
Taking apart your compiler!

Jacques-Henri Jourdan

February 16th
Inria Paris Junior Seminar

Who am I?

• Me = Jacques-Henri Jourdan = PhD student in team Gallium.

• Gallium:
◦ Formal verification (... of programming tools)
◦ Functional programming (... in OCaml)
◦ Programming computers with multiple processors

2 of 13

Why a compiler?

Your processor understands assembly (this is the “readable” version):

pushq %rbp

movq %rdi, %rbp

pushq %rbx

subq $32, %rsp

movq 16(%rdi), %rcx

testq %rcx, %rcx

je .L112

movq 8(%rsi), %r12

movq (%rsi), %r10

movq %r12, %rdi

subq %r10, %rdi

sarq $2, %rdi

movq %rdi, %rsi

.L121:

movq 40(%rcx), %rbx

movq 32(%rcx), %r9

movq %rbx, %r11

subq %r9, %r11

sarq $2, %r11

You don’t want to write assembly.

3 of 13

Why a compiler?

• You write your code in high-level languages (C, C++, OCaml,
Java, Python, Mathlab, Javascript)...

• You need a tool that understands this language.
◦ You may use an interpreter:
• Runs your program directly one step after the other
• Very slow
• Python, Mathlab, (Javascript), ...

◦ You may use a compiler:
• Translates your program into assembly
• C, C++, OCaml, Java, (Javascript), ...

3 of 13

Assembly: the language of the processor

How does a processor works?

• It has a few registers
◦ Small pieces of memory (few bytes) available directly to the

computing units
◦ 16 registers in our case: %eax, %ebx, %ecx, %edx, %esi, %edi, ...

• It executes one simple instruction after the other
◦ Very basic instructions

• Examples of instructions:
◦ mov $1, %eax → write (i.e. move) integer 1 to register %eax
◦ jmp .label → jump to position labelled .label
◦ imul %edi, %eax → multiply %edi by %eax, put result in %eax
◦ dec %edi → decrement %edi

• Also: read from/write to the main memory (RAM) of the
computer

4 of 13

Example of compilation

• Convention: parameter taken in %edi, result computed in %eax

int fact(int n) {

int res = 1;

while(n > 1) {

res = res * n;

n = n - 1;

}

return res;

}

=⇒

fact:

mov $1 , %eax

.L5:

cmp $1 , %edi

jle .L8

imul %edi , %eax

dec %edi

jmp .L5

.L8:

ret

• How does the compiler do?
◦ We give one possible compilation chain.

5 of 13

Step 1: lexing + parsing

Textual representation

int fact(int n) {

int res = 1;

while(n > 1) {

res = res * n;

n = n - 1;

}

return res;

}

=⇒

Syntax tree

int fact(int n)

int res = 1

while(n > 1)

return res

res = res * n n = n - 1

6 of 13

Step 2: front-end

• scope resolution

• resolution of overloading

• type checking

int fact(int n)

int res = 1

while(n > 1)

return res

res = res * n n = n - 1

Integer versions of * - <OK

7 of 13

Step 2: front-end

• scope resolution

• resolution of overloading

• type checking

int fact(int n)

int res = 1

while(n > 1)

return res

res = res * n n = n - 1

Integer versions of * - <

OK

7 of 13

Step 2: front-end

• scope resolution

• resolution of overloading

• type checking

int fact(int n)

int res = 1

while(n > 1)

return res

res = res * n n = n - 1

Integer versions of * - <

OK

7 of 13

Step 3: CFG construction

• Structured syntax: for you, not for processors

• We identify control points in the source

• Control points: nodes in the Control Flow Graph:

int fact(int n)

int res = 1

while(n > 1)

return res

res = res * n n = n - 1

=⇒

res ← 1

n > 1 ?

return resres ← res * n

n ← n - 1

8 of 13

Step 4: Optimizing the CFG

• Many different passes (> 100 in GCC)
◦ Common subexpressions elimination
◦ Constant propagation
◦ Dead code elimination
◦ Loop optimizations
◦ ...

• Many depend on static analyses
◦ SAs predict some properties of the program before execution

• In our case, only one optimization:
◦ n = n - 1 ⇒ decrement(n)

9 of 13

Step 5: Register allocation

• We search for memory for storing variables
◦ Registers are fast but limited
◦ Main memory is huge but slow and more difficult to access

• In our case:
◦ The initial value of n is given in %edi
◦ The result is returned in %eax
◦ Best solution: n → %edi res → %eax %eax ← 1

%edi > 1 ?

return%eax ← %eax * %edi

decrement(%edi)

10 of 13

Step 6: Linearization

• We still have a control flow graph
• In assembly, instructions have a linear order
• We need to find an order for CFG nodes
◦ When the successor of a node is not following it: insert a jump
◦ Minimize the number of jumps

Finally:

mov $1 , %eax

.L5:

cmp $1 , %edi

jle .L8

imul %edi , %eax

dec %edi

jmp .L5

.L8:

ret

11 of 13

Work at Gallium – Proving compilers and static
analyzers

• What is a correct compiler?
◦ “Any behavior of the generated code is allowed by the source code”

• How do we prove that?
◦ Formal semantics: description of source and generated languages.
◦ We prove that the source simulates the generated assembly.

• My work: verifying static analyzers
◦ Predicting the behavior of the program before its execution
◦ For better optimizations
◦ For avoiding bugs

12 of 13

Conclusion

• We have omitted many, many details

• Compilers are truly interestings objects
◦ Interesting problems
◦ Many users (you all!)

Questions?

13 of 13

