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. Subject: Adaptive Methods for the Numerical Prediction
of Viscous Phenomena and their Interactions.
Application to Aeronautics.

Mesh adaptation: automatically taylored meshes.
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. Subject: Adaptive Methods for the Numerical Prediction
of Viscous Phenomena and their Interactions.
Application to Aeronautics.

Navier-Stokes equations, turbulence modeling...
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. Subject: Adaptive Methods for the Numerical Prediction
of Viscous Phenomena and their Interactions.
Application to Aeronautics.

Planes, wings, space shuttles...
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Numerical Simulations Everywhere
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. Blast in a city
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Numerical Simulations Everywhere
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. Sonic Boom Prediction
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Numerical Simulation Pipeline
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Scientific Context
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MESH 

GENERATION

SOLUTION 

COMPUTATION

ANALYSIS, 

VALIDATION

. Gammaǖ team’s main research axes: Mesh generation
and Computational Fluid Dynamics.
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What is amesh?
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MESH 

GENERATION

SOLUTION 

COMPUTATION

ANALYSIS, 

VALIDATION

. Solving a Partial Differential Equation (P.D.E.) requires
the discretization of the continuous problem.

. The computational domainΩ is replaced by a union of
elements such as quadrilaterals, triangles, tetrahedra, etc.

Conformal Not conformal
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What amesh is not
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MESH 

GENERATION

SOLUTION 

COMPUTATION

ANALYSIS, 

VALIDATION

. Computational meshes ̸= visu meshes

. Visu meshes are not made for numerical simulations : they are not
conformal and with no consideration formesh quality
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MESH 

GENERATION

SOLUTION 

COMPUTATION

ANALYSIS, 

VALIDATION

. Problem: Given a surface mesh, ”fill” the volume with
vertices and tetrahedra
. ǖD complex geometries are challenging

EASY! EASY?
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MESH 

GENERATION

SOLUTION 

COMPUTATION

ANALYSIS, 

VALIDATION

. Method ǔ : Semi automatic
. The algorithm fails generating a conformal mesh
. The mesh obtained ismanually corrected (add/delete

mesh elements)

⇒ Months of ”clicking” by an
engineer.
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Fully automaticmesh generation
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MESH 

GENERATION

SOLUTION 

COMPUTATION

ANALYSIS, 

VALIDATION

. Method Ǖ : Fully automatic (Gammaǖ team)
. An algorithm robust enough to generate a valid volume

mesh from any surface mesh
▶ ǕǓ years of research (mathematics, informatics)

. Example at Inria : GHSǖD is used by Dassault Systèmes
(CATIA), Siemens, ANSYS, Autodesk, EDF, Safran, Alcan,
etc.
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MESH 

GENERATION

SOLUTION 

COMPUTATION

ANALYSIS, 

VALIDATION

. Flow solver: Modeling equations solved using the finite
element or finite volumemethod.
. I contribute to our in-house flow solver Wolf
. ∂W

∂t +∇ · F(W) = S(W)

Cj

MjMi Pi Pj

Kij
Kji

Ci

Finite volume cells constructed
on unstructured meshes:

Ωh =

NT
∪

i=1

Ki =

NS
∪

i=1

Ci
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Solution Computation
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MESH 

GENERATION

SOLUTION 

COMPUTATION

ANALYSIS, 

VALIDATION

. The solution is iteratively converged.
. Example of evolution of a solution during a computation:
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Analysis, Validation
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MESH 

GENERATION

SOLUTION 

COMPUTATION

ANALYSIS, 

VALIDATION

. The solutions obtained are compared with experimental
data and other codes.
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. Anisotropic physical phenomena located in small areas
of the computational domain

2 Km

. AircraƜ: ǖǙm. Domain: Ǖkm.

. Required mesh size around the aircraƜ: ǔmm

. Adaptedmesh→ Ǔ.ǔ Billion DoF

. Uniformmesh with ǔm edges→ ǕǓǓ Billion DoF
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Generation of AdaptedMeshes
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. Main idea : change mesh generator’s distance and
volume computation.

Fundamental concept: Unit mesh

Adapting a mesh
~

w

�
Work in an adequate Riemannian metric space

Generating a uniformmesh w.r. to (M(x))x∈Ω

H unit mesh ⇐⇒ ∀e, ℓM(e) ≈ 1 and ∀K, |K|M ≈
{√

3/4 in ǕD√
2/12 in ǖD

!( "e2) = 1

!( "e1) = 1

!("v) = 1

!M("v) = 1

!M("v1) = 1

!M("v2) = 1

0
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Generation of an adaptedmesh
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. Example of adapted mesh

Input : Metric Field Output: Adapted mesh

H unit mesh ⇐⇒ ∀e, ℓM(e) ≈ 1
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Mesh adaptation loop
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. Mesh adaptation is a non linear problem
. An iterative process is required to converge the couple

mesh-solution

(Hi,Si)

(Hi,Mi)

(Hi,S
0

i
)

(H0,S
0

0
)

(Hi+1,Si,Hi)

Si

Mi

Hi+1

S
0
i+1

Compute Solution

Compute Metric

Generate Mesh

Interpolate Solution
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Example of an adaptedmesh
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. Mesh adaptation of anisotropic supersonic shocks
. Mapping of the fluid’s density (strong discontinuities

around shocks)
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Example of an adaptedmesh
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. Mesh adaptation of anisotropic supersonic shocks
. Corresponding anisotropic adapted mesh
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FlowSimulations
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Inviscid vs. Viscous Simulations

.
Turbulent Viscous Flow Simulations

.
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. Inviscid simulations do not take into
account the viscosity of the fluid.

. Modelized by the Euler equations

. Viscous simulations do. And we couple
themwith turbulence modeling.

. Modelized by the Navier-Stokes
equations

. My work consists in improving numerical methods and
meshing strategies for turbulent viscous flow
simulations.
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Viscous Simulations, why?

.
Turbulent Viscous Flow Simulations
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. Two examples of targeted applications which require a
viscous simulation and turbulence modeling:
. Example ǔ : Drag Prediction Workshop

. Drag : the aerodynamic force that
opposes an aircraƜ’s motion through the
air

. A fully turbulent simulation is mandatory
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Viscous Simulations, why?

.
Turbulent Viscous Flow Simulations

.
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. Two examples of targeted applications which require a
viscous simulation and turbulence modeling:
. Example Ǖ : High LiƜ Prediction Workshop

. LiƜ : the force that directly opposes the
weight of an airplane and holds it in the air

. A fully turbulent simulation is mandatory
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Turbulencemodeling
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”When I meet God, I am going to ask him two questions:
Why relativity? And why turbulence? I really believe he will
have an answer for the first.”

- Heisenberg

Laminar Flow Turbulent Flow

. Turbulence modeling using the Spalart-Allmaras one equation
model:

∂ρν̃

∂t
+ u · ∇ρν̃

︸ ︷︷ ︸

convection

= cb1S̃ρν̃
︸ ︷︷ ︸

production

− cw1fwρ
(
ν̃

d

)2

︸ ︷︷ ︸

destruction

+
ρ

σ
∇ · ((ν + ν̃)∇ν̃)

︸ ︷︷ ︸

dissipation

+
cb2ρ
σ

∥∇ν̃∥2

︸ ︷︷ ︸

diffusion
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Solving Navier-Stokes
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∂ρ

∂t
+∇ · (ρu) = 0 ,

∂(ρu)
∂t

+∇ · (ρu⊗ u) +∇p = ∇ · (µT ) ,

∂(ρe)
∂t

+∇ · ((ρe+ p)u) = ∇ · (µT u) +∇ · (λ∇T) ,

. A few features of our flow solver:
. Spatial Discretization based on a vertex-centered finite

element / finite volume formulation
. Finite volume cells constructed on unstructured meshes:

Ωh =
∪NT

i=1
Ki =

∪NS
i=1

Ci .
. Flux computation : HLLC approximate Riemann solver
. Time integration: Matrix-free implicit LU-SGS.
. CFL law: Linear, geometric, or bounding of primitive

variables
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Example of simulation usingWolf

.
Turbulent Viscous Flow Simulations

.
Ǖǖ/ǗǓ

. Result: Drag Prediction Workshop
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Specificmeshes, why?
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. In near-wall regions - boundary layers - , the dramatic
variation of the velocity in the normal direction requires
the use of quasi-structured meshes.
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Boundary LayerMeshes
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. Examples of quasi-structured boundary layer meshes

. Their generation is challenging for complex geometries
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Couplingwithmesh adaptation?
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. Only little work exists on coupling boundary layer
meshes with adaptivity

(H i , S i )

(H i ,M i )

(H i , S
0

i
)

(H 0 , S
0

0 )

(H i+1 , S i , H i )

S i

M i

H i+1

S
0

i+1

Compute Solution

Compute Metric

Generate Mesh

Interpolate Solution . We proposed ǖ
approaches:
ǔ. Fully unstructured
Ǖ. Mixed approach
ǖ. Metric-aligned

approach



..

Viscousmesh adaptation (ǔ/ǖ)
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. ǔst Approach : Fully-unstructured
. Test case : Shock/Boundary Layer interaction

Shock/BL interactions

Viscous plate

Shocks

Inflow, Mach 1.4

. A supersonic flow
(Mach ǔ.Ǘ,
Re = 2.7107) is
applied around a
diamond

. Objective : Performing a mesh adaptation in order to
accurately capture the shock/boundary layer
interactions
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Viscousmesh adaptation (ǔ/ǖ)

.
Meshing Strategies for Viscous Simulations

.
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. ǔst approach : Fully-unstructured
ǔ. Initial mesh with boundary layer : compute its geometric

metricMbl
Ǖ. IntersectMbl with the computational metric
ǖ. Use the usual unstructured mesh operators

boundary layer mesh
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. ǔst approach : Fully-unstructured
ǔ. Initial mesh with boundary layer : compute its geometric

metricMbl
Ǖ. IntersectMbl with the computational metric
ǖ. Use the usual unstructured mesh operators
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Viscousmesh adaptation (ǔ/ǖ)

.
Meshing Strategies for Viscous Simulations
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. ǔst approach : Fully-unstructured
ǔ. Initial mesh with boundary layer : compute its geometric

metricMbl
Ǖ. IntersectMbl with the computational metric
ǖ. Use the usual unstructured mesh operators

Close-up view of the interaction

. Successfully captured
the interactions

. ǕǛǓ ǓǓǓ Vertices and ǔ.ǖ M
tets.

. Total cpu ǔh (on this laptop)

. But: Toomany vertices
inserted and lacks
robustness
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Mixed approach (Ǖ/ǖ)

.
Meshing Strategies for Viscous Simulations

.
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. The quasi-structured boundary layer mesh is
regenerated at each step in the mesh adaptation loop

(H i , S i )

(H i ,M i )

(H i , S
0

i
)

(H 0 , S
0

0 )

(H i+1 , S i , H i )

S i

M i

H i+1

S
0

i+1

Compute Solution

Compute Metric

Generate Mesh

Interpolate Solution
. Acceptable number of

inserted vertices
. But lacks robustness

. It is difficult to build a
boundary layer mesh from
an anisotropic surface
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Metric-aligned approach (ǖ/ǖ)
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.
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ǔ. Usemetric’s eigenvectors to better control the mesh
elements’ alignment

Ǖ. Modification of the local remeshing algorithm
. → Favor the creation of quasi-structured elements

Classical operator Metric-aligned operator
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Metric-aligned approach (ǖ/ǖ)
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Meshing Strategies for Viscous Simulations

.
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. Example: anisotropic metric-alignedmesh adaptation of
a wing

. Pros
. Only one mesh operator for the

BL and the rest of the domain
. Robustness

. Ongoing
. Surface metric-aligned operator
. Validation using experimental

data
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Parallel Mesh Adaptation

.
Meshing Strategies for Viscous Simulations

.
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. Problem : Turbulent flow simulations require heavy
meshes. Their generation is too CPU consuming in the
mesh adaptation loop.

(H i , S i )

(H i ,M i )

(H i , S
0

i
)

(H 0 , S
0

0 )

(H i+1 , S i , H i )

S i

M i

H i+1

S
0

i+1

Compute Solution

Compute Metric

Generate Mesh

Interpolate Solution
. Parallel Mesh

Adaptation:
. Small scale

architectures (∼ ǔǓǓ
nodes)

. Mesh migration: MPI

. Target : ǔǘǓM vertices in
one hour

. Didactic example : refinement of a cube.



..

Parallel Mesh Adaptation : Outline

.
Meshing Strategies for Viscous Simulations

.
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. The initial mesh is split in N partitions. Each partition is
given to a processing core (or node).

In blue: interfaces
between partitions.
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Parallel Mesh Adaptation : Outline

.
Meshing Strategies for Viscous Simulations

.
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. Each processing core performs a mesh adaptation on its
partition. Without modifying the interfaces (in blue).

Problem : mesh
elements close to
an interface are not
correctly adapted.
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Parallel Mesh Adaptation : Outline

.
Meshing Strategies for Viscous Simulations

.
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. Interface elements remain to be adapted.
. To do so, they are migrated using MPI in order to be put

inside the volume.

NB : once not in an
interface anymore,
the elements can be
correctly adapted.



..

Parallel Mesh Adaptation : Outline

.
Meshing Strategies for Viscous Simulations

.
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. Some elements still remain constrained
. They are extracted, re-splitted in parallel once again
. This process is iterated until the number of constrained

elements is small enough

Each processing core 

extracts its interface 

elements

Each core performs a mesh 

adaptation of its new 

interface mesh

Parallel re-splitting of the 

interface meshes

Are there too many 

remaining constrained 

tets?

Yes

Final parallel re-splitting

No
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MultigridMethods
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MODELING 

EQUATIONS

SOLVE

Ah − δUh = Fh

. Multigrid methods : use coarser meshes to smooth to
obtain a faster convergence and an increased
robustness
. Ahδuh = Fh is solved on the finest meshHh using an

iterative method (∼ Gauss-Seidel)
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Monogrid vs. Multigrid

.
Adaptive Multigrid Methods (Ongoing)
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. Solving Ahδuh = Fh

Gauss-Seidel iteration on Hh 

Residual : Rh = Ahδuh − Fh

If Rh < target : break; 

For i=1,itemax

. Monogrid method

Gauss-Seidel iteration on Hh 

Compute correction C2h :

N Gauss-Seidel iterations on H2h 

If Rh < target : break; 

For i=1,itemax

Add correction on Hh  :

δuh = δuh + C2h 

and compute Rh

. Ǖ-grid method
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Results (uniform)

.
Adaptive Multigrid Methods (Ongoing)
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. Transsonic flow around a falcon

. A single-grid method is compared to multigrid methods



..

Results (uniform)

.
Adaptive Multigrid Methods (Ongoing)
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. Transsonic flow around a falcon

. Significant acceleration of the convergence speed using multigrid
methods and better convergence
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Couplingwith adaptivity (Ongoing)
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Hh

H2h

H4h

H8h

I2h→h

I4h→2h

I8h→4h

. In the previous example, the coarser meshes are
uniformly generated

. Coupling with adaptivity : eachmesh is adapted

. Ideal relaxation : generate the adapted coarser mesh
leading to the best correction



..

Conclusion

.
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.
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. Done :
. Contribution to the implementation of a turbulent flow

solver
. Validation of the flow solver
. Experimentations of new remeshing strategies for

boundary layers
. Parallel mesh adaptation
. Uniform full multigrid

. Ongoing :
. Adaptive multigrid methods
. MPI parallelization of the flow solver

. Thank you!
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