
Adding some memory in stochastic algorihms

Pierre Monmarché

post-doc fellow at CERMICS

INRIA’s Junior Seminar

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 1 / 13

High dimensional problems

Example: proteim folding, big data,
path finding. . .

Ω configuration space

x ∈ Ω microscopic configuration

V (x) : energy of x

Two typical questions:

Optimization: find x0 such that V (x0) = min
Ω
V .

Computing macroscopic quantities

E (f(X)) =

∫
Ω f(x)e−βV (x)dx∫

Ω e
−βV (x)dx

when X is random with Gibbs law at inverse temperature β.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 2 / 13

High dimensional problems

Example: proteim folding, big data,
path finding. . .

Ω configuration space

x ∈ Ω microscopic configuration

V (x) : energy of x

Two typical questions:

Optimization: find x0 such that V (x0) = min
Ω
V .

Computing macroscopic quantities

E (f(X)) =

∫
Ω f(x)e−βV (x)dx∫

Ω e
−βV (x)dx

when X is random with Gibbs law at inverse temperature β.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 2 / 13

High dimensional problems

Example: proteim folding, big data,
path finding. . .

Ω configuration space

x ∈ Ω microscopic configuration

V (x) : energy of x

Two typical questions:

Optimization: find x0 such that V (x0) = min
Ω
V .

Computing macroscopic quantities

E (f(X)) =

∫
Ω f(x)e−βV (x)dx∫

Ω e
−βV (x)dx

when X is random with Gibbs law at inverse temperature β.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 2 / 13

Deterministic algorithms

Exhaustiveness: discretization (if necessary; Ω may already be discrete)

Ω ' {1, . . .m}d

where d = dimΩ and m = size of the mesh.

Then∫
Ω f(x)e−βV (x)dx∫

Ω e
−βV (x)dx

'
∑

Ω f(xi)e
−βV (xi)∑

Ω e
−βV (xi)

,

and minimization by exhaustiveness.

d = 3× 100 amino acid in a protein, m = 10 ⇒ Crazy.

30! ' 1032 different paths to connect 30 nodes ⇒ Crazy.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 3 / 13

Deterministic algorithms

Exhaustiveness: discretization (if necessary; Ω may already be discrete)

Ω ' {1, . . .m}d

where d = dimΩ and m = size of the mesh. Then∫
Ω f(x)e−βV (x)dx∫

Ω e
−βV (x)dx

'
∑

Ω f(xi)e
−βV (xi)∑

Ω e
−βV (xi)

,

and minimization by exhaustiveness.

d = 3× 100 amino acid in a protein, m = 10 ⇒ Crazy.

30! ' 1032 different paths to connect 30 nodes ⇒ Crazy.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 3 / 13

Deterministic algorithms

Exhaustiveness: discretization (if necessary; Ω may already be discrete)

Ω ' {1, . . .m}d

where d = dimΩ and m = size of the mesh. Then∫
Ω f(x)e−βV (x)dx∫

Ω e
−βV (x)dx

'
∑

Ω f(xi)e
−βV (xi)∑

Ω e
−βV (xi)

,

and minimization by exhaustiveness.

d = 3× 100 amino acid in a protein, m = 10 ⇒ Crazy.

30! ' 1032 different paths to connect 30 nodes ⇒ Crazy.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 3 / 13

Deterministic algorithms

Gradient descent: Start from x0 ∈ Ω, then

x′(t) = −∇V (x(t)) .

Problem: multi-modality.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 4 / 13

Deterministic algorithms

Gradient descent: Start from x0 ∈ Ω, then

x′(t) = −∇V (x(t)) .

Problem: multi-modality.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 4 / 13

Stochastic algorithms

Start from x0 ∈ Ω and B a Brownian motion, then

x′(t) = −∇V (x(t)) +
√

2β−1dBt.

For large times t, Law (x(t)) ' e−βV . The process is ergodic:

1

t

∫ t

s=0
f (x(s)) ds −→

t→∞

∫
Ω f(y)e−βV (y)dy∫

Ω e
−βV (y)dy

.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 5 / 13

Stochastic algorithms

Start from x0 ∈ Ω and B a Brownian motion, then

x′(t) = −∇V (x(t)) +
√

2β−1dBt.

For large times t, Law (x(t)) ' e−βV . The process is ergodic:

1

t

∫ t

s=0
f (x(s)) ds −→

t→∞

∫
Ω f(y)e−βV (y)dy∫

Ω e
−βV (y)dy

.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 5 / 13

Markov Chain Monte Carlo (MCM) algorithms

Markov process/chain = no memory:

x′(t) = −∇V (x(t)) +
√

2β−1dBt,

or, with a standard Gaussian variable G and a stepsize δ,

Xn+1 = Xn − δ∇V (Xn) +
√

2δβ−1G.

The past, (Xk)k<n, is not needed (= is not used).

Same for
Metropolis-Hastings, etc.

Amnesic exploration of Ω :

Inefficient !

(metastability)

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 6 / 13

Markov Chain Monte Carlo (MCM) algorithms

Markov process/chain = no memory:

x′(t) = −∇V (x(t)) +
√

2β−1dBt,

or, with a standard Gaussian variable G and a stepsize δ,

Xn+1 = Xn − δ∇V (Xn) +
√

2δβ−1G.

The past, (Xk)k<n, is not needed (= is not used). Same for
Metropolis-Hastings, etc.

Amnesic exploration of Ω :

Inefficient !

(metastability)

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 6 / 13

Markov Chain Monte Carlo (MCM) algorithms

Markov process/chain = no memory:

x′(t) = −∇V (x(t)) +
√

2β−1dBt,

or, with a standard Gaussian variable G and a stepsize δ,

Xn+1 = Xn − δ∇V (Xn) +
√

2δβ−1G.

The past, (Xk)k<n, is not needed (= is not used). Same for
Metropolis-Hastings, etc.

Amnesic exploration of Ω :

Inefficient !

(metastability)

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 6 / 13

Instantaneous memory

Consider the velocity y(t) = x′(t). Add some inertia.

Jump processes: y is piecewise
constant, with random jumps
(depending on the potential landscape)

Newton’s law of motion:

my′(t) = −∇V (x(t))− νy(t) +
√

2β−1dBt

(m = mass, ν = friction coefficient)

So that in either case, again,

1

t

∫ t

s=0
f (x(s)) ds −→

t→∞

1∫
Ω e
−βV (y)dy

∫
Ω
f(y)e−βV (y)dy.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 7 / 13

Instantaneous memory

Consider the velocity y(t) = x′(t). Add some inertia.

Jump processes: y is piecewise
constant, with random jumps
(depending on the potential landscape)

Newton’s law of motion:

my′(t) = −∇V (x(t))− νy(t) +
√

2β−1dBt

(m = mass, ν = friction coefficient)

So that in either case, again,

1

t

∫ t

s=0
f (x(s)) ds −→

t→∞

1∫
Ω e
−βV (y)dy

∫
Ω
f(y)e−βV (y)dy.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 7 / 13

Instantaneous memory

Consider the velocity y(t) = x′(t). Add some inertia.

Jump processes: y is piecewise
constant, with random jumps
(depending on the potential landscape)

Newton’s law of motion:

my′(t) = −∇V (x(t))− νy(t) +
√

2β−1dBt

(m = mass, ν = friction coefficient)

So that in either case, again,

1

t

∫ t

s=0
f (x(s)) ds −→

t→∞

1∫
Ω e
−βV (y)dy

∫
Ω
f(y)e−βV (y)dy.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 7 / 13

Instantaneous memory

Consider the velocity y(t) = x′(t). Add some inertia.

Jump processes: y is piecewise
constant, with random jumps
(depending on the potential landscape)

Newton’s law of motion:

my′(t) = −∇V (x(t))− νy(t) +
√

2β−1dBt

(m = mass, ν = friction coefficient)

So that in either case, again,

1

t

∫ t

s=0
f (x(s)) ds −→

t→∞

1∫
Ω e
−βV (y)dy

∫
Ω
f(y)e−βV (y)dy.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 7 / 13

Degenerated Markov process
Example of the Langevin dynamics:

x′(t) = y(t)

y′(t) = −∇V (x(t))− y(t) +
√

2β−1dBt.

Then Law (x(t), y(t)) = ρt(u, v)dudv solves

∂tρt + v∇uρt = ∇v · ((V (u) + v)ρ) +
1

β
∆vρ

”Degenerated” (linear) PDE : hypoelliptic, hypocoercive. Still,

ρt(u, v) −→
t→∞

e−V (u)− 1
2
|v|2 , but theory more difficult than

x′(t) = −∇V (x(t)) +
√

2β−1dBt

(overdamped Langevin) for which ρt(u) solves

∂tρt = ∇u · (V (u)ρ) +
1

β
∆uρ.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 8 / 13

Degenerated Markov process
Example of the Langevin dynamics:

x′(t) = y(t)

y′(t) = −∇V (x(t))− y(t) +
√

2β−1dBt.

Then Law (x(t), y(t)) = ρt(u, v)dudv solves

∂tρt + v∇uρt = ∇v · ((V (u) + v)ρ) +
1

β
∆vρ

”Degenerated” (linear) PDE : hypoelliptic, hypocoercive. Still,

ρt(u, v) −→
t→∞

e−V (u)− 1
2
|v|2 , but theory more difficult than

x′(t) = −∇V (x(t)) +
√

2β−1dBt

(overdamped Langevin) for which ρt(u) solves

∂tρt = ∇u · (V (u)ρ) +
1

β
∆uρ.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 8 / 13

Degenerated Markov process
Example of the Langevin dynamics:

x′(t) = y(t)

y′(t) = −∇V (x(t))− y(t) +
√

2β−1dBt.

Then Law (x(t), y(t)) = ρt(u, v)dudv solves

∂tρt + v∇uρt = ∇v · ((V (u) + v)ρ) +
1

β
∆vρ

”Degenerated” (linear) PDE : hypoelliptic, hypocoercive. Still,

ρt(u, v) −→
t→∞

e−V (u)− 1
2
|v|2

, but theory more difficult than

x′(t) = −∇V (x(t)) +
√

2β−1dBt

(overdamped Langevin) for which ρt(u) solves

∂tρt = ∇u · (V (u)ρ) +
1

β
∆uρ.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 8 / 13

Degenerated Markov process
Example of the Langevin dynamics:

x′(t) = y(t)

y′(t) = −∇V (x(t))− y(t) +
√

2β−1dBt.

Then Law (x(t), y(t)) = ρt(u, v)dudv solves

∂tρt + v∇uρt = ∇v · ((V (u) + v)ρ) +
1

β
∆vρ

”Degenerated” (linear) PDE : hypoelliptic, hypocoercive. Still,

ρt(u, v) −→
t→∞

e−V (u)− 1
2
|v|2 , but theory more difficult than

x′(t) = −∇V (x(t)) +
√

2β−1dBt

(overdamped Langevin) for which ρt(u) solves

∂tρt = ∇u · (V (u)ρ) +
1

β
∆uρ.

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 8 / 13

Adaptative Biasing Force (ABF) method

Microscopic configuration: x = (x1, . . . , xd) ∈ Ω = (T)d

Reaction coordinates: (x1, x2)

Free energy: A(x1, x2) = 1
β ln

∫
e−βV (x)dx3 . . . dxd

If X random with law e−βV , then (X1, X2) with law e−βA.

Biased overdamped Langevin: sample e−β(V−A) with

x′(t) = −∇V (x(t))−∇A (x1(t), x2(t)) +
√

2β−1dBt.

If X random with law e−β(V−A), then
(X1, X2) is uniform on T2

:

the metastability/multimodality
disappeared !

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 9 / 13

Adaptative Biasing Force (ABF) method

Microscopic configuration: x = (x1, . . . , xd) ∈ Ω = (T)d

Reaction coordinates: (x1, x2)

Free energy: A(x1, x2) = 1
β ln

∫
e−βV (x)dx3 . . . dxd

If X random with law e−βV , then (X1, X2) with law e−βA.

Biased overdamped Langevin: sample e−β(V−A) with

x′(t) = −∇V (x(t))−∇A (x1(t), x2(t)) +
√

2β−1dBt.

If X random with law e−β(V−A), then
(X1, X2) is uniform on T2

:

the metastability/multimodality
disappeared !

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 9 / 13

Adaptative Biasing Force (ABF) method

Microscopic configuration: x = (x1, . . . , xd) ∈ Ω = (T)d

Reaction coordinates: (x1, x2)

Free energy: A(x1, x2) = 1
β ln

∫
e−βV (x)dx3 . . . dxd

If X random with law e−βV , then (X1, X2) with law e−βA.

Biased overdamped Langevin: sample e−β(V−A) with

x′(t) = −∇V (x(t))−∇A (x1(t), x2(t)) +
√

2β−1dBt.

If X random with law e−β(V−A), then
(X1, X2) is uniform on T2 :

the metastability/multimodality
disappeared !

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 9 / 13

Adaptative Biasing Force (ABF) method

Un-biasing:∫
Ω fe

−βV∫
Ω e
−βV =

∫
Ω

(
fe−βA

)
e−β(V−A)∫

Ω (e−βA) e−β(V−A)

= lim
t→∞

∫ t
0 f (X(s)) e−βA(X1(s),X2(s))ds∫ t

0 e
−βA(X1(s),X2(s))ds

with a biased X.

Benefit: the biased X converges faster to its equilibrium

Drawback: . . . A is unknown (precisely our aim in some cases)

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 10 / 13

Adaptative Biasing Force (ABF) method

Un-biasing:∫
Ω fe

−βV∫
Ω e
−βV =

∫
Ω

(
fe−βA

)
e−β(V−A)∫

Ω (e−βA) e−β(V−A)

= lim
t→∞

∫ t
0 f (X(s)) e−βA(X1(s),X2(s))ds∫ t

0 e
−βA(X1(s),X2(s))ds

with a biased X.

Benefit: the biased X converges faster to its equilibrium

Drawback: . . . A is unknown (precisely our aim in some cases)

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 10 / 13

Adaptative Biasing Force (ABF) method

Un-biasing:∫
Ω fe

−βV∫
Ω e
−βV =

∫
Ω

(
fe−βA

)
e−β(V−A)∫

Ω (e−βA) e−β(V−A)

= lim
t→∞

∫ t
0 f (X(s)) e−βA(X1(s),X2(s))ds∫ t

0 e
−βA(X1(s),X2(s))ds

with a biased X.

Benefit: the biased X converges faster to its equilibrium

Drawback: . . . A is unknown (precisely our aim in some cases)

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 10 / 13

Low dimensional, long-term memory

Solution: learn the bias ∇A on the fly, with:

∇A(x1, x2) =

∫
∇V (x)e−βV (x)dx3 . . . dxd∫

e−βV (x)dx3 . . . dxd

'
∑t

s=1∇V (X(s)) 1(X1(s),X2(s))=(x1,x2)∑t
s=1 1(X1(s),X2(s))=(x1,x2)

We keep a long-term memory: for all (x1, x2) ∈ {0, 1
m ,

2
m , . . . , 1}

2,

t∑
s=1

1(X1(s),X2(s))=(x1,x2) =]{transit through cell (x1, x2)}

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 11 / 13

Low dimensional, long-term memory

Solution: learn the bias ∇A on the fly, with:

∇A(x1, x2) =

∫
∇V (x)e−βV (x)dx3 . . . dxd∫

e−βV (x)dx3 . . . dxd

'
∑t

s=1∇V (X(s)) 1(X1(s),X2(s))=(x1,x2)∑t
s=1 1(X1(s),X2(s))=(x1,x2)

We keep a long-term memory: for all (x1, x2) ∈ {0, 1
m ,

2
m , . . . , 1}

2,

t∑
s=1

1(X1(s),X2(s))=(x1,x2) =]{transit through cell (x1, x2)}

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 11 / 13

Low dimensional, long-term memory

Solution: learn the bias ∇A on the fly, with:

∇A(x1, x2) =

∫
∇V (x)e−βV (x)dx3 . . . dxd∫

e−βV (x)dx3 . . . dxd

'
∑t

s=1∇V (X(s)) 1(X1(s),X2(s))=(x1,x2)∑t
s=1 1(X1(s),X2(s))=(x1,x2)

We keep a long-term memory: for all (x1, x2) ∈ {0, 1
m ,

2
m , . . . , 1}

2,

t∑
s=1

1(X1(s),X2(s))=(x1,x2) =]{transit through cell (x1, x2)}

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 11 / 13

My current job

More reaction coordinates: (x1, . . . , xk). Memory of size mk: not good.

The idea: A is a function of k variables. It can be approached (known
greedy algorithms) by a sum of tensor products of functions of 1 variable:

A(x1, . . . , xk) ' r1,1(x1)r1,2(x2) . . . r1,k(xk) + . . .

+ rn,1(x1)rn,2(x2) . . . rn,k(xk)

Example:

G(x, y) = x2 cos(y) + y2 cos(x)

' r1(x)r2(y)

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 12 / 13

My current job

More reaction coordinates: (x1, . . . , xk). Memory of size mk: not good.

The idea: A is a function of k variables. It can be approached (known
greedy algorithms) by a sum of tensor products of functions of 1 variable:

A(x1, . . . , xk) ' r1,1(x1)r1,2(x2) . . . r1,k(xk) + . . .

+ rn,1(x1)rn,2(x2) . . . rn,k(xk)

Example:

G(x, y) = x2 cos(y) + y2 cos(x)

' r1(x)r2(y)

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 12 / 13

My current job

More reaction coordinates: (x1, . . . , xk). Memory of size mk: not good.

The idea: A is a function of k variables. It can be approached (known
greedy algorithms) by a sum of tensor products of functions of 1 variable:

A(x1, . . . , xk) ' r1,1(x1)r1,2(x2) . . . r1,k(xk) + . . .

+ rn,1(x1)rn,2(x2) . . . rn,k(xk)

Example:

G(x, y) = x2 cos(y) + y2 cos(x)

' r1(x)r2(y)

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 12 / 13

My current job

After tensorization, memory of size m× k × n with

m = size of the mesh

k = number of reaction coordinates

n = number of tensor products (not necessarily fixed)

New difficulty:

How should the bias be updated ? A tensor product is not ”local”. . .

Propspects:

Stastitics on the reaction coordinates (which one are really useful ? Does
it depend on the region of Ω ? Which one are correlated ?)

Thank you for your attention !

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 13 / 13

My current job

After tensorization, memory of size m× k × n with

m = size of the mesh

k = number of reaction coordinates

n = number of tensor products (not necessarily fixed)

New difficulty:

How should the bias be updated ? A tensor product is not ”local”. . .

Propspects:

Stastitics on the reaction coordinates (which one are really useful ? Does
it depend on the region of Ω ? Which one are correlated ?)

Thank you for your attention !

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 13 / 13

My current job

After tensorization, memory of size m× k × n with

m = size of the mesh

k = number of reaction coordinates

n = number of tensor products (not necessarily fixed)

New difficulty:

How should the bias be updated ? A tensor product is not ”local”. . .

Propspects:

Stastitics on the reaction coordinates (which one are really useful ? Does
it depend on the region of Ω ? Which one are correlated ?)

Thank you for your attention !

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 13 / 13

My current job

After tensorization, memory of size m× k × n with

m = size of the mesh

k = number of reaction coordinates

n = number of tensor products (not necessarily fixed)

New difficulty:

How should the bias be updated ? A tensor product is not ”local”. . .

Propspects:

Stastitics on the reaction coordinates (which one are really useful ? Does
it depend on the region of Ω ? Which one are correlated ?)

Thank you for your attention !

Pierre Monmarché (post-doc fellow at CERMICS)Adding some memory in stochastic algorihms 15/11/2016 13 / 13

