Multi-Marginal Optimal Transportation: Numerics and Applications

Luca Nenna

I.N.R.I.A. (MoKaPlan)

Junior Seminar, 17 March 2015
Overview

1. The Dream Team

2. Applications

3. Optimal Transportation (the standard case)
 - The Godfather(s) of Optimal Transportation

4. Numerical Results
 - 1D case
 - 2D case

5. The Multi-Marginals OT problem

6. Numerical Results
 - 1D case \(N = 3 \)
 - 2D case \(N = 3 \)

7. The DFT and the Optimal Transportation

8. Numerical results for \(N = 2 \) in 1D

9. Numerical results for \(N = 3 \) in 1D
Overview

1. The Dream Team
2. Applications
 - Optimal Transportation (the standard case)
 - The Godfather(s) of Optimal Transportation
 - Numerical Results
 - 1D case
 - 2D case
3. The Multi-Marginals OT problem
 - Numerical Results
 - 1D case, $N = 3$
 - 2D case, $N = 3$
4. The DFT and the Optimal Transportation
 - Numerical results for $N = 2$ in 1D
 - Numerical results for $N = 3$ in 1D
Overview

1. The Dream Team
2. Applications
3. Optimal Transportation (the standard case)
 - The Godfather(s) of Optimal Transportation
4. Numerical Results
 - 1D case
 - 2D case
5. The Multi-Marginals OT problem
6. Numerical Results
 - 1D case - \(N = 3 \)
 - 2D case - \(N = 3 \)
7. The DFT and the Optimal Transportation
8. Numerical results for \(N = 2 \) in 1D
9. Numerical results for \(N = 3 \) in 1D
Overview

1. The Dream Team
2. Applications
3. Optimal Transportation (the standard case)
 - The Godfather(s) of Optimal Transportation
4. Numerical Results
 - 1D case
 - 2D case
5. The Multi-Marginals OT problem
6. Numerical Results
 - 1D case- \(N = 3 \)
 - 2D case- \(N = 3 \)
7. The DFT and the Optimal Transportation
8. Numerical results for \(N = 2 \) in 1D
9. Numerical results for \(N = 3 \) in 1D
Overview

1. The Dream Team
2. Applications
3. Optimal Transportation (the standard case)
 - The Godfather(s) of Optimal Transportation
4. Numerical Results
 - 1D case
 - 2D case
5. The Multi-Marginals OT problem
6. Numerical Results
 - 1D case - $N = 3$
 - 2D case - $N = 3$
7. The DFT and the Optimal Transportation
8. Numerical results for $N = 2$ in 1D
9. Numerical results for $N = 3$ in 1D
Overview

1. The Dream Team
2. Applications
3. Optimal Transportation (the standard case)
 - The Godfather(s) of Optimal Transportation
4. Numerical Results
 - 1D case
 - 2D case
5. The Multi-Marginals OT problem
6. Numerical Results
 - 1D case- \(N = 3 \)
 - 2D case- \(N = 3 \)
7. The DFT and the Optimal Transportation
8. Numerical results for \(N = 2 \) in 1D
9. Numerical results for \(N = 3 \) in 1D
Overview

1. The Dream Team
2. Applications
3. Optimal Transportation (the standard case)
 - The Godfather(s) of Optimal Transportation
4. Numerical Results
 - 1D case
 - 2D case
5. The Multi-Marginals OT problem
6. Numerical Results
 - 1D case - $N = 3$
 - 2D case - $N = 3$
7. The DFT and the Optimal Transportation
8. Numerical results for $N = 2$ in 1D
9. Numerical results for $N = 3$ in 1D
Overview

1. The Dream Team
2. Applications
3. Optimal Transportation (the standard case)
 - The Godfather(s) of Optimal Transportation
4. Numerical Results
 - 1D case
 - 2D case
5. The Multi-Marginals OT problem
6. Numerical Results
 - 1D case $N = 3$
 - 2D case $N = 3$
7. The DFT and the Optimal Transportation
8. Numerical results for $N = 2$ in 1D
9. Numerical results for $N = 3$ in 1D
Overview

1. The Dream Team
2. Applications
3. Optimal Transportation (the standard case)
 - The Godfather(s) of Optimal Transportation
4. Numerical Results
 - 1D case
 - 2D case
5. The Multi-Marginals OT problem
6. Numerical Results
 - 1D case- $N = 3$
 - 2D case- $N = 3$
7. The DFT and the Optimal Transportation
8. Numerical results for $N = 2$ in 1D
9. Numerical results for $N = 3$ in 1D
Ceremade (Paris-Dauphine):
– Guillaume Carlier (PR)
– Gabriel Peyré (DR CNRS)
– François-Xavier Vialard (MCF)
– Bernhard Schmitzer (Post Doc)
– Jingwei Liang (PhD)
– Lénaïc Chizat (PhD)
– Quentin Denoyelle (PhD)
– Maxime Laborde (PhD)
– Roméo Hatchi (PhD)
– Dario Prandi (Post Doc)

INRIA:
– Jean-David Benamou (DR INRIA)
– Vincent Duval (Ingenieur Corps des Mines, Dépactche)
– Simon Legrand (Research engineer ADT Mokabajour)
– Luca Nenna (PhD)

Research Collaborations:
– Yves Achdou (PR U. Paris Diderot)
– Yann Brenier (DR CNRS, CMLS X)
– Quentin Merigot (CR CNRS, Ceremade)
– Jean-Marie Mirebeau (CR CNRS, Ceremade)
– Roman Andreev (Post Doc, U. Paris Diderot)
Applications

- Economy
- Finance
- Astrophysics
- Image Processing
- Machine Learning
- Optics (the reflector problem)
- Meteorology and Fluid models (semi-geostrophic equations)
- Density Functional Theory
- and so on ···
The Monge Problem

Once upon a time (namely 1781), Gaspard Monge...

Two distribution μ and ν on \mathbb{R}^d (for simplicity $d = 1$) with same total mass ($\int \mu(x)dx = \int \nu(y)dy$)

- Find the transport map $T(x)$ such that:
 - T preserves mass ($\nu(T(x)) T'(x) dx = \mu(x)dx$)
 - T minimizes the cost $\int c(x, T(x))\mu(x)dx$

- The standard cost function $c(x, y) = \frac{|x - y|^p}{p}$
 - $p = 1$ $c(x, y) = \frac{|x - y|}{2}$ (the problem introduced by Monge)
 - $p = 2 \Rightarrow$ Brenier's Theorem

- NO MASS SPLITTING
The Monge Problem

Once upon a time (namely 1781), Gaspard Monge...

Two distribution μ and ν on \mathbb{R}^d (for simplicity $d = 1$) with same total mass ($\int \mu(x)dx = \int \nu(y)dy$)

Find the transport map $T(x)$ such that:
- T preserves mass ($\nu(T(x))T(x)'dx = \mu(x)dx$)
- T minimizes the cost $\int c(x, T(x))\mu(x)dx$

The standard cost function $c(x, y) = \frac{|x - y|^p}{p}$

- $p = 1 \; c(x, y) = \frac{|x - y|}{2}$ (the problem introduced by Monge)
- $p = 2 \Rightarrow$ Brenier's Theorem

NO MASS SPLITTING
The Monge Problem

Once upon a time (namely 1781), Gaspard Monge...

Two distribution μ and ν on \mathbb{R}^d (for simplicity $d = 1$) with same total mass ($\int \mu(x)dx = \int \nu(y)dy$)

Find the transport map $T(x)$ such that:

- T preserves mass ($\nu(T(x))T(x)'dx = \mu(x)dx$)
- T minimizes the cost $\int c(x, T(x))\mu(x)dx$

The standard cost function $c(x, y) = \frac{|x - y|^p}{p}$

- $p = 1$ $c(x, y) = \frac{|x - y|}{2}$ (the problem introduced by Monge)
- $p = 2$ \Rightarrow Brenier’s Theorem

NO MASS SPLITTING
The Monge Problem

Once upon a time (namely 1781), Gaspard Monge...

Two distribution μ and ν on \mathbb{R}^d (for simplicity $d = 1$) with same total mass $(\int \mu(x)dx = \int \nu(y)dy)$

Find the transport map $T(x)$ such that:

- T preserves mass $(\nu(T(x))T(x)'dx = \mu(x)dx)$
- T minimizes the cost $\int c(x, T(x))\mu(x)dx$

The standard cost function $c(x, y) = \frac{|x - y|^p}{p}$

- $p = 1$ $c(x, y) = \frac{|x - y|}{2}$ (the problem introduced by Monge)
- $p = 2 \Rightarrow$ Brenier’s Theorem

NO MASS SPLITTING
$X \rightarrow T(X)$
In 1942, Kantorovich (Nobel prize in 1975) proposed a relaxed formulation of the Monge problem which allows mass splitting. Find a joint distribution \(\gamma(x, y) \) such that

- \(\gamma(x, y) \) has marginals equals to \(\mu \) and \(\nu \):
 - \(\int \gamma(x, y)dy = \mu(x) \)
 - \(\int \gamma(x, y)dx = \nu(y) \)
- \(\gamma(x, y) \) minimizes the cost \(\int c(x, y)\gamma(x, y)dxdy \).
The Kantorovich (relaxed) problem

In 1942, Kantorovich (Nobel prize in 1975) proposed a relaxed formulation of the Monge problem which allows mass splitting. Find a joint distribution $\gamma(x, y)$ such that

- $\gamma(x, y)$ has marginals equals to μ and ν:
 - $\int \gamma(x, y)dy = \mu(x)$
 - $\int \gamma(x, y)dx = \nu(y)$
- $\gamma(x, y)$ minimizes the cost $\int c(x, y)\gamma(x, y)dxdy$.
The Brenier’s theorem

If \(T(x) \) is a transport map then it induces a transport plan
\[
\gamma_T(x, y) = \mu(x)\delta(y - T(x)).
\]

Kant pb \iff Monge pb?

If the optimal plan has the form \(\gamma^*_T \) (which means that no splitting of mass occurs and \(\gamma^*_T \) is concentrated) then \(T \) is an optimal transport map.

Theorem [Brenier ’91] for \(p = 2 \)

There exists a unique map of the form \(T = \nabla u \) with \(u \) convex that transports \(\mu \) to \(\nu \), this map is also the optimal transport between \(\mu \) to \(\nu \) for the quadratic cost (\(p = 2 \))

Thus, for \(p = 2 \) we have \(\gamma^*_T(x, y) = \mu(x)\delta(y - \nabla u(x)) \)
The Brenier’s theorem

If $T(x)$ is a transport map then it induces a transport plan
\[\gamma_T(x, y) = \mu(x)\delta(y - T(x)) \].

Kant pb \Leftrightarrow Monge pb ?

If the optimal plan has the form γ^*_T (which means that no splitting of mass occurs and γ^*_T is concentrated) then T is an optimal transport map.

Theorem [Brenier ’91] for $p = 2$

There exists a unique map of the form $T = \nabla u$ with u convex that transports μ to ν, this map is also the optimal transport between μ to ν for the quadratic cost ($p = 2$)

Thus, for $p = 2$ we have $\gamma^*_T(x, y) = \mu(x)\delta(y - \nabla u(x))$
Source, Target and Transport Plan

Source

Target
Transport Map between ellipses and McCann’s Interpolant

- N distribution μ_i ($i = 1, \cdots, N$) on \mathbb{R}^d (for simplicity $d = 1$)
- Find the transport maps $T_i(x)$ such that:
 - T_i preserve mass ($\mu_i(T_i(x)) T_i(x)' \, dx = \mu_1(x) \, dx$ and $T_1(x) = x$)
 - T_i minimize the cost

\[
\int c(T_1(x), T_2(x), \cdots, T_N(x)) \mu_1(x) \, dx \tag{1}
\]

- The standard cost function

\[
c(T_1(x), T_2(x), \cdots, T_N(x)) = \int \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{|T_i(x) - T_j(x)|^2}{2} \mu_1(x) \, dx. \tag{2}
\]

Example, $N = 3$

(MP) $c(x, T_2(x), T_3(x)) = \frac{|x - T_2(x)|^2}{2} + \frac{|T_2(x) - T_3(x)|^2}{2} + \frac{|x - T_3(x)|^2}{2}$.

- N distribution μ_i ($i = 1, \cdots, N$) on \mathbb{R}^d (for simplicity $d = 1$)
- Find the transport maps $T_i(x)$ such that:
 - T_i preserve mass ($\mu_i(T_i(x)) T_i(x)' dx = \mu_1(x) dx$ and $T_1(x) = x$)
 - T_i minimize the cost

$$\int c(T_1(x), T_2(x), \cdots, T_N(x)) \mu_1(x) dx$$ \hspace{1cm} (1)

- The standard cost function

$$c(T_1(x), T_2(x), \cdots, T_N(x)) = \int \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{|T_i(x) - T_j(x)|^2}{2} \mu_1(x) dx.$$ \hspace{1cm} (2)

Example, $N = 3$

$$c(x, T_2(x), T_3(x)) = \frac{|x - T_2(x)|^2}{2} + \frac{|T_2(x) - T_3(x)|^2}{2} + \frac{|x - T_3(x)|^2}{2}.$$ \hspace{1cm} (MP)

- \(N \) distribution \(\mu_i \) \((i = 1, \cdots, N)\) on \(\mathbb{R}^d \) (for simplicity \(d = 1 \))
- Find the transport maps \(T_i(x) \) such that:
 - \(T_i \) preserve mass \((\mu_i(T_i(x)) T_i(x)' dx = \mu_1(x) dx \) and \(T_1(x) = x \))
 - \(T_i \) minimize the cost

\[
\int c(T_1(x), T_2(x), \cdots, T_N(x)) \mu_1(x) dx
\] (1)

- The standard cost function

\[
c(T_1(x), T_2(x), \cdots, T_N(x)) = \int \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{|T_i(x) - T_j(x)|^2}{2} \mu_1(x) dx.
\] (2)

Example, \(N = 3 \)

\[
(MP) \ c(x, T_2(x), T_3(x)) = \frac{|x - T_2(x)|^2}{2} + \frac{|T_2(x) - T_3(x)|^2}{2} + \frac{|x - T_3(x)|^2}{2}.
\]
\[\frac{1}{2} |T_2 - T_3|^2 \]
The Multi-Marginals (Kantorovich) Problem
[Gangbo-Święch,’98]

Find a joint distribution \(\gamma(x_1, \cdots, x_N) \) such that

- \(\gamma(x_1, \cdots, x_N) \) has marginals equals to \(\mu_i \ i = 1, \cdots, N \):

\[
\int \gamma(x_1, \cdots, x_i, \cdots, x_N) dx_1 \cdots dx_{i-1} dx_{i+1} \cdots dx_N = \mu_i(x_i)
\]

(3)

- \(\gamma(x_1, \cdots, x_N) \) minimizes the cost \(\int c(x_1, \cdots, x_N) \gamma(x_1, \cdots, x_N) dx_1 \cdots dx_N \).

Example, \(N = 3 \)

(KP) \(c(x, y, z) = \frac{|x - y|^2}{2} + \frac{|y - z|^2}{2} + \frac{|x - z|^2}{2} \).
Find a joint distribution $\gamma(x_1, \cdots, x_N)$ such that

- $\gamma(x_1, \cdots, x_N)$ has marginals equals to μ_i $i = 1, \cdots, N$:
 \[
 \int \gamma(x_1, \cdots, x_i, \cdots, x_N) dx_1 \cdots dx_{i-1} dx_{i+1} \cdots dx_N = \mu_i(x_i) \tag{3}
 \]

- $\gamma(x_1, \cdots, x_N)$ minimizes the cost $\int c(x_1, \cdots, x_N) \gamma(x_1, \cdots, x_N) dx_1 \cdots dx_N$.

Example, $N = 3$

(KP) $c(x, y, z) = \frac{|x - y|^2}{2} + \frac{|y - z|^2}{2} + \frac{|x - z|^2}{2}$.
Numerical Results-1D- \(N = 3 \)

\[\mu_1 \]

\[\mu_2 \]

\[\mu_3 \]
Numerical Results-1D-Projection of $\gamma^*-N = 3$

$$\gamma_{\mu_i \rightarrow \mu_j} = \int \gamma^*(x_1, \cdots, x_N)dx_1 \cdots dx_{i-1}dx_{i+1} \cdots dx_{j-1}dx_{j+1} \cdots dx_N$$

Figure : $\gamma_{\mu_1 \rightarrow \mu_2}$

Figure : $\gamma_{\mu_1 \rightarrow \mu_3}$

Figure : $\gamma_{\mu_2 \rightarrow \mu_3}$
Transport Maps
Transport Maps
The Density Functional Theory describes the behaviour of an atom (or a molecule). After (a lot of) computations [Buttazzo, De Pascale, Gori-Giorgi '12; Cotar, Friesecke, Klüppelberg '13], we obtain the following problem: Find $\gamma(x, y)$ such that

- $\gamma(x, y)$ has marginals equals to ρ and ρ (electrons are indistinguishable so $\mu = \nu = \rho$).
- $\gamma(x, y)$ minimizes the cost $\int c(x, y) \gamma(x, y) dx dy$.

The marginals ρ are the electrons (in this case we have 2 electrons) and the cost function is the electron-electron repulsion (namely the Coulomb cost)

$$c(x, y) = \frac{1}{|x - y|}. $$
The Density Functional Theory describes the behaviour of an atom (or a molecule). After (a lot of) computations [Buttazzo, De Pascale, Gori-Giorgi '12; Cotar, Friesecke, Klüppelberg '13], we obtain the following problem: Find $\gamma(x, y)$ such that

- $\gamma(x, y)$ has marginals equals to ρ and ρ (electrons are indistinguishable so $\mu = \nu = \rho$)
- $\gamma(x, y)$ minimizes the cost $\int c(x, y) \gamma(x, y) dx dy$.

The marginals ρ are the electrons (in this case we have 2 electrons) and the cost function is the electron-electron repulsion (namely the Coulomb cost)

$$c(x, y) = \frac{1}{|x - y|}.$$
The Density Functional Theory describes the behaviour of an atom (or a molecule). After (a lot of) computations [Buttazzo, De Pascale, Gori-Giorgi '12; Cotar, Friesecke, Klüppelberg '13], we obtain the following problem: Find \(\gamma(x, y) \) such that

- \(\gamma(x, y) \) has marginals equals to \(\rho \) and \(\rho \) (electrons are indistinguishable so \(\mu = \nu = \rho \))
- \(\gamma(x, y) \) minimizes the cost \(\int c(x, y) \gamma(x, y) dxdy \).

The marginals \(\rho \) are the electrons (in this case we have 2 electrons) and the cost function is the electron-electron repulsion (namely the Coulomb cost)

\[
c(x, y) = \frac{1}{|x - y|}.
\]
The Monge Problem

- Find the transport map $T(x)$ such that:
 - T preserves mass ($\nu(T(x))T'(x)\,dx = \mu(x)\,dx$)
 - T minimizes the cost $\int c(x, T(x))\mu(x)\,dx$

- The cost function becomes $c(x, T(x)) = \frac{1}{|x - T(x)|}$

- $T(x)$ is called co-motion function: it gives the position of the second electron when the first one is in x.
The Monge Problem

Find the transport map $T(x)$ such that:

- T preserves mass $\int \nu(T(x)) T(x)' \, dx = \mu(x) \, dx$
- T minimizes the cost $\int c(x, T(x)) \mu(x) \, dx$

The cost function becomes $c(x, T(x)) = \frac{1}{|x - T(x)|}$

$T(x)$ is called co-motion function: it gives the position of the second electron when the first one is in x.
The Monge Problem

- Find the transport map $T(x)$ such that:
 - T preserves mass ($\nu(T(x)) T(x)' dx = \mu(x) dx$)
 - T minimizes the cost $\int c(x, T(x)) \mu(x) dx$

- The cost function becomes $c(x, T(x)) = \frac{1}{|x - T(x)|}$

- $T(x)$ is called co-motion function: it gives the position of the second electron when the first one is in x.
Numerical results for $N = 2$ in 1D

$\mu = \nu = \rho$

$\mu = \nu = \rho$
\[c(x, y, z) = \frac{1}{|x - y|} + \frac{1}{|y - z|} + \frac{1}{|z - x|} \]

Figure: \(\rho = \chi_{[0,1]}(x) \)

Figure: \(\gamma_{\rho_1 \rightarrow \rho_3} \)
References

μν

μ

ν