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• Framework: interaction of 

- Structure: elastic (non-linear,…)

with an internal or surrounding

- Fluid: incompressible (viscous,...)

• Widespread multi-physic problem in science and engineering:

- Aeroelasticity (bridge, parachute, etc.), naval hydrodynamics, micro-encapsulation… 

parachutes

sailing boats

micro-capsules

A widespread problem...

 Simulation by M. Fernández
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..., in particular, in nature.

• Ubiquitous in nature: 

- Bird flight, fish swimming, cell biomechanics....
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Cardiovascular FSI at           project-team  

• Long term expertise in design and analysis of numerical methods for the simulation of 

   fluid-structure interaction phenomena involved in blood flows.
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Cardiovascular FSI at           project-team  

• Long term expertise in design and analysis of numerical methods for the simulation of 

   fluid-structure interaction phenomena involved in blood flows.

• Some examples (not exhaustive):

Cardiac Valve Mechanics (simulation by M. Astorino)

Retinal Hemodynamics (simulation by M. Aletti)
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FSI in the aorta (simulation by M. L)
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ventricle and the aorta
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Numerical Simulation, Why?

• Identification of the nature of a disease as an inverse problem (diagnosis)

- Where does it happen?

• Prediction about how a disease/therapy will develop (prognosis)

- What will happen?

• Control & optimization of medical devices and therapies

- What would be the best?

Coronary stent design (simulation by S. Pant)
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A lot of effort has been devoted, over the last 
decades, to the numerical approximation of these 
kind of coupled problems:

(Mok et al. ’01, Gerbeau, Vidrascu. ’03, Heil ’04, Fernández, Moubachir 
’05, Deparis et al. ’06, Dettmer, Peric ’06, Badia et al.’08,  MF, Gerbeau, 
Grandmont ’07, Quarteroni, Quaini ’08, Guidoboni, Glowinski, Cavallini,  
Canic ’09, Gee et al. ’11, ...)
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Stiffness of the interface coupling

• Interface coupling may be extremely stiff 

�n
f

solve

solve
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- Stability of standard explicit schemes dictated by the physics, not by discretization! 

- The exchange of energy between the moving fluid and structure is very large                    

due to the high fluid/structure density ratio and the incompressibility of the fluid.

implicit couplingexplicit coupling
Standard explicit time-marching strategy

EXPENSIVE

- Large number of sub-iterations required in partitioned approaches for implicit coupling
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In my thesis, I have introduced two new classes of explicit coupling schemes that deliver, 
respectively:

- 2nd order accuracy
- A fully decoupled sequential computation of the whole fluid-solid state

We retrieve stable and accurate solutions at a low computational cost.
{u , p, d}
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An Experimental Benchmark

Length dimension is mm

- Archimedes' principle:

Fb + Fs
g = (⇢f � ⇢s) V g ey

vz
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v
x

•Geometry

•Flow at rest •Pulsatile flow

Parabolic inlet profile

Joint work with M. Vidrascu, D. Chapelle, M. A. Fernández
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The Simulation
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Filament deflections

•Constant flow rate (600 mm/s)
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Filament deflections

•Constant flow rate (600 mm/s)

•Pulsatile flow
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Velocity: Plane z=3.5

z = 3.5
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Velocity: Plane z=13.5

z = 13.5
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Velocity: Plane z=23.5

z = 23.5
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Velocity: Plane z=33.5

z = 33.5
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Elapsed CPU–times comparisons

COUPLING SCHEMES FOR THE FSI FORWARD PREDICTION CHALLENGE 19

(a) Experiment at t = 1.153. (b) Experiment at t = 2.449.

(c) Algorithm 1 at t = 1.153. (d) Algorithm 1 at t = 2.449.

(e) Algorithm 6 at t = 1.153. (f) Algorithm 6 at t = 2.449.

Figure 18. Fluid velocity components in Phase II. Comparison of the experimental data with the predictions
obtained with Algorithms 1 and 6. Plane z = 33.5. Units are mm s

�1.

allocated for the fluid and the solid solvers, respectively. As in the simulations of Phase I, superior
performance is obtained with the loosely coupled and semi–implicit methods.

Alg. 6 Alg. 5 Alg. 4 Alg. 3 Alg. 2 Alg. 1
1 2 2.5 2.5 18 17.5

Table V. Elapsed CPU–time (dimensionless) for Algorithms 1–6 in Phase II.

5. CONCLUSION

Different partitioned solution procedures have been compared and validated using the experimental
results of the FSI benchmark presented in [53]. All the methods discussed are algorithmically
parameter free and represent an important sample of the state-of-the-art in coupling schemes for
FSI.

The comparisons in Section 4 showed, in general, a very good agreement between the numerical
and the experimental results, particularly, in Phase I where the matching is excellent. A slight
deviation is observed in the case of the coupling with the shell model, which can be related to
the approximation of the Archimedes force.

With regard to the computational efficiency, the comparisons indicate that the best performance is
obtained with the splitting schemes of Algorithms 3 and 6, respectively, in the case of the coupling
with a 3D and a shell solid model. It should be noted also that these results confirm that strong
coupling (Algorithms 1–2) can be avoided via semi–implicit or explicit coupling (Algorithms 3–6)
without compromising both stability and accuracy, and at significantly reduced computational cost
(see, e.g., Table V).

Further investigations or improvements of the present work can explore various directions. From
the modeling point of view, we could consider the coupling with three-dimensional shell models
(see, e.g., [56]), which would bypass the introduction of an ad hoc Archimedes surface force.
From the numerical point of view, it would be worth investigating to what extend the numerical
results of Phase II can be improved by using further refined discretizations and/or second-order
time–discretizations. With regard to the latter point, preliminary results (not reported here) show no
significant differences with a second–order time–stepping in the solid. Another interesting aspect,

Copyright c� 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
Prepared using cnmauth.cls DOI: 10.1002/cnm
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Fitted meshes

• Fitted mesh methods:

- Pros: natural, accurate, adequate fluid time-stepping

- Cons: moderate displacements, solid contact not possible

Unfitted meshes

Large structural deflections, contact, ...

• Unfitted mesh methods:
- Pros: arbitrary interface displacements, unfitted meshes, solid contact

- Cons: robustness, local discontinuities, accurate interface computations,...
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Standard Unfitted Methods: Accuracy Issues

⌃(t)n
⌃(t)n

Pressure field Velocity field

•Immersed thin-walled solids (e.g., cardiac valves) introduce jumps on the fluid stresses 

which, respectively, results in weak and strong discontinuities of the velocity and pressure 

fields

⌃(t)⌦1(t)

⌦2(t)
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Standard Unfitted Methods: Accuracy Issues

⌃(t)n
⌃(t)n

Pressure field Velocity field

•Immersed thin-walled solids (e.g., cardiac valves) introduce jumps on the fluid stresses 

which, respectively, results in weak and strong discontinuities of the velocity and pressure 

fields

⌃(t)⌦1(t)

⌦2(t)

•Standard unfitted mesh approaches are inaccurate in space due to the continuous nature of 

the fluid approximations across the interface or to the discrete treatment of the interface 

conditions.

(Kamensky et al. '15)

1032 D. Kamensky et al. / Comput. Methods Appl. Mech. Engrg. 284 (2015) 1005–1053

(a) Immersogeometric M1. (b) Immersogeometric M2.

(c) Immersogeometric M3. (d) Boundary-fitted reference.

Fig. 14. Pressure contours at t = 0.5, from immersogeometric computations on M1, M2, and M3, along with the boundary-fitted reference. Large
pointwise pressure errors are confined to an O(h) neighborhood of the immersed structure, becoming increasingly localized with spatial refinement.

demonstrated also in Section 4.4.2, allowing acceptable results with continuous and equal-order pressure/velocity
pairs.

It is important to remember that the “pressure” plotted in Fig. 14 corresponds to the coarse scale solution variable
ph in the semidiscrete VMS formulation. It omits the fine scale contribution p0 = �⇢1⌧Cr · u1, which dominates
near the beams for sshell = 106. The coarse scale pressure solution ph cannot be interpreted physically as mechanical
pressure (i.e. � 1

3 tr � 1) in the band of elements immediately adjacent to the immersed shell structure.

5. Application to a bioprosthetic heart valve

In this section, we use the thin shell immersogeometric FSI method developed in Section 4 to simulate an aortic
bioprosthetic heart valve (BHV) and the surrounding blood flow during a cardiac cycle. The aortic valve regulates
flow between the left ventricle of the heart and the ascending aorta. Fig. 16 provides a schematic depiction of its
position in relation to the surrounding anatomy. As mentioned in Section 4.5, the weak form of Kirchhoff–Love shell
theory requires the shell geometry to be C1-continuous. We first describe our strategy of mapping a given valve leaflet
geometry to a quadratic B-spline patch. We then address the issue of contact between leaflets. A benefit of using
an immersogeometric FSI method is that the contact formulation can be added to the structure subproblem without
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A consistent, accurate and robust method

In my thesis work, I have introduced a new unfitted mesh method by combining:

- A consistent treatment of the coupling conditions through Nitsches’s method

- XFEM enrichment to capture discontinuities 

This results in a robust and accurate method for fluid-structure interaction problems 
involving a thin-walled elastic structure immersed in an incompressible viscous fluid.
Besides, it provides solid mathematical foundations, i.e., stability and convergence 
results are available (at least for linear problems).

- Cut-FEM technology for accuracy with ghost-penalty 
stabilization for robustness 
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Idealized Closed Valve

Unfitted meshes (Nitsche-XFEM)
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Ongoing work ...

• first basic contact problems ...

• more complex thin-walled solid models ...
Simulations by Benoit Fabrèges
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• Main points:
- Fluid-structure interaction is a widespread phenomena.

- Its computer-based simulation raises many numerical challenges.

- In my work, I have focused on:

- Efficient splitting schemes
- Accurate unfitted mesh methods

• Perspectives:

- Contacting solids, solid break-up (e.g., micro-encapsulation, drug delivery)

- 3D simulations, non-symmetric penalty free Nitsche's method

- Mesh intersection in 3D & HPC

- Contact with multiple structures

Concluding remarks
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