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High dimensional problems

Example: proteim folding, big data,
path finding. ..

e () configuration space

@ x € ) microscopic configuration

o V(x) : energy of v Natwve Strucure
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High dimensional problems

Example: proteim folding, big data,
path finding. ..
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o V(x) : energy of

Native Structure

Two typical questions:

e Optimization: find xo such that V(z¢) = mg%nV.

Pierre Monmarché (post-doc fellow at CERMAdding some memory in stochastic algorihms 15/11/2016 2/13



High dimensional problems

Example: proteim folding, big data, §3&)
path finding. . . S
e () configuration space [
@ x € ) microscopic configuration évfg
o V(x) : energy of ™7 Natv Sicure
Two typical questions:
e Optimization: find xo such that V(z¢) = mg%nV.
@ Computing macroscopic quantities
e BV (@) dy
B = B

when X is random with Gibbs law at inverse temperature
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Deterministic algorithms

Exhaustiveness: discretization (if necessary; {2 may already be discrete)
Q~ {1,...m}¢

where d = dimf) and m = size of the mesh.
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Deterministic algorithms

Exhaustiveness: discretization (if necessary; {2 may already be discrete)
Q~ {1,...m}¢
where d = dimf) and m = size of the mesh. Then

Jo f(2) e AV(@)d o 2allxie —AV (@)
I e—BV(w)d = e V)

and minimization by exhaustiveness.

Pierre Monmarché (post-doc fellow at CERMAdding some memory in stochastic algorihms 15/11/2016 3/13



Deterministic algorithms

Exhaustiveness: discretization (if necessary; {2 may already be discrete)

Q ~ {1,...m}*
where d = dimf2 and m = size of the mesh. Then

Jo f(2) e AV(@)d o 2allxie —AV (@)
I e—BV(w)d = e V)

and minimization by exhaustiveness.

@ d =3 x 100 amino acid in a protein, m = 10 = Crazy.
@ 30! ~ 1032 different paths to connect 30 nodes = Crazy.

Pierre Monmarché (post-doc fellow at CERMAdding some memory in stochastic algorihms 15/11/2016

3/13



Deterministic algorithms

Gradient descent: Start from zg € €2, then

2(t) = —VV (z(t)).
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Deterministic algorithms

Gradient descent: Start from zg € €2, then

Z(t) = —VV (z(t)).

Problem: multi-modality.
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Stochastic algorithms

Start from zg € Q and B a Brownian motion, then

2'(t) = —VV (2(t)) +/2871dB;.
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Markov Chain Monte Carlo (MCM) algorithms
Markov process/chain = no memory:

P'(t) = —VV (z(t)) + /287 1dBy,

or, with a standard Gaussian variable G and a stepsize 6,

Xps1 = Xn —0VV (X)) +/20371G.

The past, (Xk)k<n, is not needed (= is not used).
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Markov Chain Monte Carlo (MCM) algorithms
Markov process/chain = no memory:

P'(t) = —VV (z(t)) + /287 1dBy,

or, with a standard Gaussian variable G and a stepsize 6,

Xps1 = Xn —0VV (X)) +/20371G.

The past, (Xj)k<n, is not needed (= is not used). Same for
Metropolis-Hastings, etc.
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Markov Chain Monte Carlo (MCM) algorithms
Markov process/chain = no memory:

P'(t) = —VV (z(t)) + /287 1dBy,

or, with a standard Gaussian variable G and a stepsize 6,
Xnt1 = X —0VV(X,) + V20871G.

The past, (Xj)k<n, is not needed (= is not used). Same for
Metropolis-Hastings, etc.

Amnesic exploration of €2 : &—

Inefficient ! - 4

(metastability)
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Instantaneous memory

Consider the velocity y(t)

o
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Instantaneous memory

Consider the velocity y(t) = 2/(t). Add some inertia.

U = cst

@ Jump processes: y is piecewise
constant, with random jumps
(depending on the potential landscape)
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Instantaneous memory

Consider the velocity y(t) = /(t). Add some inertia.

U = cst

@ Jump processes: y is piecewise
constant, with random jumps
(depending on the potential landscape)

@ Newton's law of motion:

my'(t) = —VV (z(t))—vy(t) +/28-1dB;

(m = mass, v = friction coefficient)
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Instantaneous memory

Consider the velocity y(t) = /(t). Add some inertia.

U = cst

@ Jump processes: y is piecewise
constant, with random jumps
(depending on the potential landscape)

@ Newton's law of motion:

my'(t) = —VV (z(t))—vy(t) +/28-1dB;

(m = mass, v = friction coefficient)

So that in either case, again,

/ Falshds =2 T =svingy R
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Degenerated Markov process

Example of the Langevin dynamics:
a'(t) = y(t)
y'(t) =

—VV (2(t)) — y(t) + /28 1dB,.
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Degenerated Markov process
Example of the Langevin dynamics:

2'(t) = y(t)
y'(t) = —VV(z(t) —yt) + V287 dB:.
Then Law (z(t),y(t)) = pt(u,v)dudv solves
1

Oipt +vVupr = V- ((V(u)+v)p) + 3

Ayp

Pierre Monmarché (post-doc fellow at CERMAdding some memory in stochastic algorihms 15/11/2016

8/13



Degenerated Markov process
Example of the Langevin dynamics:

2'(t) = y(t)
() = —VV(a(t) - y(t) + 2B 1dB,.
Then Law (z(t),y(t)) = pt(u,v)dudv solves
1
s

"Degenerated” (linear) PDE : hypoelliptic, hypocoercive. Still,
il 0) — e VOIS
t—o0

Opt +vVupe = V- ((V(u)+v)p)+ =Ayp
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Degenerated Markov process
Example of the Langevin dynamics:

2'(t) = y(t)

y'(t) = —VV(xf ) + V267 1dB,.
Then Law (xz(t),y(t)) = pt(u,v)dudv solves

1
Opr +vVupr = V- ((V(u)+v)p)+ EAUp

"Degenerated” (linear) PDE : hypoelliptic, hypocoercive. Still,
pe(u,v) o e~V =3ll® byt theory more difficult than
—00

() = —-VV(x(t)) ++/26-1dB;

(overdamped Langevin) for which pt(u) solves

1
dpe = Vu-(V(up)+ BAuP-
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Adaptative Biasing Force (ABF) method

e Microscopic configuration: x = (z1,...,zq) € Q = (T)*
@ Reaction coordinates: (x1,x2)
o Free energy: A(xy,79) = %lnfe_ﬁv(z)dxg ...dxzyg

If X random with law eV then (X1, X3) with law e=74.
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Adaptative Biasing Force (ABF) method

@ Microscopic configuration: = = (z1,...,24) € Q = (’]I‘)d
@ Reaction coordinates: (x1,x2)

o Free energy: A(xy,79) = %lnfe_ﬁv(’”)dxg...dxd

If X random with law eV then (X1, X3) with law e=74.

Biased overdamped Langevin: sample e #(V=4) with
2'(t) = =VV (z(t)) — VA (z1(t) )+ V287 1dB;.

If X random with law ¢ #(V=4) then
(X1, X3) is uniform on T?
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Adaptative Biasing Force (ABF) method

@ Microscopic configuration: = = (z1,...,24) € Q = (’]I‘)d
@ Reaction coordinates: (x1,x2)

o Free energy: A(xy,79) = %lnfe_ﬁv(’”)dxg...dxd

If X random with law eV then (X1, X3) with law e=74.

Biased overdamped Langevin: sample e #(V—4) with
2'(t) = =VV (z(t)) — VA (z1(t) )+ /287 1dB;.

If X random with law ¢ #(V=4) then
(X1, X3) is uniform on T? :

the metastability/multimodality }
disappeared !
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Adaptative Biasing Force (ABF) method

Un-biasing:
P Y
JoeV (e e~ AV=A)
B fo ) e PAXI(5), X2 (5)) g 5
t—>oo f e—ﬁA(Xl(S) X2(s))ds

with a biased X.
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Adaptative Biasing Force (ABF) method

Un-biasing:
Jo fe a (fe—BA) —B(V—4)
JoeV (e e~ AV=A)
B fo ) e PAXI(5), X2 (5)) g 5
t—)oo f e—ﬁA(X1(S) Xa(s))d g

with a biased X.

@ Benefit: the biased X converges faster to its equilibrium
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Adaptative Biasing Force (ABF) method

Un-biasing:
fQ fe—BV B f (fe—BA) —B(V-A)
JoeV (e e~ AV=A)
B fo ) e PAXI(5), X2 (5)) g 5
t—>oo f e—ﬂA(X1(S) Xa(s))ds

with a biased X.

@ Benefit: the biased X converges faster to its equilibrium

e Drawback: ... A is unknown (precisely our aim in some cases)
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Low dimensional, long-term memory

Solution: learn the bias VA on the fly, with:

i VV(x)e PV @ des ... dzg
VA =
(w1, 22) e AV@dzs .. dag

Pierre Monmarché (post-doc fellow at CERMAdding some memory in stochastic algorihms 15/11/2016 11 /13



Low dimensional, long-term memory

Solution: learn the bias VA on the fly, with:
[VV(2)e BV @das .. . day
e PV@dzs ... dug
> et VV (X (8)) L0y (). Xa () =(r.0)
et 1(X1(5), Xa () =(e1,22)

VA(xy,x9) =

Pierre Monmarché (post-doc fellow at CERMAdding some memory in stochastic algorihms 15/11/2016

11 /13



Low dimensional, long-term memory

Solution: learn the bias VA on the fly, with:

i VV(x)e PV @ des ... dzg
VA =
(w1, 22) e AV@dzs .. dag

Y1 VV(X(5)) Lx, (), Xa () =(e1.02)
et (X1 (8) X () =(e1.22)

We keep a long-term memory: for all (z1,z2) € {0, 2, 2 ... 1}2,

t
Z 1(X1(s),X2(s)):(:t1,xg) = ﬁ{transit through cell (Z’l,xg)}

s=1
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My current job

More reaction coordinates: (x1, .

,x1). Memory of size m*:

not good.

o
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My current job

More reaction coordinates: (z1,...,x;). Memory of size m*: not good.

The idea: A is a function of k variables. It can be approached (known
greedy algorithms) by a sum of tensor products of functions of 1 variable:

A(z1,. .o zp) ~ ra(e)rie(ze) .. .rioe(ze) + .o

+ rp1(z1)rn2(xe) . ok (Tr)
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My current job

More reaction coordinates: (z1,...,x;). Memory of size m*: not good.

The idea: A is a function of k variables. It can be approached (known
greedy algorithms) by a sum of tensor products of functions of 1 variable:

Az, .. zp) ~ rioa(ey)rig(ee) .. oroe(ee) +

+ rp1(z1)rn2(xe) . ok (Tr)

Example:

G(z,y)

22 cos(y) + 32 cos(z)
ri(z)r2(y)

1R
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My current job

After tensorization, memory of size m x k x n with
@ m = size of the mesh
@ k = number of reaction coordinates

@ n = number of tensor products (not necessarily fixed)
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My current job

After tensorization, memory of size m x k x n with
@ m = size of the mesh
@ k = number of reaction coordinates

@ n = number of tensor products (not necessarily fixed)

New difficulty:

How should the bias be updated ? A tensor product is not "local”. ..
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My current job

After tensorization, memory of size m x k x n with
@ m = size of the mesh
@ k = number of reaction coordinates

@ n = number of tensor products (not necessarily fixed)

New difficulty:

How should the bias be updated ? A tensor product is not "local”. ..

Propspects:

Stastitics on the reaction coordinates (which one are really useful ? Does
it depend on the region of € 7 Which one are correlated ?7)
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My current job

After tensorization, memory of size m x k x n with
@ m = size of the mesh
@ k = number of reaction coordinates

@ n = number of tensor products (not necessarily fixed)

New difficulty:

How should the bias be updated ? A tensor product is not "local”. ..

Propspects:

Stastitics on the reaction coordinates (which one are really useful ? Does
it depend on the region of € 7 Which one are correlated ?7)

Thank you for your attention !
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