)}_{dissipation} + \underbrace{\frac{c_{b2} \rho}{\sigma} \|\nabla \tilde{\nu}\|^2}_{diffusion}$$

Solving Navier-Stokes

$$\begin{cases} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0, \\ \frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p &= \nabla \cdot (\mu \mathcal{T}), \\ \frac{\partial (\rho e)}{\partial t} + \nabla \cdot ((\rho e + p) \mathbf{u}) &= \nabla \cdot (\mu \mathcal{T} \mathbf{u}) + \nabla \cdot (\lambda \nabla \mathcal{T}), \end{cases}$$

- A few features of our flow solver:
 - Spatial Discretization based on a vertex-centered finite element / finite volume formulation
 - Finite volume cells constructed on unstructured meshes: $\Omega_h = \bigcup_{i=1}^{N_T} \kappa_i = \bigcup_{i=1}^{N_S} C_i.$
 - Flux computation : HLLC approximate Riemann solver
 - Time integration: Matrix-free implicit LU-SGS.
 - CFL law: Linear, geometric, or bounding of primitive variables

Example of simulation using Wolf

Result: Drag Prediction Workshop

Meshing Strategies for Viscous Simulations

Specific meshes, why?

In near-wall regions - boundary layers -, the dramatic variation of the velocity in the normal direction requires the use of quasi-structured meshes.

Boundary Layer Meshes

Examples of quasi-structured **boundary layer meshes**

Their generation is challenging for complex geometries

Coupling with mesh adaptation?

Only little work exists on coupling boundary layer meshes with adaptivity

- We proposed 3 approaches:
 - 1. Fully unstructured
 - 2. Mixed approach
 - Metric-aligned approach

- 1st Approach : Fully-unstructured
 - Test case : Shock/Boundary Layer interaction

A supersonic flow (Mach 1.4, $Re = 2.710^7$) is applied around a diamond

 Objective : Performing a mesh adaptation in order to accurately capture the shock/boundary layer interactions

- 1st approach : Fully-unstructured
 - 1. Initial mesh with boundary layer : compute its geometric metric $\mathcal{M}_{\textit{bl}}$
 - 2. Intersect \mathcal{M}_{bl} with the computational metric
 - 3. Use the usual unstructured mesh operators

1st approach : Fully-unstructured

- 1. Initial mesh with boundary layer : compute its geometric metric $\mathcal{M}_{\textit{bl}}$
- 2. Intersect \mathcal{M}_{bl} with the computational metric
- 3. Use the usual unstructured mesh operators

1st approach : Fully-unstructured

- 1. Initial mesh with boundary layer : compute its geometric metric $\mathcal{M}_{\textit{bl}}$
- 2. Intersect \mathcal{M}_{bl} with the computational metric
- 3. Use the usual unstructured mesh operators

Close-up view of the interaction

Successfully captured the interactions

- 280 000 Vertices and 1.3 M tets.
- Total cpu 1h (on this laptop)

But: Too many vertices inserted and lacks robustness

Mixed approach (2/3)

The quasi-structured boundary layer mesh is regenerated at each step in the mesh adaptation loop

- Acceptable number of inserted vertices
- But lacks robustness
 - It is difficult to build a boundary layer mesh from an anisotropic surface

Metric-aligned approach (3/3)

- 1. Use **metric's eigenvectors** to better control the mesh elements' alignment
- 2. Modification of the local remeshing algorithm
 - ightarrow Favor the creation of quasi-structured elements

Classical operator

Metric-aligned operator

Metric-aligned approach (3/3)

Example: anisotropic metric-aligned mesh adaptation of a wing

Pros

- Only one mesh operator for the BL and the rest of the domain
- Robustness

Ongoing

- Surface metric-aligned operator
- Validation using experimental data

Parallel Mesh Adaptation

Problem : Turbulent flow simulations require heavy meshes. Their generation is too CPU consuming in the mesh adaptation loop.

- Parallel Mesh Adaptation:
 - Small scale architectures (~ 100 nodes)
 - Mesh migration: MPI
 - Target : 150M vertices in one hour
- Didactic example : refinement of a cube.

The initial mesh is split in N partitions. Each partition is given to a processing core (or node).

In blue: **interfaces** between partitions.

Each processing core performs a mesh adaptation on its partition. Without modifying the interfaces (in blue).

Problem : mesh elements close to an interface are not correctly adapted.

- Interface elements remain to be adapted.
 - To do so, they are migrated using MPI in order to be put inside the volume.

NB: once not in an interface anymore, the elements can be correctly adapted.

Some elements still remain constrained

- They are extracted, re-splitted in parallel once again
- This process is iterated until the number of constrained elements is small enough

Adaptive Multigrid Methods (Ongoing)

Multigrid Methods

- Multigrid methods : use coarser meshes to smooth to obtain a faster convergence and an increased robustness
 - $A_h \delta u_h = F_h$ is solved on the finest mesh \mathcal{H}_h using an iterative method (~ Gauss-Seidel)

Monogrid vs. Multigrid

Monogrid method

2-grid method

Results (uniform)

Transsonic flow around a falcon

A single-grid method is compared to multigrid methods

Results (uniform)

Transsonic flow around a falcon

Significant acceleration of the convergence speed using multigrid methods and better convergence

Coupling with adaptivity (Ongoing)

- In the previous example, the coarser meshes are uniformly generated
- Coupling with adaptivity : each mesh is adapted
- Ideal relaxation : generate the adapted coarser mesh leading to the best correction

Conclusion

- Done :
 - Contribution to the implementation of a turbulent flow solver
 - Validation of the flow solver
 - Experimentations of new remeshing strategies for boundary layers
 - Parallel mesh adaptation
 - Uniform full multigrid
- Ongoing :
 - Adaptive multigrid methods
 - MPI parallelization of the flow solver

Thank you!