Autonomous Quantum Error Correction

Joachim Cohen

QUANTIC

Outline

I. Why quantum information processing ?
II. Classical bits vs. Quantum bits
III. Quantum Error Correction

WHY QUANTUM INFORMATION PROCESSING ?

Why quantum information processing?

- Cryptography : quantum key distribution
- Quantum simulator: simulation of quantum systems
- Quantum algorithms: Shor's algorithm on prime number factorization in polynomial time

CLASSICAL BITS VS. QUANTUM BITS

Classical Bit : Bistable system

CMOS Transistors:

Courtesy of Michel Devoret, Collège de France, 2010

Classical Bit : Bistable system

- friction
- thermal noise $k_{B} T \ll \Delta U$

Quantum physics ?
 Quantum bit (Qubit) ?

Spring: Classical case

Harmonic potential

$$
V(x)=\frac{1}{2} k x^{2}
$$

No dissipation :
\Rightarrow constant energy

Quantum Mechanics : System energy is quantified!

Example : Light

Light energy is quantified!

photodetector

Spring: Quantum case

- Discrete set of stationnary energy states : $\psi_{0}(x), \psi_{1}(x), \psi_{2}(x), \psi_{3}(x) \ldots$
L^{2} functions associated to energies $E_{0}, E_{1}, E_{2}, E_{3} \ldots$
$\psi_{k} \quad$ satisfying $\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+U(x)\right] \psi_{k}=E_{k} \psi_{k}$
$|\psi(x)|^{2}=$ density of probability to find the system in x
- Restrict to the first two energy levels : $|0\rangle:=\psi_{0}$

$$
\text { and }|1\rangle:=\psi_{1}
$$

Postulate 1 : Quantum superposition

- $\{|0\rangle,|1\rangle\}$ form an orthonormal basis of a 2D-Hilbert space with $\langle 0 \mid 1\rangle=\int_{D} d x \psi_{0}^{*}(x) \psi_{1}(x)$
- Quantum superposition : general state is given by
$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \quad \alpha, \beta \in \mathbb{C} \quad|\alpha|^{2}+|\beta|^{2}=1$
$-|\alpha|^{2}$ probability to find the system in state $|0\rangle$
$-|\beta|^{2}$ probability to find the system in state $|1\rangle$

Qubit!

$|0\rangle$
$|1\rangle$
$\frac{|0\rangle-|1\rangle}{\sqrt{2}}$
$\frac{|0\rangle+2 i|1\rangle}{\sqrt{5}}$

Postulate 2 : Quantum Measurement

- Quantum measurement :
- Consider the qubit in state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
- Ask the system : are you in $|0\rangle$ or $|1\rangle$?
- With probability $|\alpha|^{2}$ the answer is $|0\rangle$
- The system is projected in state $|\psi\rangle=|0\rangle$!

Measurement modifies the qubit state!
Quantum measurement can be DESTRUCTIVE!

Composite system and Quantum Entanglement

- Composite system : Consider two qubits A and B
- Qubit A lives in \mathcal{H}_{A}
- Qubit B lives in \mathcal{H}_{B}

- Joint system qubits $\mathrm{A}+\mathrm{B}$ lives in $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

$$
\begin{aligned}
& \mathcal{H}_{A} \otimes \mathcal{H}_{B}=\operatorname{vec}_{C}\{|00\rangle,|10\rangle,|01\rangle,|11\rangle\} \\
& |00\rangle:=|0\rangle_{A} \otimes|0\rangle_{B} \quad|01\rangle:=|0\rangle_{A} \otimes|1\rangle_{B}
\end{aligned}
$$

- Entangled state :
- Consider $|\psi\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$
- First, we measure qubit A : we find qubit A in $|0\rangle$ (with 50\% probability)
- The joint state collapses to $|\psi\rangle=|00\rangle$
- qubit B is in $|0\rangle$ with probability 1 !

Quantum < rules »: Summary

1) Quantum superposition : general qubit state

$$
\begin{aligned}
& |\psi\rangle=\alpha|0\rangle+\beta|1\rangle \\
& \alpha, \beta \in \mathbb{C} \quad|\alpha|^{2}+|\beta|^{2}=1
\end{aligned}
$$

2) Measurement : revealing information about the state can destroy the superposition
3) Quantum Entanglement : possibility of having strongly correlated states between two qubits

Consequence : Decoherence

Unwanted coupling with the environment :

-The environment measures the qubit and this measurement destroys the quantum superposition!
-> lifetime of typically 100us (for superconducting circuits)

- Lifetime decreases with the number of qubits
How can we fight decoherence?

QUANTUM ERROR CORRECTION (QEC)

Bit vs. Qubit errors

- Errors on classical bits : bit-flip errors

- Errors on qubits :

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \longrightarrow\left|\psi^{\prime}\right\rangle=\alpha^{\prime}|0\rangle+\beta^{\prime}|1\rangle
$$

Errors can be cast in two error channels :

Bit-flip errors
$|0\rangle \rightarrow|1\rangle$
$|1\rangle \rightarrow|0\rangle$
Rest of the talk

Phase-flip errors

$$
|0\rangle \rightarrow|0\rangle
$$

$$
|1\rangle \longrightarrow-|1\rangle
$$

$$
\frac{1}{\sqrt{2}}[|0\rangle+|1\rangle] \longrightarrow \frac{1}{\sqrt{2}}[|0\rangle-|1\rangle]
$$

Quantum error correction

- Classical error correction: information redundantly encoded

$$
\begin{array}{rlll}
E x: 0 & \rightarrow 000 \\
1 & \rightarrow 111
\end{array}
$$

such that error on bit 1:100 $\rightarrow 000$ error on bit $2: 101 \rightarrow 111$

Quantum error correction

- Quantum error correction (bit-flip errors only) three-qubit bit-flip code :
$|0\rangle \rightarrow|000\rangle$
$|1\rangle \rightarrow|111\rangle$
$\alpha|0\rangle+\beta|1\rangle \xrightarrow{e^{n 00}} \alpha|000\rangle+\beta|111\rangle$
Error on qubit 1 :

But information about α and β must not be revealed ...

How do we detect errors without destroying the state?

Quantum error correction

- Error detection : Parity measurement

$$
\alpha|000\rangle+\beta|111\rangle
$$

$$
P_{12}=0 \quad P_{23}=0
$$

What we can measure :
Joint parities $P_{12}:=[Q 1+Q 2] \bmod 2$ $P_{23}:=[Q 2+Q 3] \bmod 2$

NON-destructive measurements !

Quantum error correction

- Error Correction : simply apply inverse operation
$\alpha|000\rangle+\beta|111\rangle$

$$
P_{12}=0 \quad P_{23}=0
$$

$$
\alpha|100\rangle+\beta|011\rangle
$$

$$
P_{12}=1 \quad P_{23}=0
$$

flip qubit 2

$$
\frac{\alpha|010\rangle+\beta|101\rangle}{\mathbf{P}_{12}=1 \quad \mathbf{P}_{23}=1}
$$

$$
\alpha|001\rangle+\beta|110\rangle
$$

$$
P_{12}=0 \quad P_{23}=1
$$

Quantum error correction : implementation

$1^{\text {st }}$ option

- Build a feedback loop
- real-time data analysis takes time
- quantum systems are short-lived

Superconducting circuits

Courtesy of Quantum Electronics group, LPA, ENS (Paris)

Quantum error correction : feedback loop

Error Correction? Use a flipper!

Quantum error correction : implementation

$2^{\text {nd }}$ option : (what we have proposed)

- Autonomous QEC by coupling the qubits with another strongly dissipative quantum system :

Autonomous quantum error correction

Main idea :
Coherent stabilization of the manifold $\{\mid 000>, 1111>\}$ through dissipation
coupled system

In practice

- Complete codes (correct for all types of errors) exist but have never been physically implemented
- Qubits of many kinds : trapped ions, superconducting qubits, NV centers ...
- Quantum computer: 10 qubits max so far. Limited by decoherence!
-> QEC remains a challenge to overcome!

Thanks!

Questions?

