Iterative methods for solving linear systems on supercomputers

O. Tissot PhD advisor L. Grigori

INRIA-ALPINES

15 December 2016

What is a supercomputer?

Solving linear systems

Enlarged Conjugate Gradient

What is a supercomputer?

Solving linear systems

Enlarged Conjugate Gradient

Simple description

What does it look like?

(a) Taihulight (Wuxi, China)

- (b) Pangea (Pau, France)
- $\rightarrow\,$ A room full of closets with fancy lights...
- What is inside the closets?
 - $\rightarrow\,$ Many, many, many processors like the one you have in your laptop, linked through a super fast network.

Architecture

How to use a supercomputer?

- 1. Write a parallel program using Message Passing Interface (MPI)
- 2. Ask for an access to the machine
- 3. Connect to the frontal node
 - ssh username@fancyclustername
- 4. Compile your program
 - □ mpicc -o superprogram superprogram.c
- 5. Submit a job (never run it directly on the frontal node!!!)
 - □ sh submitjob.sh
- 6. Wait until your job is launched
 - □ vlc got-s06-e10.avi emacs juniorseminarslides.tex
- 7. Wait until your job is finished
 - vlc twd-s07-e08.avi open complicatedarticle.pdf
- 8. Get back the results on your local machine
 - scp username@fancyclustername:~/myresults.txt .
- 9. ... or go to 4 if your job crashed, failed, ...

Rank	Country	Cores	$R_{max \ (\text{TFlop}/s)}$	$R_{\text{peak}} ~ \text{(TFlop/s)}$	Power (kW)
1	China	10,649,600	93,014.6	125,435.9	15,371
2	China	3,120,000	33,862.7	54,902.4	17,808
3	US	560,640	17,590.0	27,112.5	8,209
4	US	1,572,864	17,173.2	20,132.7	7,890
5	US	622,336	14,014.7	27,880.7	3,939
16	France	220,800	5,283.1	6,712.3	4,150

Table: Top 5 supercomputers in the world in November 2016¹.

- Objective: an exaflop/s (10¹⁸ operations per second) machine around 2020!
- \implies more and more cores
- \implies less and less power by core

```
<sup>1</sup>https://www.top500.org/
```

7 of 25

The communication wall

- Time to move data >> time per floating-point operation (flop)
 - Gap steadily and exponentially growing over time²

	Petascale (2009)	Predicted exascale	Factor improvement
System Peak	2.10 ¹⁵ flops	10 ¹⁸ flops	~ 1000
Memory Bandwith	25 GB/s	0.4-4 TB/s	\sim 10-100
Interconnect Bandwith	3.5 GB/s	100-400 GB/s	~ 100
Memory Latency	100 ns	50 ns	~ 1
Interconnect Latency	$1 \mu { m s}$	$0.5 \mu s$	~ 1

- Communication-avoiding (CA) algorithms
 - Minimize communications instead of flop
 - Most is known for dense linear algebra (CA-LU, CA-QR)
 - □ A lot of open problems in sparse linear algebra

8 of 25

 $^{^2} Table$ taken from slides of E. Carson (datas from P. Beckman (ANL), J. Shalf (LBL) and D. Unat (LBL))

What is a supercomputer?

Solving linear systems

Enlarged Conjugate Gradient

Problem

Find $x_* \in \mathbb{R}^n$ such that $Ax_* = b$ where $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$.

- Arise in a lot of numerical problems
 - Discretizations of differential equations
 - Optimization problems
 - **.**.
- Simple from a mathematic point of view
 - Chinese know Gaussian elimination since at least the 1st century
- Very time consuming in simulations
- A lot of work on it since the 50s
 - □ Krylov methods: CG (1952), GMRES (1986), BiCG-STAB (1992)
 - Preconditioners (1968)
 - Multigrid (1964)

Overview of the methods

- Direct methods based on Gaussian elimination
 - Stable
 - High complexity
 - High memory cost
- Iterative methods based on successive projections
 - Unstabilities
 - Low complexity
 - Low memory cost

- 1. Find $\tilde{x} \in \mathcal{K}$ such that $b A\tilde{x} \perp \mathcal{L}$ (Petrov-Galerkin condition)
- 2. Increase ${\mathcal K}$ and ${\mathcal L}$ and go to 1

Krylov methods

- $\mathcal{K}_k(A, r_0) = \text{span}\{r_0, Ar_0, A^2r_0, ..., A^{k-1}r_0\}$ is called Krylov subspace
- Find $x_k \in x_0 + \mathcal{K}_k(A, r_0)$ such that $b A x_k \perp \mathcal{L}_k$
- $b A x_n \perp \mathbb{R}^n \implies x_n = x_*$
- Why searching the solution in \mathcal{K}_k ?
 - Cayley-Hamilton theorem
 - Cheap to construct: a sequence of SpMVs (Sparse Matrix-Vector product)
- How to choose \mathcal{L}_k ?
 - \square Its dimension has to be the same as the one of \mathcal{K}_k
 - It has to be cheap to construct

Conjugate Gradient

- Krylov method
 - $\begin{array}{l} \Box \quad \mathsf{A} \text{ is symmetric positive definite} \\ \Box \quad ||v||_{A} = \sqrt{v^{\top} A \, v} \text{ is a norm} \\ \Box \quad \mathcal{L}_{k} = \mathcal{K}_{k} \end{array}$

$$||x_{*} - x_{k}||_{A} = \min_{y \in \mathcal{K}_{k}} ||x_{*} - y||_{A}$$

•
$$\forall k \neq i, p_k^\top A p_i = 0$$

$$||x_* - x_k||_A \le ||x_* - x_0||_A \left(\frac{\sqrt{\kappa - 1}}{\sqrt{\kappa + 1}}\right)^n$$

- \Box Condition number $\kappa = \lambda_{\max}/\lambda_{\min}$
- $\hfill\square$ Preconditioning to reduce κ

Classic CG
1: $r_0 = b - Ax_0$
2: $p_1 = rac{r_0}{\sqrt{r_0^{ op} A r_0}}$
3: while $ r_{k-1} _2 > \varepsilon b _2$ do
4: $\alpha_k = \boldsymbol{p}_k^\top \boldsymbol{r}_{k-1}$
5: $x_k = x_{k-1} + p_k \alpha_k$
$6: \qquad r_k = r_{k-1} - A p_k \alpha_k$
7: $p_{k+1} = r_k - p_k(p_k^\top A r_k)$
8: $p_{k+1} = rac{p_{k+1}}{\sqrt{p_{k+1}^{ op}Ap_{k+1}}}$
9: end while

Performance bottleneck

Each iteration requires

- AXPY $(y \leftarrow \alpha x + y)$
 - No communicationBLAS 1

• SpMV
$$(y \leftarrow \alpha A x + \beta y)$$

Point-to-point communicationBLAS 2

Dot products
$$(\alpha \leftarrow x^{\top}y)$$

- Global communication
- BLAS 1

Results obtained on Hopper, Cray XE6, NERSC

 \Rightarrow less than 10% of the peak performance on supercomputers $^{3}!$

What is a supercomputer?

Solving linear systems

Enlarged Conjugate Gradient

Increase performances of CG

Overlap communications by flops

- Pipelined algorithms
- Limited in practice

Construct several vector of the basis at once

- □ s-step methods
- Unstable
- Difficult to use an efficient preconditioner
- $\rightarrow\,$ Search the solution in a bigger space than Krylov subspace
 - Block Krylov methods
 - Derive new algoritms

Enlarged Krylov methods [Grigori et al., 2014]

- Partition the matrix into t domains
- Split the residual r_k into t vectors corresponding to the t domains

Generate t new basis vectors, obtain an enlarged Krylov subspace

$$\mathcal{K}_{t,k}(A, r_0) = \operatorname{span}^{\Box} \{ T(r_0), AT(r_0), A^2 T(r_0), \dots, A^{k-1} T(r_0) \}$$

Search for the solution of the system Ax = b in $\mathcal{K}_{t,k}(A, r_0)$

Properties

■
$$b - Ax_n \perp \mathbb{R}^n \implies x_n = x_*$$

□ $\exists k_{\max}$, such that $\forall q > 0$
 $\mathcal{K}_{t,1}(A, r_0) \subsetneq \cdots \subsetneq \mathcal{K}_{t,k_{\max}-1}(A, r_0) \subsetneq \mathcal{K}_{t,k_{\max}}(A, r_0) = \mathcal{K}_{t,k_{\max}+q}(A, r_0)$

$$\forall k, \mathcal{K}_k(A, r_0) \subset \mathcal{K}_{t,k}(A, r_0)$$

- Construction: a sequence of SpMMs (Sparse Matrix-Matrix product)
- Find an approximation of $AX_* = T(b)$ where $X_* \in \mathbb{R}^{n imes t}$
 - $\rightarrow\,$ A special case of block Krylov methods
 - □ Vectors \rightarrow Matrices ($n \times t$)
 - \Box Scalars \rightarrow Matrices ($t \times t$)

•
$$x_k = \sum_{i=1}^t X_k^{(i)}$$
 (idem for r_k)

Enlarged Conjugate Gradient

$$||x_* - x_k||_{\mathcal{A}} = \min_{y \in \mathcal{K}_{t,k}} ||x_* - y||_{\mathcal{A}}$$

- Conjugacy of P_k • $\forall k \neq i, P_k^\top A P_i = 0$ • $P_i^\top A P_i = \mathbb{I}_{t \times t}$
- Breakdowns ?
 - No, for this algorithm
 - Yes, for other variants...

$$||x_* - x_k||_A \le C \left(\frac{\sqrt{\kappa_t - 1}}{\sqrt{\kappa_t + 1}}\right)^n$$

$$||x_* - x_k||_A \le C \left(\frac{\sqrt{\kappa_t - 1}}{\sqrt{\kappa_t + 1}}\right)^n$$

$$||x_* - x_k||_A \le C \left(\frac{\sqrt{\kappa_t - 1}}{\sqrt{\kappa_t + 1}}\right)^n$$

EK-CG 1: $R_0 = T(b - Ax_0)$ 2: $P_1 = A$ -orthonormalize(R_0) 3: while $||\sum_{i=1}^{t} R_k^{(i)}||_2 < \varepsilon ||b||_2$ do $\alpha_k = P_k^t R_{k-1}$ 4: $\triangleright t \times t$ 5: $X_k = X_{k-1} + P_k \alpha_k \quad \triangleright n \times t$ 6: $R_k = R_{k-1} - AP_k \alpha_k \triangleright n \times t$ 7. $P_{k+1} = \overline{AP_k} - \overline{P_k}(P_k^t AAP_k) P_{k-1}(P_{k-1}^t AAP_k) \triangleright n \times t$ 8: $P_{k+1} = A$ -orthonormalize (P_{k+1}) 9: end while 10: $x = \sum_{i=1}^{t} X_{\nu}^{(i)}$ $\triangleright n \times 1$

 $\begin{array}{l} \underline{\text{Classic CG}} \\ \hline 1: r_0 = b - Ax_0 \\ \hline 2: p_1 = \frac{r_0}{\sqrt{r_0^2 Ar_0}} \\ \hline 3: \text{ while } ||r_{k-1}||_2 > \varepsilon ||b||_2 \text{ do} \\ \hline 4: & \alpha_k = p_k^t r_{k-1} \\ \hline 5: & x_k = x_{k-1} + p_k \alpha_k \\ \hline 6: & r_k = r_{k-1} - Ap_k \alpha_k \\ \hline 7: & p_{k+1} = r_k - p_k (p_k^t Ar_k) \\ \hline 8: & p_{k+1} = \frac{p_{k+1}}{\sqrt{\rho_{k+1}^t A\rho_{k+1}}} \\ \hline 9: \text{ end while} \end{array}$

BLAS 1&2 operations

 $\begin{array}{l} \# \mbox{ messages per iteration} \\ O(1) \mbox{ from SpMV} + \\ O(\log P) \mbox{ from dot prod} + \mbox{ norm} \end{array}$

EK-CG

 $\begin{array}{ll} 1: \ R_0 = T(b - Ax_0) \\ 2: \ P_1 = A \text{-orthonormalize}(R_0) \\ 3: \ \text{while} \ || \sum_{i=1}^t R_k^{(i)} ||_2 < \varepsilon ||b||_2 \ \text{do} \\ 4: \ \alpha_k = P_k^t R_{k-1} \qquad b \ t \times t \\ 5: \ X_k = X_{k-1} + P_k \alpha_k \qquad b \ n \times t \\ 6: \ R_k = R_{k-1} - AP_k \alpha_k \qquad b \ n \times t \\ 7: \ P_{k+1} = AP_k - P_k (P_k^t AAP_k) - P_{k-1}(P_{k-1}^t AAP_k) \qquad b \ n \times t \\ 8: \ P_{k+1} = A \text{-orthonormalize}(P_{k+1}) \\ 9: \ \text{end} \ \text{while} \\ 10: \ x = \sum_{i=1}^t X_k^{(i)} \qquad b \ n \times 1 \end{array}$

BLAS 3 operations

messages per iteration
O(1) from SpMM +
O(log P) from BCGS + A-ortho

Parallel Implementation³

- Written in C/MPI
- Dependencies
 - MKL (sequential linear algebra)
 - Metis (graph partitioning)
 - C Parallel Linear Algebra Memory Management (parallel block Krylov building blocks, and more...)
- Several variants
 - □ EK-CG, BRRHS-CG, Coop-CG
 - Orthodir, Orthomin
- Matrix-free
- Interface for preconditioners
 - Only block diagonal for the moment

21 of 25

³Started during Cemracs 2016 summer school

Numerical Results

Method	Nb cores	lter	Time (s)
EK-CG			
t = 4	16	875	17.7
	32	865	9.3
	64	1084	7.9
t = 8	16	304	8.9
	32	433	6.4
	64	480	4.8
<i>t</i> = 16	16	280	13.9
	32	255	6.2
	64	370	5.9
Petsc	16	1807	191.5
	32	2755	66.6
	64	4227	48.5

Run on hpc2
 LJLL's cluster

If a second secon

- Elasticity matrix
 - \square *n* = 145 563
 - □ *nnz* = 4 907 997

 Block diagonal preconditioner

Conclusion and perspectives

- On today's supercomputers communication is the bottleneck for obtaining good performances
- For solving sparse linear systems on idea is to use Enlarged Krylov methods
 - Special kind of block Krylov methods
- First results of the parallel implementation are very promising
- Ongoing work
 - □ Test on large scale machines (around 10 000 cores)
 - Reduce dynamically the number of search directions
 - Generalize to non-symmetric case (Enlarged BiCG-STAB)

Thank you for your attention!

Questions?

References (1)

Grigori, L., Moufawad, S., and Nataf, F. (2014).

Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication. Technical Report 8597, INRIA.