
PR SM
PRiSM Lab. - UMR 8144

SMIS: Secured and Mobile
Information Systems

INRIA Paris-Rocquencourt
Joint team with CNRS & University of Versailles (UVSQ)

Junior Seminar
INRIA may 19th 2015

PR SM

Background and research fields

SMIS Project Team 12/7/2012 2

A Core Database Culture …
• Storage and indexing models, query execution and optimization
• Transaction protocols (atomicity, isolation, durability)
• Database security (access and usage control, encryption)
• Distributed DB architectures

PR SM

Current composition of the team

Saliha Lallali: Document Indexing for Embedded Personal Databases
Athanasia Katsouraki: Access and Usage Control for Personal Data in Trusted Cells
Cuong To: Secure Global Computations on Personal Data Servers
Paul Tran-Van: Sharing file in Embedded Personal Databases

…

PhD students

Permanent members
Nicolas Anciaux CR INRIA
Luc Bouganim, DR INRIA
Benjamin Nguyen, MC UVSQ, since 2010
Philippe Pucheral, PR UVSQ
Iulian Sandu Popa, MC UVSQ, since 2012

SMIS Project Team 3

Engineers
Quentin Lefebvre
Aydogan Ersoz

A Scalable Search Engine for
Mass Storage Smart Objects

SMIS project (INRIA, Prism, Univ. Versailles)

Saliha LALLALI
Nicolas ANCIAUX
Iulian SANDU POPA
Philippe PUCHERAL

4

Motivation – Advent of Smart Objects

• Application domains
▫ Personal Data Server
▫ Personal Cloud / Personal Web

• Securely store, query and share personal user’s files and their
metadata
▫ Documents, photos, emails, links, profiles, preferences …

• Base required functionality: full text search (similar to an embedded
Google desktop or Spotlight)

Secure devices on which
a GB flash chip

is superposed

USB MicroSD
reader

Contactless + USB
8GB Flash

Secure MicroSD
4GB Flash

A. Personal
& secure
devices

④① ② ③

Personal memory devices
in which a secure chip is implanted

Sim Card

5

Motivation –
Smart Metering and Internet of Things

• Smart sensor context
▫ Smart meters/objects (Linky, GPS tracker, set-up box, …)
▫ Smart sensors recording events in theirs surroundings (camera sensor, Google glass)

B. Smart
meters and
IoT

Google glass

Camera sensor

6

• Why transposing traditional data management functionalities directly
into the smart objects?

• Managing large collections of data locally in smart objects exhibits very
good properties in terms of:
▫ Privacy & security

 Data distribution
 Transfer only the results and not the data

▫ Energy saving
 Avoiding to transmit all the data to a central server
 Transferring few data (the results)

▫ Bandwidth savings

• Several works consider the problem of data management in SOs:
 Basic filtering and SQL query support
 Facial recognition
 Full text search (documents, images: tags/visterms, any tagged data

objects)

7

Smart Objects and Data Management

• Inverted index
▫ A search structure or (a dictionary): stores for each term t appearing in

the documents the number Ft of documents containing t and a pointer
to the inverted list of t

▫ A set of inverted lists: where each list stores for a term t the list of (d,
fd,t) pairs where d is a document identifier that contains t and fd,t is the
weight of the term t in the document d

Full-Text Search Requirements (1)

Inverted list for term ti

Dictionary organized
as a B-tree ti , Fti

tj , Ftj

(d1, fti,d1), (d3, fti,d3), (d4, fti,d4)

(d5, ftj,d5)

8

Full-text search requirements (1)
1. The old night keeper keeps the keep in the town.
2. In the big old house in the big old gown.
3. The house in the town had the big old keep.
4. Where the old night keeper never did sleep.
5. The night keeper keeps the keep in the night.
6. And keeps in the dark and sleeps in the light.

« Keeper » Document Set
« Keeper » Inverted Index

Dictionary
Organized as
a B-Tree (d1, fti,d1), (d3, fti,d3), (d4, fti,d4)

Inverted list for term ti

ti , Fti

tj , Ftj (d5, ftj,d5)

• Answer full-text search queries
▫ For a set of query keywords, produce the k most relevant

documents (according to a weight function like TF-IDF)

• To evaluate the query:
1. Access the inverted index search structure, retrieve for

each query term t the inverted lists elements
2. Allocate in RAM one container for each document

identifier in these lists
3. Compute the score of each of these documents using the

TF-IDF formula
4. Rank the documents according to their score and produce

the k documents with the highest score

Full-Text Search Requirements (2)

TF-IDF(doc) = (f
d,ti

* Log(N / Fti
))

{ti} query
keywords

too much!

10

• Smart objects share a common architecture

• (Secure) Microcontroller
▫ Low cost
▫ But small RAM (5KB ~ 128KB)

• NAND Flash
▫ Dense, robust, low cost
▫ But high cost of random writes

 Pages must be erased before being rewritten
 Erase by block vs. write by page

• Tiny RAM and NAND Flash introduce conflicting constraints for
data indexing

Smart Object HW Architecture

NAND
FLASH

MCU

B
U

S

How do existing techniques deal with these constraints ?

11

• Challenge: execute queries with a very small RAM on large
volumes of data indexed in NAND Flash

Problem Statement

• Sequentially write the index in Flash
• Small indexed structure (hash function

with a small number of buckets indexed
in RAM)

• Updates not supported!

• Update the index in place

Query time

Insertion time

• Objectives of the proposed solution: Bounded RAM (a few KB)
& Full Scalability (both for updates and queries)

• Design principles
▫ Write-once partitioning (update scalability)
▫ Linear pipelining (query evaluation under a Bound RAM)
▫ Background merging (query/update scalability)

12

Split the inverted index structure in successive partitions such that a
partition is flushed only once in Flash and is never updated.

Principle1: Write-Once Partitioning

13

…………

RAM _Bound

RAM
FLASH

I1 I2 I3 Ip

………… …………

For a Q = {t1, t2,….,tn} :

Principle2: Linear Pipelining

…………

RAM
FLASH

I1 I2 I3 Ip

											 	ܹ(ௗ݂,௧ ∗ log)
௧∈ொ

a global metadata

Fti

= fti

ti,fti

Topk
NN
Fti

ti,fti ti,fti
ti,fti

+ fti
+ fti

+ fti
+ …

Ft1
,Ftn

,…, Ft2
, Ft3

ti,ftj

page

…

page

sscore(d)

min

top-k

…

insert
(d,s)s>min

merge
on d

14

…

Active partition
Reclaimed partition

L0

merge

………
merge

L1

L2

…

merge

merge

inverted lists
for term ti

order of the scan when
querying the index

merge
I1,1 I1,b I1,1 I1,2

I2,1

I1
L0 I2

L0I1
L0 Ib

L0

Principle3: Background Linear Merging

………

SSF (Scalable and Sequential Flash structure)

15

• Implementing the delete operation is challenging :
▫ Index updating Random updates in the index
▫ State of the art embedded search indexes do not support/consider document

deletions/updates

• The alternative to updating in-place is compensation:
▫ Store the Deleted Document Identifier (DDIs) as a sorted list in Flash
▫ Intersect DDIs lists at query execution time with the inverted lists of the query

terms

• Compensation problems:
▫ Random documents deletion maintaining a sorted list of DDIs in Flash

violate the Write-Once Partitioning principle
▫ The Ft computation need an additional merge operation to subtract the sorted list

of DDIs from the inverted lists for each term in the query
▫ the full DDI list has to be scanned for each query regardless of the query

selectivity
violate the Linear Pipelining principle

Document Deletions (1)

16

• Retained deletion method:
▫ Compensate the index structure itself:

 A pair of (term, d, - fd,t) is inserted in Ii for each term in the deleted document d
 ft of each term t in d is decremented by 1

• The objective is threefold:
▫ Preclude random writes Write-Once Partitioning principle
▫ Query selectivity Linear Pipelining principle
▫ Absorb the deleted documents in Background Merging

Document Deletions (2)

17

Document Deletions (3)

• Query:

…………

RAM
FLASH

I1 I2 I3 Ip

											 	ܹ(ௗ݂,௧ݔ log)
௧∈ொ

a global metadata

Fti

= fti

ti,fti

Topk
NN
Fti

ti,fti ti,fti
ti,fti

+ fti
+ fti

+ fti
+ …

Ft1
, Ftn,…, Ft2

, Ft3

ti,ftj

page

…

page

sscore(d) top-k
min

…

insert
(d,s)

s>min

merge
on d

fd,t<0
no

yes

d<max

dstock

insert
(d,s)

…d

Ghost

purge
s<min

s

check
flash
stockmax

yes
no

18

Experimental Evaluation

19

• HW platform:
▫ development board ST3221G-EVAL

 MCU STM32-F217IG and microSD card
 Storage on two SD cards (Silicon Power SDHC Class 10 4GB & Kingston

microSDHC Class 10 4GB)
▫ Index RAM bound = 5KB

 SSF branching factors: b=8 and b’=3
• Datasets and query sets

▫ PDS/Personal Cloud use-case: “rich” documents
 very large vocabulary (500k terms) and documents (more than 1000 terms per

doc on average)
 ENRON email dataset: 500k emails (946MB of raw text)
 Pseudo-desktop dataset (CIKM’09): 27k documents, i.e., email, html, pdf, doc and ppt

(252 MB of raw text)
▫ Smart sensor use-case: “poor” documents

 moderate vocabulary (10k terms) and documents (100 terms per doc on
average)
 Synthetic dataset: 100k documents (129MB of raw text)

Comparison with the State-of-the-Art Search Engine
Methods

b. Query execution times with the
Inverted Index, SSF and Microsearch

with Silicon Power storage

a. Average document insertion times of
Microsearch, SSF and the Inverted Index

with Silicon Power storage.

20

Comparison with the State-of-the-Art Search Engine
Methods

21

Overall performance comparison

• We presented an embedded search engine for smart objects equipped
with extremely low RAM and large Flash storage

• Our proposal is founded on three design principles, to produce an
embedded search engine reconciling high insert/delete rate and query
scalability

• Our inverted index supports document deletions, while the state-of-
the-art embedded search indexes do not consider document deletions.

Future work :
• Efficient tag-based access control using the embedded search

engine

• Apply our 3 designs principle (Write-Once Partitioning, Linear
Pipelining, Background Merging) to other indexing structures for
smart objects

Conclusion & Future Work

22

23

