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Applications

Economy

Finance

Astrophysics

Image Processing

Machine Learning

Optics (the reflector problem)

Meteorology and Fluid models (semi-geostrophic equations)
Density Functional Theory

andsoon ---
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The Monge Problem

Once upon a time (namely 1781), Gaspard Monge...

e Two distribution 1 and v on RY (for simplicity d = 1) with same total
mass( [ u(x)dx = [ v(y)dy)
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The Monge Problem

Once upon a time (namely 1781), Gaspard Monge...

e Two distribution 1 and v on RY (for simplicity d = 1) with same total
mass( [ u(x)dx = [ v(y)dy)
@ Find the transport map T(x) such that:
e T preserves mass (v( T(x))T(x)'dx = p(x)dx)
o T minimizes the cost [ c(x, T(x))u(x)dx

. Cx—yl?
@ The standard cost function c(x,y) = ————
p

X~y (the problem introduced by Monge)

o p=1cley) =2
e p =2 = Brenier's Theorem

e NO MASS SPLITTING
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The Kantorovich (relaxed) problem

In 1942, Kantorovich (Nobel prize in 1975) proposed a relaxed formulation of the

Monge problem which allows mass splitting. Find a joint distribution ~(x, y) such
that

@ ~(x,y) has marginals equals to p and v:
o [(x,y)dy = u(x)
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that

@ ~(x,y) has marginals equals to p and v:

o [(x,y)dy = pu(x)
o [(x,y)dx =v(y)

@ 7(x,y) minimizes the cost [ c(x,y)7(x,y)dxdy.
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The Brenier's theorem

If T(x) is a transport map then it induces a transport plan
7(x,y) = u(x)d(y — T(x)).
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The Brenier's theorem

If T(x) is a transport map then it induces a transport plan
7(x,y) = u(x)d(y — T(x)).

Kant pb < Monge pb 7

If the optimal plan has the form % (which means that no splitting of mass occurs
and 7% is concentrated) then T is an optimal transport map.

Theorem [Brenier '91] for p = 2

There exists a unique map of the form T = Vu with u convex that transports
to v, this map is also the optimal transport between 1 to v for the quadratic cost

(p=2)

Thus, for p =2 we have 7%(x,y) = u(x)é(y — Vu(x))
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Transport Map between ellipses and McCann's Interpolant
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The Multi-Marginals (Monge) Problem [Gangbo-Swiech, 98]

o N distribution p; (i =1,---,N) on RY (for simplicity d = 1)
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o N distribution p; (i =1,---,N) on RY (for simplicity d = 1)

e Find the transport maps T;(x) such that:
o T; preserve mass (,u,-(T,'(x))T,-(x),dx = p1(x)dx and Ti(x) = x)
o T; minimize the cost

/ (T2 (x), Ta(x), -+ Tu(x))pa () (1)

X = Ta()12 | [Ta(x) = Ts()1? | Jx = T5()12

(MP) ¢(x, To(x), T3(x)) =

2 2 2
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o N distribution p; (i =1,---,N) on RY (for simplicity d = 1)
e Find the transport maps T;(x) such that:

o T; preserve mass (,u,-(T,'(x))T,-(x),dx = p1(x)dx and Ti(x) = x)
o T; minimize the cost

/ (T2 (x), Ta(x), -+ Tu(x))pa () (1)

@ The standard cost function

N N

c(Ti(x), Ta(x),- -+, Ta(x)) :/Z Z MHI(XWX (2)

i=1 j=i+1

X = Ta()12 | [Ta(x) = Ts()1? | Jx = T5()12

(MP) ¢(x, To(x), T3(x)) =

2 2 2
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The Multi-Marginals (Kantorovich) Problem

[Gangbo-Swiech, 98]

Find a joint distribution (xy, - - , xy) such that

@ ~y(x1, -+ ,xy) has marginals equals to p; i=1,--- , N:

/V(Xl,“- sXiy oy xn)dxa e dximadxin - dxv = pi(x) (3)
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The Multi-Marginals (Kantorovich) Problem

[Gangbo-Swiech, 98]

Find a joint distribution (xy, - - , xy) such that

@ ~y(x1, -+ ,xy) has marginals equals to p; i=1,--- , N:
/’y(xl, cee Xiy ey XN )dXg s dX—1dXipr - dxn = pi(x;) (3)

® 7(xq,- -+, xy) minimizes the cost [ c(xq, -, xn)y(x1, -, xn)dxy - - dxp.

2 12 2
(KP) (e y.z) = WP Iy 2P bx =2

2 2 2
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Numerical Results-1D-N = 3

Wy

Uz
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Numerical Results-1D-Projection of v*-N = 3

Vuiopy = J V (x1, - xw)dxy - dxgogdxip - dxgordxgy - dxy
Figure © Yy -y Figure : Yy —p3

Figure : Yup—p3
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Transport Maps
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Transport Maps
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The long (and hard) way from the DFT to Optimal

Transportation

The Density Functional Theory describes the behaviour of an atom (or a
molecule). After (a lot of) computations [Buttazzo,De Pascale,Gori-Giorgi

"12;Cotar, Friesecke, Kliippelberg '13], we obtain the following problem: Find
~(x,y) such that

@ ~(x,y) has marginals equals to p and p (electrons are indistinguishable so
p=1v=p)
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@ ~(x,y) has marginals equals to p and p (electrons are indistinguishable so

p=1v=p)

@ ~(x,y) minimizes the cost | c(x.y)v(x,y)dxdy.
The marginals p are the electrons (in this case we have 2 electrons) and the cost
function is the electron-electron repulsion (namely the Coulomb cost)
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The long (and hard) way from the DFT to Optimal

Transportation

The Density Functional Theory describes the behaviour of an atom (or a
molecule). After (a lot of) computations [Buttazzo,De Pascale,Gori-Giorgi

"12;Cotar, Friesecke, Kliippelberg '13], we obtain the following problem: Find
~(x,y) such that

@ ~(x,y) has marginals equals to p and p (electrons are indistinguishable so
p=1v=p)
@ ~(x,y) minimizes the cost | c(x.y)v(x,y)dxdy.
The marginals p are the electrons (in this case we have 2 electrons) and the cost
function is the electron-electron repulsion (namely the Coulomb cost)
1

c(x,y) = m
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The Monge Problem

o Find the transport map T(x) such that:
o T preserves mass (v(T(x))T(x) dx = pu(x)dx)
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The Monge Problem

o Find the transport map T(x) such that:
o T preserves mass (v(T(x))T(x) dx = pu(x)dx)
o T minimizes the cost [ c(x, T(x))u(x)dx
1

@ The cost function becomes c(x, T(x)) = FEo
X — X
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The Monge Problem

o Find the transport map T(x) such that:
o T preserves mass (v(T(x))T(x) dx = pu(x)dx)
o T minimizes the cost [ c(x, T(x))u(x)dx
_ 1
= T()|
@ T(x) is called co-motion function: it gives the position of the second electron
when the first one is in x.

@ The cost function becomes c¢(x, T(x))
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Numerical results for N = 2 in 1D

u=v=p

u=v=p /

N
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Figure : ¥p; 3

Figure : p = x[0,1(x)
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