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Machine Learning With Structured Outputs:
Glimpse Over the Topic

Rémi Lajugie
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April 21, 2015



2/22

Cenae - wauue Uy

g
s
%,

> % %,
poliveau v Ty <
U X i 5 % %
Sain-Marcel () % %
3
& %‘
3
%
Quai de la Gare(W)
Hapital Pitié-Salpétrizre
© Campo-Formio®) 2 %v
£ %% e
L T &
Arago & & T e Chevaleret ()
o < % % 2
L::3 3 kg o
a e, e <
= ey A Biblic
3 Nationele (@) . / % Nationale de
)
0!
et
&
SR
® P ;
% e
13E ARR. %, o
. o
%, Bi
o It
. Frangois
i,
Pies,, QUARTIER
& DE.LAIGARE
A o
L) - r
5 ohmoisdes@ &,
Ll =3
f o
() Institut Mines-Télécom Tolbiac() e 2 ‘q
Rue de Tolbiac > %, Gy =
5 3 > 2 9
% @ = 9 S
< o i, o iy, % %,,
5 u B z e s ()
§§ g Rue de [a Colonie El % o & 3 !
o z % % R
g L e @, % o
& B d 1o %, @
& i1 aue®® E3
= oo
& . = e
& S Rue Brillag. Maison Blanche(®)
g L-8,
ued® B 2y 3 a
- Porte d'lvry ()
=] F =




Introduction

Some topics of interest among SIERRA people:
» Machine learning in a broad sense.
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Introduction

Some topics of interest among SIERRA people:
» Machine learning in a broad sense.

v

Signal processing (image, videos, audio...).
Optimization (CONVEX !11).

Statistics (change-point detection problem).

v

v

v

Structured prediction.

3/22



This presentation

SIERRA Team
Machine Learning in a Nutshell
Structured Outputs in Machine Learning

Dealing with Partial Information: Application to Computer Vision
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Part | : Machine Learning in a nutshell
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Supervised machine learning
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Standard Binary Classification Problem

» Ubiquitous in many real life applications (spam classification)
» The goal is to build a prediction function from annotated data.

» This is the supervised setting.
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Toy example: Day/night classifier

» Sensor to measure light intensity let say x € R, you want to
predict whether it is night (0) or day (1).
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The goal is to build a prediction function from annotated data.
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Modelize the classifier as being of the following form:
f(x) = 1F(x)>1. where F(x) = wx for some real w € R.
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Teacher gives you: (x;, y;).
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Toy example: Day/night classifier
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Sensor to measure light intensity let say x € R, you want to
predict whether it is night (0) or day (1).

The goal is to build a prediction function from annotated data.

Modelize the classifier as being of the following form:
f(x) = 1F(x)>1. where F(x) = wx for some real w € R.

Teacher gives you: (x;, y;).

Learn f (or F) by minyer >_; 1¢(x)y, (Empirical risk
minimization).



In higher dimension (2) : the overfitting problem

» For now, the model is linear in the feature x, but what would
have happen if we have let (assuming the underlying
optimization problem is tractable) F be any function 7

» Now let us consider to be in dimension 2 (imagine that we
have light intensity and volume of noise).
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Overfitting

» Fundamental tradeoff in machine learning

€

A

Figure: From wikipedia.

10/22



Overfitting

» Fundamental tradeoff in machine learning

€

A

Figure: From wikipedia.
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of function f you learn: minfez > ; 1r(x)2y,

> Or: ming 325 Le(x)2y400(F)
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Overfitting

» Fundamental tradeoff in machine learning

€

A

Figure: From wikipedia.

» Two ways to handle overfitting: either by restricting the class
of function f you learn: minfez > ; 1r(x)2y,

» Or: ming Zi 1f(X)7£yi+AQ(f)

> We need to adjust A or F carefully.
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Part Il : What | care about: Structured outputs
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Structured outputs
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Beyond binary classification.

Structured outputs arises everywhere: genomics, finance,
images, videos, audio signals,

Historical example: The Optical character recognition
problem.

The idea was not to treat OCR as a sequence of binary
classification problems.

Structure occurs naturally. If two words differs from only one
letter they should be closer.
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What is different from binary classification ?

» Many classes... ) may be huge
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“rotor"), need for a good loss /.
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What is different from binary classification ?

» Many classes... ) may be huge

» Not all errors are equivalent (“sheep” closer of “ship” than
“rotor"), need for a good loss /.

» Overall optimization program is:
ming 32 £(F(x) # yi) + AQ(F).
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Introduction to my work
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A more complex setting: Learning a Metric for Audio to
Audio Alignment (Lajugie, Garreau et al., 2014)

» Inputs are pair of signals X = (X1, Xp) € RT1XP x RT2%P,

» We denote by a; the i-th row of Xi, and b; the j-th row of X>.

» The time warping problem consists in finding a path while
respecting some constraints. The set of paths respecting these
constraints is ).

» We assume to be given a similarity measure s(a;, aj)
T

ww
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» Inputs are pair of signals X = (X1, Xp) € RT1XP x RT2%P,
» We denote by a; the i-th row of Xi, and b; the j-th row of X>.
» The time warping problem consists in finding a path while
respecting some constraints. The set of paths respecting these

constraints is ).

» We assume to be given a similarity measure s(a;, aj)
T

3
2

1

HE L T

» We consider the alignment as the maximization of a certain

criterion S(X{, X3) = maxycy Tr(CY) where C;; = s(i, ) is
some affinity matrix.

» Y €Y c{0,1}7572 is a binary matrix respecting alignment

constraints.
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Learning the Metric for Audio to Audio Alignment

» Problem: How to set the similarity measure S ?
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Learning the Metric for Audio to Audio Alignment

» Problem: How to set the similarity measure S ?

» Learn it from data!

» In some contexts we have audio representation in some high
dimensional space (whole spectrogram) with a groundtruth
alignment.

» Given N such annotated pairs of signals (X{, X3) with their
optimal warping Y/, we want to use the empirical risk
minimization framework as in the binary case.

> Namely we want to

N
mig D (SO X ¥') +0(9),

17/22



Learning the Metric for Audio to Audio Alignment

17/22

Problem: How to set the similarity measure S 7
Learn it from data!

» In some contexts we have audio representation in some high

dimensional space (whole spectrogram) with a groundtruth
alignment.

Given N such annotated pairs of signals (X{, X3) with their
optimal warping Y/, we want to use the empirical risk
minimization framework as in the binary case.

Namely we want to

N
mig D (SO X ¥') +0(9),

We need to find a good loss between alignments.

T




Good loss for the learning task.

» Simplest loss: Hamming (counting disagreements)
> Loss we are interested in: area.

» Have an interpretation in terms of delays with respect to
Alignement 1
\

TB \\

\
{ v Alignement 2

\
\ Groundtruth

onset of notes. TA
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A practical problem: alignment of video scripts with video
(Bojanowski, Lajugie et al., 2014)

open door =~ ——> stand up —>  shake hand

» We only know the temporal order of actions.

» We want to localize them.
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Modelization of weak supervision (1)
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Modelization of weak supervision (2)
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Weakly-supervised
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Conclusion and perspectives

» We are working on the problem of audio to partition.

» Weak supervision is probably a major topic for the next few
years.
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Conclusion and perspectives

» We are working on the problem of audio to partition.

» Weak supervision is probably a major topic for the next few
years.

» Thanks for your attention!
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