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Financial derivatives

Derivative contract : agreement by which the seller will pay
the buyer, in the future, a certain sum that depends on the
evolution of the price of another financial asset.

Historically : started with futures or forward contracts at the
Dojima Rice Exchange, Japan, 1730s.

Example : a farmer can sell 1kg of rice next year to a broker
for an agreed price of 105 coins (today’s price might be 100
coins or not).



Buying option

Example : energy compagy, airline, meal manufacturer,
international company... who is negatively affected if the
market price of a certain asset (electricity, kerosene, wheat,
foreign currency ...) rises above its current price.
Say S0 = 100.

A bank sells a buying option : allows the buyer to buy from
the bank this asset at the agreed price K = 100, next month,
whatever the market price is.

For the buyer, the net profit is (ST − K )+.
Cash settlement −→ the bank effectively pays the buyer
(ST − K )+.



Buying option
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Figure: Payment profile for an option to buy gas at 100 coins.



How much to charge ?

Transfer of market risk from the company to the bank.

The bank will for sure pay a positive amount to the buyer.
Exact amount depends on the market price in the future, but
positive.

→ How much to charge for this ?



A simple price model
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A simple price model - solution by replication



Some comments

Cancellation of market risk : no bets, no “on average”, no risk.

Replication : option ≈ cash + asset, in the good proportions.
 fundamental price of the derivative.

1973 : opening of the Chicago Board Options Exchange and
seminal paper of Black and Scholes.
1997 : ”Nobel” prize in economics for Merton(, Black) and
Scholes.
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Some comments

Cancellation of market risk : no bets, no “on average”, no risk.

Replication : option ≈ cash + asset, in the good proportions.
 fundamental price of the derivative.

1973 : opening of the Chicago Board Options Exchange and
seminal paper of Black and Scholes.
1997 : ”Nobel” prize in economics for Merton(, Black) and
Scholes.

Does not depend on the probabilities !
... but it depends on what is possible.



How to figure out what to do ?

Y0 = initial capital : what you charge.
π0 = initial investment in the asset.

Y1 = trader’s wealth at payment time T = 1.
Given by

Y1 = Y0 + π0
S1 − S0

S0
.

S0 = initial price and
S1 = price at the end, can take values S1(+) and S1(−).



How to figure out what to do ?

Want to adjust Y0 and π0 such that :

I Y1 = 20 if S1 = 120,

I Y1 = 0 if S1 = 80.

That means solving the 2 equations
Y0 + π0

120− 100

100
= 20

Y0 + π0
80− 100

100
= 0

Linear equations !



2 cases : simplistic → 3-case model
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One way to solve this

4 decision parameters : Y0, π0, π1(+) and π1(−).
Y0 = capital to start with.
π0 = investment to hold in the asset at time 0.

π1 = investment to hold in the asset at time 1.

Terminal wealth :

Y2 = Y0 + π0
S1 − S0

S0︸ ︷︷ ︸
Y1

+π1
S2 − S1

S1
.

4 scenarios : ++, +−, −+ and −−.

 4 unknown, 4 equations and they are linear : solve(d) !
(Slightly tedious though.)



Another way to solve this
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Finer and finer models

Discrete times t0, t1 . . . tN(= T )→ continuous time [0,T ].

Price dynamics :
given by a (forward) stochastic differential equation

dSt

St
= µdt + σdBt .

B : a Brownian motion.



Finer and finer models
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Figure: 4 realizations of the geometric Brownian motion model
with µ = 0.05 and σ = 0.4.



How to figure out what to do ?

Value of the trader’s position : (Y0,Y1,Y2, . . .) → (Yt)t∈[0,T ].

Investment in the asset : (π0, π1, π2, . . .) → (πt)t∈[0,T ].

Dynamics of Y :

dYt = πt
dSt

St

=
[
πtµ
]
dt + πtσdBt .

Y0 and (πt)t∈[0,T ] must be found such that YT equals the
payment amount g(ST ) (with probability 1).

This is a backward stochastic differential equation (BSDE).



General BSDEs

General form :{
dYt = −f (t, St ,Yt ,Zt)dt + ZtdBs

YT = g
(
(St)t∈[0,T ]

)
.

Can also be written :

Ys = E

(
Yu +

∫ u

s

f (Yt)dt

∣∣∣∣Ft

)
,

for s < u, and with YT = g
(
(St)t∈[0,T ]

)
.



Big picture in continuous time

Model (=scenarios) :

I Tree/finite number of paths

l
I (forward) stochastic differential equation.

Solving the pricing and hedging problem :

I system of equations // dynamic programming principle

l
I backward stochastic differential equation.



Nonlinear equations  numerical methods.

Finance :

I perfect market : linear equations, closed-form solutions
(Monte-Carlo evaluation) ;

I market imperfections  nonlinearities.

General fact :
solving for Yt ↔ solving a parabolic PDE,
when payment depends only on final price.



The principle for BSDE numerics

1)Time-discretization
[0,T ] −→ discrete times 0 = t0, t1 . . . tN = T .
Time step ∆t = T/N .

Yti = E
(

Yti+1
+
∫ ti+1

ti
f (Yt)dt

∣∣∣Ft

)
→

Y N
i = E

(
Y N
i+1 + f (Y N

i+1)∆t

∣∣∣∣Fti

)
.

2)Approximate the conditional expectations.



BSDE numerics

<what I did ="some stuff I tried actually worked",

#proud #graduation:granted>

Time-discretization when the nonlinearity f is superlinear :
explicit Euler scheme (as above) is bad !

When the terminal condition g is not bounded, the scheme
can explode.



Why explosion is possible
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Figure: Explicit Euler scheme for an ODE, for various initial
conditions and step sizes, with nonlinear driver f (y) = −y3
(similar nonlinearity as FitzHugh–Nagumo or Allen–Cahn PDEs).



The idea behind BSDE numerics

When the terminal condition g is not bounded, the explicit
scheme can explode.

Remedies : implicit scheme
... or truncate g into a function gN . (Truncation so that the
effect vanishes as N goes to +∞.)
... or truncate the driver into an at-most-linear one.

[Joint works with Lukasz Szpruch and Gonçalo dos Reis,
University of Edinburgh.]

</what I did>



Conclusions

Pricing and hedging : a central area in mathematical finance.

Starts with simple models and solutions  requires more
advanced techniques as the models are refined.
(Rk : those models are not meant to be predictive. Rather :
the decision problem should be able to be solved on them.)

BSDEs = how the replication argument writes when the model
is given by a forward SDE.
More generally : fundamental connections with
(path-dependent) PDEs.



That’s all folks ...
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