Taking apart your compiler!

Jacques-Henri Jourdan

February 16th
Inria Paris Junior Seminar

Who am |7

Me = Jacques-Henri Jourdan = PhD student in team Gallium.
Gallium:

Formal verification (... of programming tools)
Functional programming (... in OCaml)
Programming computers with multiple processors

20f 13

Why a compiler?

Your processor understands assembly (this is the

pushq
movq
pushq
subq
movq
testq
je
movq
movq
movq
subq
sarq
movq
.L121:

movq
movq
movq
subq
sarq

%rbp

%rdi, %rbp
%rbx

$32, %rsp

16 (%rdi), %rcx
drex, drex
.L112
8(hrsi), %ri2
(hrsi), %r10
%r12, Yrdi
%r10, %rdi
$2, %rdi
%rdi, %rsi

40(%rcx), %rbx
32(%rcx), %r9
Yrbx, %ril
%r9, %ril

$2, Yri1

You don’t want to write assembly.

30of 13

“readable” version):

Why a compiler?

You write your code in high-level languages (C, C+-+, OCaml,
Java, Python, Mathlab, Javascript)...
You need a tool that understands this language.

You may use an interpreter:

Runs your program directly one step after the other
Very slow
Python, Mathlab, (Javascript), ...

You may use a compiler:

Translates your program into assembly
C, C++, OCaml, Java, (Javascript), ...

30f 13

Assembly: the language of the processor

How does a processor works?
It has a few registers
Small pieces of memory (few bytes) available directly to the
computing units
16 registers in our case: %eax, %ebx, %ecx, hedx, %esi, %edi, ...
It executes one simple instruction after the other
Very basic instructions
Examples of instructions:
mov $1, %eax — write (i.e. move) integer 1 to register %eax

jmp .label — jump to position labelled .label
imul %edi, %eax — multiply %edi by %eax, put result in %eax
dec ‘edi — decrement %edi

Also: read from/write to the main memory (RAM) of the
computer

4 0f 13

Example of compilation

Convention: parameter taken in %edi, result computed in %eax

fact:
int fact(int n) { mov $1, leax
int res = 1; .L5:
while(n > 1) { cmp $1, Jedi
res = res * n; — jle .L8
n=n - 1; imul hedi, Yeax
} dec hedi
return res; jmp .L5
} .L8:

ret

How does the compiler do?
We give one possible compilation chain.

50f 13

Step 1: lexing + parsing

Textual representation

int fact(int n) {
int res = 1;
while(n > 1) {
res = res * n;
n =n - 1;
}

return res;

6 of 13

res = res *n

Syntax tree

[int fact(int n)j

while(n > 1)

Step 2: front-end

scope resolution

int fact(int n)

int res= 1

hile(n >1)
L~

&
res =res *xn

7 of 13

Step 2: front-end

scope resolution

resolution of overloading

[int fact(int n)j

while(n>1)

res=res *n

Integer versions of * - <

7 of 13

Step 2: front-end

scope resolution
resolution of overloading

type checking

[int fact(int n) j

while(n>1)

res=res *xn

7 of 13

Step 3: CFG construction

Structured syntax: for you, not for processors

We identify control points in the source

Control points: nodes in the Control Flow Graph:

int fact(int n)

[int res = 1)

[return res)

while(n > 1)

[res = res x n)

(n=n-1)

8 of 13

Step 4: Optimizing the CFG

Many different passes (> 100 in GCC)

Common subexpressions elimination
Constant propagation

Dead code elimination

Loop optimizations

Many depend on static analyses

SAs predict some properties of the program before execution
In our case, only one optimization:

n =n - 1= decrement(n)

9 of 13

Step 5: Register allocation

We search for memory for storing variables

Registers are fast but limited
Main memory is huge but slow and more difficult to access

In our case:

The initial value of n is given in %edi
The result is returned in %eax

. i 0 .)
Best solution: n — %edi res — %eax

fhedi > 1 7

return

[%eax «— ‘heax * %edij
v

decrement (%edi)

10 of 13

Step 6: Linearization

We still have a control flow graph

In assembly, instructions have a linear order

We need to find an order for CFG nodes
When the successor of a node is not following it: insert a jump
Minimize the number of jumps

Finally:

mov $1, %eax
.L5:

cmp $1, Yedi

jle .L8

imul %edi, %heax

dec f%hedi

jmp .L5
.L8:

ret

11 of 13

Work at Gallium — Proving compilers and static
analyzers

What is a correct compiler?
“Any behavior of the generated code is allowed by the source code”
How do we prove that?

Formal semantics: description of source and generated languages.
We prove that the source simulates the generated assembly.

My work: verifying static analyzers

Predicting the behavior of the program before its execution
For better optimizations
For avoiding bugs

12 of 13

Conclusion

We have omitted many, many details
Compilers are truly interestings objects

Interesting problems
Many users (you all!)

Questions?

13 of 13

