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CERMICS-Matherials team

CERMICS (Centre d’Enseignement et de Recherche en Mathématiques, Informatique et

Calcul Scientifique) is a laboratory of École des Ponts ParisTech, hosting joint research
teams with INRIA and University of Marne-la-Vallée.

Some members of Matherials team: Claude Lebris, Eric Cancès, Tony Lelièvre, Gabriel
Stoltz, Mathias Rousset, Virginie Ehrlacher, Frédéric Legoll, Antoine Levitt... PhD students
and postdocs.

Main research topics : Analysis of numerical methods for quantum chemistry and physics,
statistical physics, molecular dynamics, homogenization and related problems.

My PhD work is on mathematical (deterministic and stochastic) methods for the simulation
of photovoltaic processes.
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Perfect crystals

Figure: rock crystals, crystal skull, Gallium metal, CIGS photovoltaic cells.

A crystal is a solid material composed of an infinite number of atoms that are arranged
periodically in space.
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Electronic structure

The study of the states of electrons in the crystal (electronic structure) enables to understand the
macroscopic behavior of the solid. For example, electrical, optical or magnetic properties depend
very strongly on this electronic structure.

Understanding the optoelectronical properties of a photovoltaic cell is crucial to improve its
efficiency.
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Band theory

The band theory allow to determine the admissible energy states of the electrons in a crystalline
material. The band structure accounts for the electric conductivity of the material (conductor,
semiconductor or insulator).
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Bravais lattice and Brillouin zone -1-

Let a, b, c be a basis of R3. We define the Bravais lattice R and the admissible unit cell Γ
as follows :

R := {ma + nb + pc, m, n, p ∈ Z} , Γ :=
{
αa + βb + γc, α, β, γ ∈ [0, 1)3

}
.

Let a*, b*, c* be the unique basis of R3 that satisfies

a · a∗ = b · b∗ = c · c∗ = 2π, a · b∗ = a · c∗ = b · a∗ = b · c∗ = c · a∗ = c · b∗ = 0.

We define the dual lattice R∗ as follows

R∗ := {ma∗ + nb∗ + pc∗, m, n, p ∈ Z} .

The first Brillouin zone Γ∗ is defined as the set of points of R3 that are closer to (0, 0, 0)
than any other point in the dual lattice R∗ (Wigner-Seitz cell of R∗).
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Bravais lattice and Brillouin zone -2-

0Source: Wikipedia. licence CC BY-SA 3.0
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Hilbert spaces and operators

Let H be a Hilbert space. An operator on H is a linear map A : D(A)→H defined on a linear
subspace D(A) ⊂ H that is dense in H. D(A) is called the domain of A. Useful Hilbert spaces
(which appear naturally in quantum physics) are:

L2(R3) :=

{
f : R3 → R |

∫
R3
|f (x)|2dx <∞

}

L2
loc (R3) :=

{
f : R3 → R |

∫
K
|f (x)|2dx <∞, ∀K ⊂ R3 compact

}
L2
per (Γ) =

{
f ∈ L2

loc (R3), f (x + R) = f (x), ∀R ∈ R,∀x ∈ R3
}

H2(R3) :=
{
f : R3 → R | f ,Df ,D2f ∈ L2(R3)

}
H2
loc (R3) :=

{
f : R3 → R | f ,Df ,D2f ∈ L2

loc (R3)
}

H2
per (Γ) =

{
f ∈ H2

loc (R3), f (x + R) = f (x), ∀R ∈ R,∀x ∈ R3
}

We consider the periodic Schrödinger operator acting on L2(R3) with domain H2(R3) :

−
1

2
∆ + Vper

where Vper ∈ L2
per (Γ) is a real-valued periodic potential with the same periodicity as the one of

the lattice R.
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Some quantum physics

Quantum physics => the state of a quantum system of N particles is given by a
wavefunction ψ ∈ L2(R3N). For B ⊂ R3N , the quantity

∫
B |ψ(x)|2 represents the probability

of finding the particles of the system in the region B. In particular
∫
R3N |ψ(x)|2 = 1.

The energy of the system is characterized by an operator defined on L2(R3N) called the
Hamiltonian.

The general form of the Hamiltonian of a system of N electrons and M nuclei whose
positions (Rj )1≤j≤M ∈ R3 are fixed and whose electrical charges are (zj )1≤j≤M ∈ Z is given
by 1

Hmol := −
1

2

N∑
i=1

∆xi︸ ︷︷ ︸
kinetic energy

+
∑

1≤i<j≤N

1

|xi − xj |︸ ︷︷ ︸
electron−electron interaction

−
N∑
i=1

M∑
j=1

zj

|xi − Rj |︸ ︷︷ ︸
electron−nuclei interaction

The energy of a state characterized by its wavefunction ψ(x1, · · · xN) is given by 〈ψ|Hmol |ψ〉.

1In the atomic units i.e ~ = me = e2(4πε0)−1 = 1
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Schrödinger operator

Mean-field theory : when N,M →∞, the action of electrons and nuclei is averaged.

This leads to a Hamiltonian of one particle

H = −
1

2
∆ + Vper

One needs hours (days) of explanation to justify rigorously all these simplifications.

The fundamental state satisfies the eigenvalue equation Hψ0 = E0ψ0. Equivalently for the
excited states Hψn = Enψn.

We want to analyze the spectrum of the operator H.

The notion of spectrum is a generalization of eigenvalues of finite dimensional matrices.
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Bloch Floquet transform

The Bloch-Floquet theory allows to characterize the spectrum of H. Indeed,

σ(H) =
⋃

q∈Γ∗
σ(Hq)

where for every point (Bloch vector) of the first Brillouin zone q ∈ Γ∗, the operator Hq acts on
L2
per (Γ) with domain H2

per (Γ) and is given by

Hq :=
1

2
∆x − iq · ∇x +

1

2
|q|2 + Vper (x).

What do we gain by doing this ?

Theorem

For all q ∈ Γ∗ the operator Hq has compact resolvent. This implies that there exists a sequence
(εn(q))n∈N∗ of real non decreasing eigenvalues going to ∞ and an ONB (en,q)n∈N∗ of L2

per (Γ)
such that

∀n ∈ N∗, Hqen,q = εn(q)en,q ,

σ(Hq) =
⋃

n∈N∗
{εn(q)} .
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Band diagram and Fermi level

It follows from the Bloch Floquet theory that

σ(H) =
⋃

q∈Γ∗

⋃
n∈N∗

{εn(q)} =
⋃

n∈N∗

⋃
q∈Γ∗

{εn(q)}

The function q 7→ εn(q) is called the nth energy band of the crystal.

The distance | min
q∈Γ∗

εn+1(q)− max
q∈Γ∗

εn(q)| is called nth band gap.

Of particular importance is the gap between the valence band and the conduction band. i.e
the two closest bands to Femi level.

If the number of electrons in a unit cell of a crystal is N, then the Fermi Level EF is defined
such that

1

|Γ∗|

∫
Γ∗

∑
n∈N∗

1εn(q)≤Ef
dq = N.
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Numerical implementation

Assume for simplicity that R = 2πZ3 then R∗ = Z3, Γ = (0, 2π)3 and Γ∗ = (−1/2, 1/2)3.
Use the Fourier expansion for the periodic potential and truncate at some level C ∈ R∗+.

Vper (x) ≈
∑

k∈Z3, |k|≤C

v̂k (2π)−3/2e−ik·x where v−k = v∗k

Discretize the Brillouin zone. Γ̃∗ := {q1, q2, · · · , qL} ⊂ Γ∗.
For some cutoff Pc ∈ N∗, we consider the approximation space X whose dimension is finite
and denoted by P = dim(X ).

X := span
{
ek := (2π)−3/2e−ik·x , |k| ≤ Pc

}
For every 1 ≤ j ≤ L, discretize the hamiltonian Hqj in the space X . We obtain a hermitian

matrix H̃qj ∈ CP×P : (H̃qj
)kk =

1

2
(k + qj )2 + v̂0, (H̃qj

)kl = v̂k−l

For every qj ∈ Γ̃∗ solve the discrete eigenvalue problem H̃qj ẽn,q = εn(q)ẽn,q .
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Inverse spectral problem and its motivation

A photovoltaic cell is basically a semiconductor material. Electrons of the valence band are
excited through photons (light) and jump to the conduction band.

To control the efficiency of a solar cell, one must control some properties of its electronic
structure. For instance : the position of the gap, its length, the curvature of the bands, etc.

The crucial term in the Schrödinger operator is the potential Vper which describes how the
atoms are organized.

For given M band functions q 7→ bm(q) where 1 ≤ m ≤ M, can we find a (or the) periodic

potential W such that the M first bands of the operator −
1

2
∆ + Wper coincide with our

target bands q 7→ bm(q) ?

Our final aim is to predict new types of interesting materials.
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Inverse spectral problem

We introduce the following cost functional

J (Wper ) =
∑

1≤m≤M

1

|Γ∗|

∫
Γ∗

|εm(q,Wper )− bm(q)|2dq

We seek for the potential W that minimizes this cost. i.e solve the optimization problem

W ∗ ∈ argmin
Wper∈L2

per (Γ)

J (Wper ) (1)

Proposition (ongoing work for M ≥ 2, d ≥ 1)

If M = 1 and d = 1 (one dimensional crystal) then the problem (1) has a minimizer in Mb(Γ)
(the space of bounded measures).
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Numerical results

Non convex optimization → existence of numerous local minima → some local minima are
-physically- interesting though.

The gradient at each step depends on the solution of the direct problem and is time
consuming.

∀r ∈ Z3
, |r| ≤ C, ∂ŵr

J (Wper ) = 2
M∑

m=1

∑
q∈Γ∗

∑
|j|≤P

∑
|s|≤j

êq,m,s êq,m,j−s

1
√

2π
δr,2s−j

(
εm(q,Wpe ) − bm(q)

)

Speed of convergence depends on the computation of the gradient. One needs to choose
carefully P and C (ongoing work).

A.Bakhta (CERMICS-ENPC) Electrons in a crystal (periodic Schrödinger) INRIA, Apr 2016 17 / 18



”Prediction is very difficult, especially if it’s about the future.” Niels Bohr.

Thank you for your attention.
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