Adding some memory in stochastic algorihms

Pierre Monmarché
post-doc fellow at CERMICS

INRIA's Junior Seminar

High dimensional problems

Example: proteim folding, big data, path finding...

- Ω configuration space
- $x \in \Omega$ microscopic configuration
- $V(x)$: energy of x

High dimensional problems

Example: proteim folding, big data, path finding...

- Ω configuration space
- $x \in \Omega$ microscopic configuration
- $V(x)$: energy of x

Two typical questions:

- Optimization: find x_{0} such that $V\left(x_{0}\right)=\min _{\Omega} V$.

High dimensional problems

Example: proteim folding, big data, path finding...

- Ω configuration space
- $x \in \Omega$ microscopic configuration
- $V(x)$: energy of x

Two typical questions:

- Optimization: find x_{0} such that $V\left(x_{0}\right)=\min _{\Omega} V$.
- Computing macroscopic quantities

$$
\mathbb{E}(f(X))=\frac{\int_{\Omega} f(x) e^{-\beta V(x)} \mathrm{d} x}{\int_{\Omega} e^{-\beta V(x)} \mathrm{d} x}
$$

when X is random with Gibbs law at inverse temperature β.

Deterministic algorithms

Exhaustiveness: discretization (if necessary; Ω may already be discrete)

$$
\Omega \simeq\{1, \ldots m\}^{d}
$$

where $d=\operatorname{dim} \Omega$ and $m=$ size of the mesh.

Deterministic algorithms

Exhaustiveness: discretization (if necessary; Ω may already be discrete)

$$
\Omega \simeq\{1, \ldots m\}^{d}
$$

where $d=\operatorname{dim} \Omega$ and $m=$ size of the mesh. Then

$$
\frac{\int_{\Omega} f(x) e^{-\beta V(x)} \mathrm{d} x}{\int_{\Omega} e^{-\beta V(x)} \mathrm{d} x} \simeq \frac{\sum_{\Omega} f\left(x_{i}\right) e^{-\beta V\left(x_{i}\right)}}{\sum_{\Omega} e^{-\beta V\left(x_{i}\right)}}
$$

and minimization by exhaustiveness.

Deterministic algorithms

Exhaustiveness: discretization (if necessary; Ω may already be discrete)

$$
\Omega \simeq\{1, \ldots m\}^{d}
$$

where $d=\operatorname{dim} \Omega$ and $m=$ size of the mesh. Then

$$
\frac{\int_{\Omega} f(x) e^{-\beta V(x)} \mathrm{d} x}{\int_{\Omega} e^{-\beta V(x)} \mathrm{d} x} \simeq \frac{\sum_{\Omega} f\left(x_{i}\right) e^{-\beta V\left(x_{i}\right)}}{\sum_{\Omega} e^{-\beta V\left(x_{i}\right)}}
$$

and minimization by exhaustiveness.

- $d=3 \times 100$ amino acid in a protein, $m=10 \Rightarrow$ Crazy.
- $30!\simeq 10^{32}$ different paths to connect 30 nodes \Rightarrow Crazy.

Deterministic algorithms

Gradient descent: Start from $x_{0} \in \Omega$, then

$$
x^{\prime}(t)=-\nabla V(x(t))
$$

Deterministic algorithms

Gradient descent: Start from $x_{0} \in \Omega$, then

$$
x^{\prime}(t)=-\nabla V(x(t))
$$

Problem: multi-modality.

Stochastic algorithms

Start from $x_{0} \in \Omega$ and B a Brownian motion, then

$$
x^{\prime}(t)=-\nabla V(x(t))+\sqrt{2 \beta^{-1}} \mathrm{~d} B_{t} .
$$

Stochastic algorithms

Start from $x_{0} \in \Omega$ and B a Brownian motion, then

$$
x^{\prime}(t)=-\nabla V(x(t))+\sqrt{2 \beta^{-1}} \mathrm{~d} B_{t} .
$$

For large times $t, L a w(x(t)) \simeq e^{-\beta V}$. The process is ergodic:

$$
\frac{1}{t} \int_{s=0}^{t} f(x(s)) \mathrm{d} s \underset{t \rightarrow \infty}{\longrightarrow} \frac{\int_{\Omega} f(y) e^{-\beta V(y)} \mathrm{d} y}{\int_{\Omega} e^{-\beta V(y)} \mathrm{d} y}
$$

Markov Chain Monte Carlo (MCM) algorithms

Markov process/chain $=$ no memory:

$$
x^{\prime}(t)=-\nabla V(x(t))+\sqrt{2 \beta^{-1}} \mathrm{~d} B_{t}
$$

or, with a standard Gaussian variable G and a stepsize δ,

$$
X_{n+1}=X_{n}-\delta \nabla V\left(X_{n}\right)+\sqrt{2 \delta \beta^{-1}} G
$$

The past, $\left(X_{k}\right)_{k<n}$, is not needed ($=$ is not used).

Markov Chain Monte Carlo (MCM) algorithms

Markov process/chain $=$ no memory:

$$
x^{\prime}(t)=-\nabla V(x(t))+\sqrt{2 \beta^{-1}} \mathrm{~d} B_{t},
$$

or, with a standard Gaussian variable G and a stepsize δ,

$$
X_{n+1}=X_{n}-\delta \nabla V\left(X_{n}\right)+\sqrt{2 \delta \beta^{-1}} G
$$

The past, $\left(X_{k}\right)_{k<n}$, is not needed ($=$ is not used). Same for Metropolis-Hastings, etc.

Markov Chain Monte Carlo (MCM) algorithms

Markov process/chain $=$ no memory:

$$
x^{\prime}(t)=-\nabla V(x(t))+\sqrt{2 \beta^{-1}} \mathrm{~d} B_{t},
$$

or, with a standard Gaussian variable G and a stepsize δ,

$$
X_{n+1}=X_{n}-\delta \nabla V\left(X_{n}\right)+\sqrt{2 \delta \beta^{-1}} G
$$

The past, $\left(X_{k}\right)_{k<n}$, is not needed ($=$ is not used). Same for Metropolis-Hastings, etc.

Amnesic exploration of Ω :
Inefficient!
(metastability)

Instantaneous memory

Consider the velocity $y(t)=x^{\prime}(t)$. Add some inertia.

Instantaneous memory

Consider the velocity $y(t)=x^{\prime}(t)$. Add some inertia.

- Jump processes: y is piecewise constant, with random jumps (depending on the potential landscape)

Instantaneous memory

Consider the velocity $y(t)=x^{\prime}(t)$. Add some inertia.

- Jump processes: y is piecewise constant, with random jumps (depending on the potential landscape)

- Newton's law of motion:

$$
\begin{aligned}
& m y^{\prime}(t)=-\nabla V(x(t))-\nu y(t)+\sqrt{2 \beta^{-1}} \mathrm{~d} B_{t} \\
& (m=\text { mass, } \nu=\text { friction coefficient })
\end{aligned}
$$

Instantaneous memory

Consider the velocity $y(t)=x^{\prime}(t)$. Add some inertia.

- Jump processes: y is piecewise constant, with random jumps (depending on the potential landscape)

- Newton's law of motion:

$$
\begin{aligned}
& m y^{\prime}(t)=-\nabla V(x(t))-\nu y(t)+\sqrt{2 \beta^{-1}} \mathrm{~d} B_{t} \\
& (m=\text { mass, } \nu=\text { friction coefficient })
\end{aligned}
$$

So that in either case, again,

$$
\frac{1}{t} \int_{s=0}^{t} f(x(s)) \mathrm{d} s \underset{t \rightarrow \infty}{\longrightarrow} \frac{1}{\int_{\Omega} e^{-\beta V(y)} \mathrm{d} y} \int_{\Omega} f(y) e^{-\beta V(y)} \mathrm{d} y
$$

Degenerated Markov process

Example of the Langevin dynamics:

$$
\begin{aligned}
x^{\prime}(t) & =y(t) \\
y^{\prime}(t) & =-\nabla V(x(t))-y(t)+\sqrt{2 \beta^{-1}} \mathrm{~d} B_{t} .
\end{aligned}
$$

Degenerated Markov process

Example of the Langevin dynamics:

$$
\begin{aligned}
x^{\prime}(t) & =y(t) \\
y^{\prime}(t) & =-\nabla V(x(t))-y(t)+\sqrt{2 \beta^{-1}} \mathrm{~d} B_{t} .
\end{aligned}
$$

Then Law $(x(t), y(t))=\rho_{t}(u, v) \mathrm{d} u \mathrm{~d} v$ solves

$$
\partial_{t} \rho_{t}+v \nabla_{u} \rho_{t}=\nabla_{v} \cdot((V(u)+v) \rho)+\frac{1}{\beta} \Delta_{v} \rho
$$

Degenerated Markov process

Example of the Langevin dynamics:

$$
\begin{aligned}
x^{\prime}(t) & =y(t) \\
y^{\prime}(t) & =-\nabla V(x(t))-y(t)+\sqrt{2 \beta^{-1}} \mathrm{~d} B_{t} .
\end{aligned}
$$

Then $\operatorname{Law}(x(t), y(t))=\rho_{t}(u, v) \mathrm{d} u \mathrm{~d} v$ solves

$$
\partial_{t} \rho_{t}+v \nabla_{u} \rho_{t}=\nabla_{v} \cdot((V(u)+v) \rho)+\frac{1}{\beta} \Delta_{v} \rho
$$

"Degenerated" (linear) PDE : hypoelliptic, hypocoercive. Still, $\rho_{t}(u, v) \underset{t \rightarrow \infty}{\longrightarrow} e^{-V(u)-\frac{1}{2}|v|^{2}}$

Degenerated Markov process

Example of the Langevin dynamics:

$$
\begin{aligned}
x^{\prime}(t) & =y(t) \\
y^{\prime}(t) & =-\nabla V(x(t))-y(t)+\sqrt{2 \beta^{-1}} \mathrm{~d} B_{t} .
\end{aligned}
$$

Then $\operatorname{Law}(x(t), y(t))=\rho_{t}(u, v) \mathrm{d} u \mathrm{~d} v$ solves

$$
\partial_{t} \rho_{t}+v \nabla_{u} \rho_{t}=\nabla_{v} \cdot((V(u)+v) \rho)+\frac{1}{\beta} \Delta_{v} \rho
$$

"Degenerated" (linear) PDE : hypoelliptic, hypocoercive. Still, $\rho_{t}(u, v) \underset{t \rightarrow \infty}{\longrightarrow} e^{-V(u)-\frac{1}{2}|v|^{2}}$, but theory more difficult than

$$
x^{\prime}(t)=-\nabla V(x(t))+\sqrt{2 \beta^{-1}} \mathrm{~d} B_{t}
$$

(overdamped Langevin) for which $\rho_{t}(u)$ solves

$$
\partial_{t} \rho_{t}=\nabla_{u} \cdot(V(u) \rho)+\frac{1}{\beta} \Delta_{u} \rho
$$

Adaptative Biasing Force (ABF) method

- Microscopic configuration: $x=\left(x_{1}, \ldots, x_{d}\right) \in \Omega=(\mathbb{T})^{d}$
- Reaction coordinates: $\left(x_{1}, x_{2}\right)$
- Free energy: $A\left(x_{1}, x_{2}\right)=\frac{1}{\beta} \ln \int e^{-\beta V(x)} \mathrm{d} x_{3} \ldots \mathrm{~d} x_{d}$ If X random with law $e^{-\beta V}$, then $\left(X_{1}, X_{2}\right)$ with law $e^{-\beta A}$.

Adaptative Biasing Force (ABF) method

- Microscopic configuration: $x=\left(x_{1}, \ldots, x_{d}\right) \in \Omega=(\mathbb{T})^{d}$
- Reaction coordinates: $\left(x_{1}, x_{2}\right)$
- Free energy: $A\left(x_{1}, x_{2}\right)=\frac{1}{\beta} \ln \int e^{-\beta V(x)} \mathrm{d} x_{3} \ldots \mathrm{~d} x_{d}$ If X random with law $e^{-\beta V}$, then $\left(X_{1}, X_{2}\right)$ with law $e^{-\beta A}$.

Biased overdamped Langevin: sample $e^{-\beta(V-A)}$ with

$$
x^{\prime}(t)=-\nabla V(x(t))-\nabla A\left(x_{1}(t), x_{2}(t)\right)+\sqrt{2 \beta^{-1}} \mathrm{~d} B_{t} .
$$

If X random with law $e^{-\beta(V-A)}$, then
$\left(X_{1}, X_{2}\right)$ is uniform on \mathbb{T}^{2}

Adaptative Biasing Force (ABF) method

- Microscopic configuration: $x=\left(x_{1}, \ldots, x_{d}\right) \in \Omega=(\mathbb{T})^{d}$
- Reaction coordinates: $\left(x_{1}, x_{2}\right)$
- Free energy: $A\left(x_{1}, x_{2}\right)=\frac{1}{\beta} \ln \int e^{-\beta V(x)} \mathrm{d} x_{3} \ldots \mathrm{~d} x_{d}$ If X random with law $e^{-\beta V}$, then $\left(X_{1}, X_{2}\right)$ with law $e^{-\beta A}$.

Biased overdamped Langevin: sample $e^{-\beta(V-A)}$ with

$$
x^{\prime}(t)=-\nabla V(x(t))-\nabla A\left(x_{1}(t), x_{2}(t)\right)+\sqrt{2 \beta^{-1}} \mathrm{~d} B_{t} .
$$

If X random with law $e^{-\beta(V-A)}$, then $\left(X_{1}, X_{2}\right)$ is uniform on \mathbb{T}^{2} :
the metastability/multimodality disappeared!

Adaptative Biasing Force (ABF) method

Un-biasing:

$$
\begin{aligned}
\frac{\int_{\Omega} f e^{-\beta V}}{\int_{\Omega} e^{-\beta V}} & =\frac{\int_{\Omega}\left(f e^{-\beta A}\right) e^{-\beta(V-A)}}{\int_{\Omega}\left(e^{-\beta A}\right) e^{-\beta(V-A)}} \\
& =\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} f(X(s)) e^{-\beta A\left(X_{1}(s), X_{2}(s)\right)} \mathrm{d} s}{\int_{0}^{t} e^{-\beta A\left(X_{1}(s), X_{2}(s)\right)} \mathrm{d} s}
\end{aligned}
$$

with a biased X.

Adaptative Biasing Force (ABF) method

Un-biasing:

$$
\begin{aligned}
\frac{\int_{\Omega} f e^{-\beta V}}{\int_{\Omega} e^{-\beta V}} & =\frac{\int_{\Omega}\left(f e^{-\beta A}\right) e^{-\beta(V-A)}}{\int_{\Omega}\left(e^{-\beta A}\right) e^{-\beta(V-A)}} \\
& =\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} f(X(s)) e^{-\beta A\left(X_{1}(s), X_{2}(s)\right)} \mathrm{d} s}{\int_{0}^{t} e^{-\beta A\left(X_{1}(s), X_{2}(s)\right)} \mathrm{d} s}
\end{aligned}
$$

with a biased X.

- Benefit: the biased X converges faster to its equilibrium

Adaptative Biasing Force (ABF) method

Un-biasing:

$$
\begin{aligned}
\frac{\int_{\Omega} f e^{-\beta V}}{\int_{\Omega} e^{-\beta V}} & =\frac{\int_{\Omega}\left(f e^{-\beta A}\right) e^{-\beta(V-A)}}{\int_{\Omega}\left(e^{-\beta A}\right) e^{-\beta(V-A)}} \\
& =\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} f(X(s)) e^{-\beta A\left(X_{1}(s), X_{2}(s)\right)} \mathrm{d} s}{\int_{0}^{t} e^{-\beta A\left(X_{1}(s), X_{2}(s)\right)} \mathrm{d} s}
\end{aligned}
$$

with a biased X.

- Benefit: the biased X converges faster to its equilibrium
- Drawback: ... A is unknown (precisely our aim in some cases)

Low dimensional, long-term memory

Solution: learn the bias ∇A on the fly, with:

$$
\nabla A\left(x_{1}, x_{2}\right)=\frac{\int \nabla V(x) e^{-\beta V(x)} \mathrm{d} x_{3} \ldots \mathrm{~d} x_{d}}{\int e^{-\beta V(x)} \mathrm{d} x_{3} \ldots \mathrm{~d} x_{d}}
$$

Low dimensional, long-term memory

Solution: learn the bias ∇A on the fly, with:

$$
\begin{aligned}
\nabla A\left(x_{1}, x_{2}\right) & =\frac{\int \nabla V(x) e^{-\beta V(x)} \mathrm{d} x_{3} \ldots \mathrm{~d} x_{d}}{\int e^{-\beta V(x)} \mathrm{d} x_{3} \ldots \mathrm{~d} x_{d}} \\
& \simeq \frac{\sum_{s=1}^{t} \nabla V(X(s)) 1_{\left(X_{1}(s), X_{2}(s)\right)=\left(x_{1}, x_{2}\right)}}{\sum_{s=1}^{t} 1_{\left(X_{1}(s), X_{2}(s)\right)=\left(x_{1}, x_{2}\right)}}
\end{aligned}
$$

Low dimensional, long-term memory

Solution: learn the bias ∇A on the fly, with:

$$
\begin{aligned}
\nabla A\left(x_{1}, x_{2}\right) & =\frac{\int \nabla V(x) e^{-\beta V(x)} \mathrm{d} x_{3} \ldots \mathrm{~d} x_{d}}{\int e^{-\beta V(x)} \mathrm{d} x_{3} \ldots \mathrm{~d} x_{d}} \\
& \simeq \frac{\sum_{s=1}^{t} \nabla V(X(s)) 1_{\left(X_{1}(s), X_{2}(s)\right)=\left(x_{1}, x_{2}\right)}}{\sum_{s=1}^{t} 1_{\left(X_{1}(s), X_{2}(s)\right)=\left(x_{1}, x_{2}\right)}}
\end{aligned}
$$

We keep a long-term memory: for all $\left(x_{1}, x_{2}\right) \in\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}^{2}$,

$$
\sum_{s=1}^{t} 1_{\left(X_{1}(s), X_{2}(s)\right)=\left(x_{1}, x_{2}\right)}=\sharp\left\{\text { transit through cell }\left(x_{1}, x_{2}\right)\right\}
$$

My current job

More reaction coordinates: $\left(x_{1}, \ldots, x_{k}\right)$. Memory of size m^{k} : not good.

My current job

More reaction coordinates: $\left(x_{1}, \ldots, x_{k}\right)$. Memory of size m^{k} : not good.
The idea: A is a function of k variables. It can be approached (known greedy algorithms) by a sum of tensor products of functions of 1 variable:

$$
\begin{aligned}
A\left(x_{1}, \ldots, x_{k}\right) \simeq & r_{1,1}\left(x_{1}\right) r_{1,2}\left(x_{2}\right) \ldots r_{1, k}\left(x_{k}\right)+\ldots \\
& +r_{n, 1}\left(x_{1}\right) r_{n, 2}\left(x_{2}\right) \ldots r_{n, k}\left(x_{k}\right)
\end{aligned}
$$

My current job

More reaction coordinates: $\left(x_{1}, \ldots, x_{k}\right)$. Memory of size m^{k} : not good.
The idea: A is a function of k variables. It can be approached (known greedy algorithms) by a sum of tensor products of functions of 1 variable:

$$
\begin{aligned}
A\left(x_{1}, \ldots, x_{k}\right) \simeq & r_{1,1}\left(x_{1}\right) r_{1,2}\left(x_{2}\right) \ldots r_{1, k}\left(x_{k}\right)+\ldots \\
& +r_{n, 1}\left(x_{1}\right) r_{n, 2}\left(x_{2}\right) \ldots r_{n, k}\left(x_{k}\right)
\end{aligned}
$$

Example:

$$
\begin{aligned}
G(x, y) & =x^{2} \cos (y)+y^{2} \cos (x) \\
& \simeq r_{1}(x) r_{2}(y)
\end{aligned}
$$

My current job

After tensorization, memory of size $m \times k \times n$ with

- $m=$ size of the mesh
- $k=$ number of reaction coordinates
- $n=$ number of tensor products (not necessarily fixed)

My current job

After tensorization, memory of size $m \times k \times n$ with

- $m=$ size of the mesh
- $k=$ number of reaction coordinates
- $n=$ number of tensor products (not necessarily fixed)

New difficulty:
How should the bias be updated ? A tensor product is not "local"...

My current job

After tensorization, memory of size $m \times k \times n$ with

- $m=$ size of the mesh
- $k=$ number of reaction coordinates
- $n=$ number of tensor products (not necessarily fixed)

New difficulty:
How should the bias be updated ? A tensor product is not "local"...
Propspects:
Stastitics on the reaction coordinates (which one are really useful ? Does it depend on the region of Ω ? Which one are correlated ?)

My current job

After tensorization, memory of size $m \times k \times n$ with

- $m=$ size of the mesh
- $k=$ number of reaction coordinates
- $n=$ number of tensor products (not necessarily fixed)

New difficulty:
How should the bias be updated ? A tensor product is not "local"...
Propspects:
Stastitics on the reaction coordinates (which one are really useful ? Does it depend on the region of Ω ? Which one are correlated ?)

Thank you for your attention!

