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* Widespread multi-physic problem in science and engineering:

- Aeroelasticity (bridge, parachute, etc.), naval hydrodynamics, micro-encapsulation...

sailing boats
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..., In particular, in nature.
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Cardiovascular FSI at [P/J project-team

* Long term expertise in design and analysis of numerical methods for the simulation of

fluid-structure interaction phenomena involved in blood flows.
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Numerical Simulation, Why?

* Prediction about how a disease/therapy will develop (prognosis)

- What will happen?

* |[dentification of the nature of a disease as an inverse problem (diagnosis)

- Where does it happen?

 Control & optimization of medical devices and therapies
- What would be the best?

Coronary stent design (simulation by S. Pant)
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The Non-Linear Coupled Problem
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® Fluid: Navier-Stokes in ALE form

A(-, 1)

divu=0 in Q)

{ plovula + pl(u —w) - Vu —dive(u,p) =0 in Q)

e Structure: Non-linear elastodynamics in Lagrangian form

p*oid — div (II(d)) =0 in Q°
d=0,d in

e Coupling conditions:

(d' =Ext(d|s), w=08d in Qf
< u = 8td on X
|\ II(d)n* = —Jo(u,p)F'n on X

A lot of effort has been devoted, over the last
decades, to the numerical approximation of these
kind of coupled problems:

(Mok et al. ‘01, Gerbeau, Vidrascu. ‘03, Heil ‘04, Fernandez, Moubachir
‘05, Deparis et al. ‘06, Dettmer, Peric ‘06, Badia et al."08, MF, Gerbeau,
Grandmont ‘07, Quarteroni, Quaini ‘08, Guidoboni, Glowinski, Cavallini,
Canic '09, Gee et al. 11, ..))
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Stiffness of the interface coupling

® Interface coupling may be extremely stiff
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Stiffness of the interface coupling

® Interface coupling may be extremely stiff

- The exchange of energy between the moving fluid and structure is very large

due to the high fluid/structure density ratio and the incompressibility of the fluid.

- Stability of standard explicit schemes dictated by the physics, not by discretization!
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Stiffness of the interface coupling

® Interface coupling may be extremely stiff

- The exchange of energy between the moving fluid and structure is very large

due to the high fluid/structure density ratio and the incompressibility of the fluid.
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Stiffness of the interface coupling

® Interface coupling may be extremely stiff

- The exchange of energy between the moving fluid and structure is very large

due to the high fluid/structure density ratio and the incompressibility of the fluid.

- Stability of standard explicit schemes dictated by the physics, not by discretization!
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Stiffness of the interface coupling

® Interface coupling may be extremely stiff

- The exchange of energy between the moving fluid and structure is very large

due to the high fluid/structure density ratio and the incompressibility of the fluid.

- Stability of standard explicit schemes dictated by the physics, not by discretization!

solve

Fluid

v

A 4

ol d v

. solve :

Standard explicit time-marching strategy

explicit coupling implicit coupling

- Large number of sub-iterations required in partitioned approaches for implicit coupling
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An Experimental Benchmark

Joint work with M. Vidrascu, D. Chapelle, M. A. Fernandez

186.66
® Geometry

76.2

1782.7 Pa

Length dimension is mm

76.2
® Flow at rest
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An Experimental Benchmark
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® Geometry
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An Experimental Benchmark

Joint work with M. Vidrascu, D. Chapelle, M. A. Fernandez

® Geometry

© 1782.7 Pa

76.2

Length dimension is mm

® Flow at rest ® Pulsatile flow

SO0

Uz

0 -

200
Parabolic inlet profile

100+

0

- Archimedes' principle:
Fy +F; = (o' —p°) Vg e,
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Filament deflections

18 ¢ -
—6—Experiment
16+ = = Implicit

RN Explicit
1a+-= = FD Explicit

® Constant flow rate (600 mm/s) ol
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Filament deflections

e Constant flow rate (600 mm/s)

® Pulsatile flow

18 ’ y

'—e—Experimenf

16+ = = Implicit ("~
RN Explicit
1a+-= = FD Explicit .-

12 +

10+

&0

—e—Experiment
== =Implicit

RN Explicit
- --FD Explicit

~N
W

20 -

Time: 0.073 sec

10
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Velocity: Plane z=3.5

Velocity x Velocity y Velocity z 200
10 10
200
0 0
. 100
| -10 -10
0
Experiment
300
10 10
200
0 0
100
-10 -10
0
Simulation Time: 0.073 sec
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Velocity: Plane z=13.5

Velocity x Velocity y Velocity z

300
10 ' 10

200
0 0

100
-10 -10

0

Experiment

300
10 10

200
0 | 0

100
-10 -10

0

Simulation Time: 0.073 sec
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Velocity: Plane z=23.5

Velocity x Velocity y Velocity z -
-

200

100

Experiment

300

200

100

0

Simulation Time: 0.073 sec
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Velocity: Plane z=33.5

Velocity x

10
0
-10
10
0
-10

Velocity y

f

.

Experiment

Simulation

z = 33.5

Velocity z
300

200

100

300

1200

100

0

Time: 0.073 sec
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Elapsed CPU-times comparisons

Alg.5 | Alg. 4 | Alg. 3 Alg. 1
2 25 25 17.5

Table V. Elapsed CPU—time (dimensionless) for Algorithms 1-6 in Phase II.
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Large structural deflections, contact, ...
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Large structural deflections, contact, ...

* Fitted mesh methods:
- Pros: natural, accurate, adequate fluid time-stepping

- Cons: moderate displacements, solid contact not possible

Fitted meshes
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¢ Unfitted mesh methods:
- Pros: arbitrary interface displacements, unfitted meshes, solid contact

- Cons: robustness, local discontinuities, accurate interface computations,... s
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Large structural deflections, contact, ...

* Fitted mesh methods:
- Pros: natural, accurate, adequate fluid time-stepping

- Cons: moderate displacements, solid contact not possible

Fitted meshes

e Unfitted mesh methods:

- Pros: arbitrary interface displacements, unfitted meshes, solid contact

- Cons: robustness, local discontinuities, accurate interface computations,...
\

Unfitted meshes
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Standard Unfitted Methods: Accuracy Issues

® Immersed thin-walled solids (e.g., cardiac valves) introduce jumps on the fluid stresses

which, respectively, results in weak and strong discontinuities of the velocity and pressure

fields

Pressure field Velocity field
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Standard Unfitted Methods: Accuracy Issues

® Immersed thin-walled solids (e.g., cardiac valves) introduce jumps on the fluid stresses

which, respectively, results in weak and strong discontinuities of the velocity and pressure

fields
o S \ S
n S0

Pressure field Velocity field

e Standard unfitted mesh approaches are inaccurate in space due to the continuous nature of
the fluid approximations across the interface or to the discrete treatment of the interface

conditions.

(Kamensky et al. '15)
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A consistent, accurate and robust method

In my thesis work, I have introduced a new unfitted mesh method by combining:
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A consistent, accurate and robust method

In my thesis work, I have introduced a new unfitted mesh method by combining:

- A consistent treatment of the coupling conditions through Nitsches’s method

- Cut-FEM technology for accuracy with ghost-penalty
stabilization for robustness

- XFEM enrichment to capture discontinuities

T

This results in a robust and accurate method for fluid-structure interaction problems
involving a thin-walled elastic structure immersed in an incompressible viscous fluid.
Besides, it provides solid mathematical foundations, i.e., stability and convergence
results are available (at least for linear problems).
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|dealized Closed Valve

05 | < Unfitted (Nitsche-XFEM)
X Fitted (ALE)
— analytic sol.

o o o
N w N

horizontal displacement

o©
—

y-coordinate

Unfitted meshes (Nitsche-XFEM)
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|dealized Closed Valve

i I
05 | < Unfitted (Nitsche-XFEM)
X Fitted (ALE)
— analytic sol.
= 0.4
C
()
S
(0]
3
- 0.3
2
©
s
[
Qo2
S
N
0.1

y-coordinate

Unfitted meshes (Nitsche-XFEM)
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Ongoing work ...

Simulations by Benoit Fabréges
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Ongoing work ...

Simulations by Benoit Fabréges

® more complex thin-walled solid models ...

-«
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Ongoing work ...

Simulations by Benoit Fabréges
® more complex thin-walled solid models ...

.

e first basic contact problems ...
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Concluding remarks

¢ Main points:
- Fluid-structure interaction is a widespread phenomena.
- Its computer-based simulation raises many numerical challenges.
-In my work, | have focused on:
- Efficient splitting schemes

- Accurate unfitted mesh methods

¢ Perspectives:
- Contacting solids, solid break-up (e.g., micro-encapsulation, drug delivery)
- 3D simulations, non-symmetric penalty free Nitsche's method

- Mesh intersection in 3D & HPC

- Contact with multiple structures
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