The proof system Coq

Guillaume Claret

April 21st, 2015

Guillaume Claret The proof system Coq 1/13

The proof system Coq

A language to:
m state theorems
m write proofs verified by computer

m write algorithms

Guillaume Claret The proof system Coq 2/13

Introduction
Raw example

Fixpoint fact (n:nat) : nat :=
match n with
| 0=>1
| Sn=>Sn * fact n
end.

Lemma 1t_0_fact n : 0 < fact n.
Proof.

induction n; simpl; auto with arith.
Qed.

Guillaume Claret The proof system Coq 3/13

Introduction
Why is it important to check proofs?

m mathematical proofs can hundreds of pages long with human
mistakes

m software without proofs almost always contains bugs

Guillaume Claret The proof system Coq 4/13

The proof system Coq

An environment to:
m reason interactively

m organize and distribute proofs

Guillaume Claret The proof system Coq 5/13

Introduction

Cogide

ExdtvTLiOom< O
o smallSteps.v
+ now apply last step. 1 subgoals
+ now apply last step. step : forall (E : Effect.t) (c : command E)
- apply Choose.lastStep.Chooseleft. (A : Type) (x : C.t E A)
now apply last_step. (k : answer E c -> C.t E A),
- apply Choose.LastStep.ChooseRight. Step.t ¢ x k ->
now apply last_step. Choose.Step.t ¢ (compile x) (fun a : an
- apply Choose.LastStep.ChooselLeft. swer E ¢ => compile (k a))
apply Choose.Equiv.join_left last. E : Effect.t
+ now apply last_step. c : command E
+ now apply last_step. A : Type
Qed. x1 : C.TEA
x2 : C.TEA
Fixpoint step {E} ¢ {A} (x : C.t EA) k (H : St k : answer Ec -> C.t EA
: Choose.Step.t ¢ (compile x) (fun a => compi H : Step.t c x1 k
destruct H. frmn
- apply Choose.Step.Call. |
- apply Choose.Equiv.bind.
now apply step.
- apply (Choose.Equiv.bind last ¢ _ v).
+ now apply Equiv.last step.
+ now apply step.
-| apply Choose.Step.Chooseleft.
now apply step.
- apply Choose.Step.ChooseRight.
now apply step.
- apply Choose.Step.ChooselLeft.
apply Choose.Equiv.join left.
now apply step.
an FhnancaBinht
Ready in Equiv, proving step Line: 322 Char: 6 @estarted
L

aume Claret

The proof system Coq

Introduction

Distribute

Install a package:

opam install -j4 package

Name Version Description
cog.color 110 A library on rewriting theory and termination

cog.compceert 240 The CompCert C compiler.
cog:concurrency:pluto 1.0.0 A web server written in Coq.
COQ:CONCUITENCY Proxy 1.0.0 A proxy to interface concurrent Coq programs with the operating

system
cog.concurrency:system 10.0 Experimental library to write concurrent applications in Coq.
cog.constructors 1.0.0 An example Coq plugin, defining a tactic to get the constructors of an

inductive type in a list

cog.cogealrefinements 0.9.1 A refinement framework (for algebra).
cog.cogealtheory 0.9.1 The theory needed by the refinement framework library.
cog.coguelicot 201 A Coq formalization of real analysis compatible with the standard
library.
coq:corn 100 The CoRN library.

illaume Claret The proof system C

7/13

Introduction
Usage

Maths:
m four colors theorem (Gontier 04)

m Feit — Thompson theorem (odd order theorem) (Gontier & all,
12)

Software written and proven in Coq:
m certified C compiler CompCert (Xavier Leroy & all)
m Bedrock library for low-level programs (Adam Chlipala & all)

Guillaume Claret The proof system Coq 8/13

Introduction

Usage

Many conference papers with Coq proofs in annex.

Guillaume Claret The proof system Coq 9/13

More
More

Based on type theory instead of set theory:

set theory ‘ type theory
+:nat — nat — nat
{neN|¢(n) e P} 3+4:nat

m we can mix proofs and programs

B reasoning on programming languages made simpler

Guillaume Claret The proof system Coq 11 /13

Conclusion

m quick demo to give you a taste of Coq

m we hope it can be useful

Guillaume Claret The proof system Coq 12 /13

More
Questions

Questions

Guillaume Claret The proof system Coq 13 /13

	Introduction
	Demo
	More

