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Introduction

Introduction

Canard explosion in slow-fast systems models the transition between a state of
equilibria and relaxation oscillation,
Many natural phenomena can be described by such systems,
In a category of planar slow-fast systems, some systems present bifurcations which
display a dramatical change in the phase portrait for a very small change of
parameter.

→ Main point: study of the stability boundaries
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Slow-fast systems

Definition

Slow-fast system of dimension 2:

εẋ = f (x , y , λ)
ẏ = g(x , y , λ),

Where 0 < ε� 1, λ ∈ Rn, f ,g C∞.
→ ε is the ratio of the time scale in which each variable involves.

They naturally appears when analysing for example the activity of GnRh neurons.
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Slow-fast systems

Canards in the FitzHugh-Nagumo model

The FitzHugh-Nagumo model is a simplification of the Hodgking-Huxley model which
captures the action potential in the squid giant axon.

x ′ = x − x3

3 − y + I
y ′ = ε(x + a− by).

Figure: Canard explosion in the FHN model for I decreasing from 1.5 to 1.4.

→ Example of excitable system.
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Two useful bifurcations

Hopf Bifurcation

Consider the two dimensional system

ẋ = f (x , α), x ∈ R2, α ∈ R.

Suppose
x(α) equilibrium point,
λ1(α), λ2(α) complex conjugate eigenvalues of Jac(x(α)),
α varies→ λ1(α), λ2(α) cross the imaginary axis.

↪→ Equilibrium point changes his stability and a limit cycle appears.

Figure: Appearance of a stable periodic orbit via a Hopf bifurcation.
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Two useful bifurcations

Singular Hopf bifurcation

Hopf bifurcation in slow-fast systems + some conditions (see [2]) realised⇒ singular Hopf
bifurcation.
That is the periodic orbit which emerges from the Hopf bifurcation grows from an
amplitude that is O(ε1/2) to an amplitude that is O(1) for a variation of parameter that is
O(e−k/ε) for some constant k .
The canards explosion is an example of a singular Hopf bifurcation, see [[1],[5],[6],[8]].
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Two useful bifurcations

Homoclinic bifurcation

Figure: Disappearance of a cycle across a homoclinic bifurcation.
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Numerical continuation

Idea

Goal is to compute branches of solutions of non-linear equations of the form:

F (X ) = 0,F : Rn+1 → Rn.

That is a under-determined system→ away from singularities, the solution set is a curve.
Many problems can be put in this form. In particular studies of ODEs

ẋ = F (x , λ).

stationary problems (search for equilibria)
Boundary value problem (BVP), including periodic orbits
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Numerical continuation

Parameter continuation
Suppose we have one solution

F (U0) = 0,U0 = (u0, λ0) ∈ Rn × R

Goal: Find a branch of solutions parametrized by λ: (u(λ), λ).
A first strategy is to use Newton’s method to find a solution of the augmented problem

F (u1, λ1) = 0
λ1 = λ0 + ∆λ,

where ∆λ is given and with u0
1 = u0 + ∆λu̇0 as initial approximation.

Figure: Graphical interpretation of parameter continuation from [4].

Correction only in u → problem at fold.
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Numerical continuation

Keller’s Pseudo-Arclength Continuation
To overcome the problem at fold points of the solution branch, Keller’s Pseudo-Arclength
Continuation is implemented in the software package AUTO (see [7]).
Suppose we have a solution (u0, λ0)→ Instead of varying λ, we vary the arclength s and
use Newton’s method to solve the augmented problem:

F (u1, λ1) = 0,
(u1 − u0)T u̇0 + (λ1 − λ0)λ̇0 −∆s = 0,

(1)

where ∆s is given and with u0
1 = u0 + ∆su̇0, λ0

1 = λ0 + ∆sλ̇0 as initial approximation.

Figure: Graphical interpretation of pseudo-arclength continuation from [4].
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Numerical continuation

Boundary Value Problem (BVP) & Orthogonal collocation

BVP
→ solution of u′(t)− f (u(t), µ, λ) = 0; t ∈ [0,1]
with the boundary condition b(u(0),u(1), µ, λ) = 0

and the integral constraint
1∫
0

q(u(t), µ, λ)dt = 0, Where λ is the continuation parameter.

Orthogonal Collocation

[0,1] = ∪[tj−1, jj ], j = 1, ...,N, tj − tj1 = h.
Approach u by a continuous function Pm piecewise polynomial which is polynomial of
degree m on each interval [tj−1, tj ], j ∈ [1,N].
→ Find solution pj

h on degree m such that
(pj

h)′(zj,i ) = f (pj
h(zj,i ), µ, λ), j ∈ [1,N], i ∈ [1,m]

→ zj,i = roots of the mth-degree polynome of Legendre on the interval [tj−1, tj ]
→ Ph have to satisfies the boundary and the integral condition.
Pseudo-arclength equation becomes

1∫
0

(u(t)− u0(t))T u̇0(t)dt + (µ− µ0)T µ̇0 + (λ− λ0)λ̇0 − δs = 0.
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Numerical continuation

Following Periodic Solution

Search periodic solution of u′(t)− f (u(t), λ) = 0.
Fix the interval periodicity by the transformation t → t

T .
↪→

u′(t) = Tf (u(t), λ)
u(0) = u(1).

where T is an unknown.
This equation don’t uniquely specify T and u →We choose the solution such that:

1∫
0

uk (t)T uk−1(t)dt = 0.

That is the integral phase condition.
BVP problem! → AUTO compute the solution using a orthogonal collocation scheme.
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An example of canard induced loss of stability

Lienard and Hamiltonian system

The generalized polynomial Liénard equations are of the form:

ẋ = y − f (x)
ẏ = −ε(g(x) + λ),

(2)

Where f and g are polynomials. We propose to study perturbation of the particular case

εẋ = y − f (x)
ẏ = −f ′(x)

(3)

Which after the rescaling (x , y , t)→ (ε1/2x , yε, ε1/2t) becomes

ẋ = y − fε(x)
ẏ = −f ′ε(x)

(4)

This system is integrable of integrand factor e−y .

H(x , y) = e−y [fε(x)− y − 1] = h ∈ [−1,hmax ].

and
y(x) = fε(x)− 1

is a solution.
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An example of canard induced loss of stability

Examples
To simplify the visualisation, we represent the level set of H for ε = 1 in the examples

f (x) = (x + 1)x(x − 1)(x − 3/2)(x − 3)

Figure: Three homoclinic loops which bound three nest. Figure from [3].

f (x) = x2/2− x4/4

Figure: A nest bounded by an heteroclinic loop. Figure from [3].
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An example of canard induced loss of stability

Lambert function

Reciprocal of the function x → xex .
Function multivalued (except at 0).
Only two real branches: the principal branch W0 and the other W−1

Figure: The two real branches of the Lambert function.



CANARD-INDUCED LOSS OF STABILITY ACROSS A HOMOCLINIC BIFURCATION

An example of canard induced loss of stability

Solution of the integrable system

efε(x)−y−1[fε(x)− y − 1] = hefε(x)−1.

↪→ y+ = fε(x)− 1−W−1( h
e efε(x)),

y− = fε(x)− 1−W0( h
e efε(x)).

Proposition

Any periodic trajectory intersects transversally the critical curve in exactly two points.

→ y(x) = y+(x) above the critical curve y = fε(x) and y(x) = y−(x) below.
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An example of canard induced loss of stability

Perturbation of a integrable system
We choose to study the system:

εẋ = y − x2

2 − α
x3

3
ẏ = −x − x2(α− β) +

√
εµ.

(5)

After rescaling this yields:

ẋ = y − x2

2 −
√
εα x3

3
ẏ = −x −

√
εx2(α− β) + µ.

(6)

Figure: Integrable system.
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An example of canard induced loss of stability

Numerical simulation

Numerical simulations have been done with XPPAUT (see [7]).
For 0 < α < 1, 0 <

√
ε� 1 and 0 < β < 1 fixed, a small canard cycle is born by

varying µ across a Hopf bifurcation,
for variation of µ of order 10−7 the cycle explodes and disappears across an
homoclinic bifurcation.

Figure: (a): Small canard cycle. (b): Trajectory with same initial condition after explosion. Figure
from [3].
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An example of canard induced loss of stability

Figure: (a): Bifurcation diagram of system 6 in µ. (b): a few limit cycles on the explosive branch (in
blue) shown in panel (a), approaching the homoclinic connection. Figure from [3].

→We want to compute the value of µ for which the cycle explodes.
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An example of canard induced loss of stability

Strategy based on
the first return map
the derivative given by an integral of Lambert function

Consider equation

h = e−
y
ε

[
f (x)
ε −

y
ε − 1

]
ω = e−

y
ε

y−f (x)
ε dy − e−

−y
ε (−f ′(x)− δ(x))dx

= dh − e−
y
ε δ(x)dx .

(7)
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An example of canard induced loss of stability

The following integral equation hold:∫
γµ,β,h

ω =

∫
γµ,β,h

dh −
∫

γµ,β,h

e−
y
ε δ(x)dx , (8)

Figure: Schema of trajectory in positive and in negative time starting from an initial condition on the
vertical axis x = 0.
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An example of canard induced loss of stability

Results

Using the parametrisation with the Lambert function we obtain the condition:

L+(h,β,µ)−L−(h,β,µ)
h = β

x+(h)∫
x−(h)

x2[ 1

W0(
h
e e

f (x)
ε )
− 1

W−1(
h
e e

f (x)
ε )

]dx

+
√
εµ

x+(h)∫
x−(h)

1

W0(
h
e e

f (x)
ε )
− 1

W−1(
h
e e

f (x)
ε )

dx

+O
(
(
√
εµ, β)2

)
.

(9)

Solving the equation with MATHEMATICA for h = e−
1

6α2ε (level set of the homoclinic loop)
we find a very good approximation of the parameter for which the loss a stability happens.
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