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WHY	  QUANTUM	  INFORMATION	  
PROCESSING	  ?	  



•  Cryptography : quantum key distribution



•  Quantum simulator : simulation of 

quantum systems


•  Quantum algorithms : Shor’s algorithm on 
prime number factorization in polynomial 
time


Why quantum information processing ?




CLASSICAL	  BITS	  VS.	  QUANTUM	  BITS	  



Classical Bit : Bistable system
Bits classiques

Bits physiques ! Système bistable
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PHYSICAL BIT = BISTABLE SYSTEM
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Mechanical system with
electrical readout: switch

Electrical system with
electrical readout: RAM cell

CMOS Transistors:

0 1
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10-I-8

2N = 1024 POSSIBLE CONFIGURATIONS

REGISTER WITH N=10 BITS:

REGISTER = SET OF ACTIVE BITS

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0

represents one number between 0 et 1023

10-I-9

Intérupteur électrique
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Cellule de RAM

Curtesy of Michel Devoret, Collège de France, 2010

Courtesy of Michel Devoret, Collège de France, 2010


Bit : State 0 ou 1




Classical Bit : Bistable system
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Quantum physics ? 

Quantum bit (Qubit) ? 
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Quantum Mechanics : System energy is quantified !


1,	  2,	  3,	  …	  ,	  N,	  …	  !	  

photodetector


Energy = N*hω ! 

Light energy is quantified !


photon


photon


photon


Example : Light 




Spring : Quantum case


•  Discrete set of stationnary energy states : �
ψ0(x), ψ1(x), ψ2(x), ψ3(x) ... �
L2 functions associated to energies E0, E1, E2, E3 ...�
     �



   lψ(x)l2 = density of probability to find the system in x

•  Restrict to the first two energy levels :
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•             form an orthonormal basis of a 2D-Hilbert 
space with 


•  Quantum superposition : general state is given by


| i = ↵|0i+ �|1i | ↵ |2 + | � |2= 1

Qubit!	  

Postulate 1 : Quantum superposition


| ↵ |2

| � |2
	  	  	  -‐ 	   	  	  probability to find the system in state 


	  	  	  -‐	  	  	  	  	  	  	  	  	  	  	  	  	  probability to find the system in state 
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D dx 

⇤
0(x) 1(x)



•  Quantum measurement : 

–  Consider the qubit in state

–  Ask the system : are you in     or     ? 

– With probability 
     the answer is 

–  The system is projected in state 

 
       !


Measurement modifies the qubit state !

Quantum measurement can be DESTRUCTIVE !






Postulate 2 : Quantum Measurement


| i = ↵|0i+ �|1i

|0i
|1i

| ↵ |2

| i = |0i

|0i



•  Composite system : Consider two qubits A and B

–  Qubit A lives in

–  Qubit B lives in

–  Joint system qubits A+B lives in   







•  Entangled state : 

–  Consider

–  First, we measure qubit A : we find qubit A in       �

(with 50% probability )

–  The joint state collapses to

–  qubit B is in      with probability 1 ! 


Composite system and Quantum Entanglement


|01i := |0iA ⌦ |1iB|00i := |0iA ⌦ |0iB …	  

| i = 1p
2
|00i+ 1p

2
|11i

| i = |00i
|0i

|0i

HAHB
HA ⌦HB

HA ⌦HB = vecC{|00i , |10i , |01i , |11i}

2 HA ⌦HB

A	   B	  



1) Quantum superposition : general qubit state


2) Measurement : revealing information about 
the state can destroy the superposition


3) Quantum Entanglement : possibility of having 
strongly correlated states between two qubits




Quantum « rules » : Summary


| i = ↵|0i+ �|1i
| ↵ |2 + | � |2= 1↵,� 2 C



Consequence : Decoherence


Qubit
 Environment


-The environment measures the qubit 

and this measurement destroys the quantum superposition !  


Unwanted coupling with the environment :


  -> lifetime of typically 100us (for superconducting circuits)



- Lifetime decreases with the number of qubits


How can we fight decoherence ? 




QUANTUM	  ERROR	  CORRECTION	  
(QEC)	  



•  Errors on classical bits : bit-flip errors  0        1 �

 
 
 
 
 
 
 
 
 
 
 
    1        0 


•  Errors on qubits :



     �
�
Bit-flip errors 

 
 
 
    Phase-flip errors


Bit vs. Qubit errors


| i = ↵|0i+ �|1i | 0i = ↵0|0i+ �0|1i

|0i|1i
|0i |0i

|1i|1i -‐	  
1p
2
[|0i+ |1i] 1p

2
[|0i � |1i]

|0i |1i

Rest	  of	  the	  talk	  

Errors can be cast in two error channels : �
   �
	  



Quantum error correction


•  Classical error correction: �
information redundantly encoded �
�
Ex : 0         000   �

 
 1         111               �
�
such that error on bit 1 : 100        000�

 
 
   error on bit 2 : 101        111  







Quantum error correction


•  Quantum error correction (bit-flip errors only)�
three-qubit bit-flip code : �
�
�
�
Error on qubit 1 : 


|0i
|1i

|000i
|111i ↵|000i+ �|111i↵|0i+ �|1i

↵ |100i+ � |011i ↵|000i+ �|111i

How do we detect errors

without destroying the state ? 


But information about   and    

must not be revealed ...       


↵ �

|0Li |1Li

=	   =	  



•  Error detection : Parity measurement �



Quantum error correction


↵|000i+ �|111i ↵ |100i+ � |011i

↵ |010i+ � |101i

↵ |001i+ � |110i

	  	  

qubit	  1	  flips	  

Joint parities

P12 := [Q1+Q2] mod 2

P23 := [Q2+Q3] mod 2 


P12 = 1  P23 = 0  	  

P12 = 1  P23 = 1  	  

P12 = 0  P23 = 1  	  

P12 = 0  P23 = 0  	  

NON-destructive measurements !


What we can measure :	  

Single parities

P1, P2, P3


Do not measure :	  



•  Error Correction : simply apply inverse operation �



Quantum error correction


↵|000i+ �|111i

↵ |100i+ � |011i

↵ |010i+ � |101i

↵ |001i+ � |110i

	  	  

flip	  qubit	  2	  
P12 = 1  P23 = 0  	  

P12 = 1  P23 = 1  	  

P12 = 0  P23 = 1  	  

P12 = 0  P23 = 0  	  



1st option

•  Build a feedback loop 


– real-time data analysis takes time

– quantum systems are short-lived 





Quantum error correction : implementation


100 us


Superconducting circuits


Courtesy of Quantum Electronics group, LPA, ENS (Paris)




Quantum error correction : feedback loop


Error Correction ? Use a flipper ! 	  

P12 = 0,1

  

P23 = 0,1  	  

Measurement	  	  output	  
Error	  syndrome	  

feedback	  

qubits	  system	  



2nd option : (what we have proposed)

•  Autonomous QEC by coupling the qubits with 

another strongly dissipative quantum system :






Quantum error correction : implementation


Qubit

Dissipative 

system


designed 

coupling




Main idea : 

Coherent stabilization of the manifold 
{l000>,l111>} through dissipation




Autonomous quantum error correction 





x	  

|001i |110i
|010i |101i

↵ |000i � |111i

|100i |011i

+	  

coupled	  system	  	  
does	  not	  dis8nguish	  



•  Complete codes (correct for all types of 
errors) exist but have never been physically 
implemented


•  Qubits of many kinds : trapped ions, 
superconducting qubits, NV centers ...


•  Quantum computer : 10 qubits max so far. 
Limited by decoherence !


-> QEC remains a challenge to overcome ! 


In practice




Thanks !




Questions ? 



