
Iterative methods for solving linear systems on supercomputers

O. Tissot

PhD advisor
L. Grigori

INRIA-ALPINES

15 December 2016

Outline

What is a supercomputer?

Solving linear systems

Enlarged Conjugate Gradient

2 of 25

Outline

What is a supercomputer?

Solving linear systems

Enlarged Conjugate Gradient

3 of 25

Simple description

� What does it look like?

(a) Taihulight (Wuxi, China) (b) Pangea (Pau, France)

→ A room full of closets with fancy lights...

� What is inside the closets?

→ Many, many, many processors like the one you have in your laptop, linked
through a super fast network.

4 of 25

Architecture

5 of 25

How to use a supercomputer?

1. Write a parallel program using Message Passing Interface (MPI)

2. Ask for an access to the machine

3. Connect to the frontal node
� ssh username@fancyclustername

4. Compile your program
� mpicc -o superprogram superprogram.c

5. Submit a job (never run it directly on the frontal node!!!)
� sh submitjob.sh

6. Wait until your job is launched
� vlc got-s06-e10.avi emacs juniorseminarslides.tex

7. Wait until your job is finished
� vlc twd-s07-e08.avi open complicatedarticle.pdf

8. Get back the results on your local machine
� scp username@fancyclustername:~/myresults.txt .

9. ... or go to 4 if your job crashed, failed, ...

6 of 25

Toward exascale

Rank Country Cores Rmax (TFlop/s) Rpeak (TFlop/s) Power (kW)

1 China 10,649,600 93,014.6 125,435.9 15,371
2 China 3,120,000 33,862.7 54,902.4 17,808
3 US 560,640 17,590.0 27,112.5 8,209
4 US 1,572,864 17,173.2 20,132.7 7,890
5 US 622,336 14,014.7 27,880.7 3,939

16 France 220,800 5,283.1 6,712.3 4,150

Table: Top 5 supercomputers in the world in November 20161.

� Objective: an exaflop/s (1018 operations per second) machine around
2020!

=⇒ more and more cores
=⇒ less and less power by core

1https://www.top500.org/
7 of 25

https://www.top500.org/

The communication wall

� Time to move data >> time per floating-point operation (flop)
� Gap steadily and exponentially growing over time2

Petascale (2009) Predicted exascale Factor improvement

System Peak 2.1015 flops 1018 flops ∼ 1000
Memory Bandwith 25 GB/s 0.4-4 TB/s ∼ 10-100
Interconnect Bandwith 3.5 GB/s 100-400 GB/s ∼ 100
Memory Latency 100 ns 50 ns ∼ 1
Interconnect Latency 1µs 0.5µs ∼ 1

� Communication-avoiding (CA) algorithms
� Minimize communications instead of flop
� Most is known for dense linear algebra (CA-LU, CA-QR)
� A lot of open problems in sparse linear algebra

2Table taken from slides of E. Carson (datas from P.Beckman (ANL), J. Shalf (LBL)
and D.Unat (LBL))

8 of 25

Outline

What is a supercomputer?

Solving linear systems

Enlarged Conjugate Gradient

9 of 25

Problem

Find x∗ ∈ Rn such that Ax∗ = b where A ∈ Rn×n, b ∈ Rn.

� Arise in a lot of numerical problems
� Discretizations of differential equations
� Optimization problems
� ...

� Simple from a mathematic point of view
� Chinese know Gaussian elimination since at least the 1st century

� Very time consuming in simulations

� A lot of work on it since the 50s
� Krylov methods: CG (1952), GMRES (1986), BiCG-STAB (1992)
� Preconditioners (1968)
� Multigrid (1964)

10 of 25

Overview of the methods

� Direct methods based on Gaussian
elimination
� Stable
� High complexity
� High memory cost

A =

1
× 1
× × 1


︸ ︷︷ ︸

L

∗

× × ×
× ×
×


︸ ︷︷ ︸

U

� Iterative methods based on
successive projections
� Unstabilities
� Low complexity
� Low memory cost

1. Find x̃ ∈ K such that b − Ax̃ ⊥ L
(Petrov-Galerkin condition)

2. Increase K and L and go to 1

11 of 25

Krylov methods

� Kk(A, r0) = span{r0,Ar0,A2r0, ...,A
k−1r0} is called Krylov subspace

� Find xk ∈ x0 +Kk(A, r0) such that b − Axk ⊥ Lk

� b − Axn ⊥ Rn =⇒ xn = x∗
� Why searching the solution in Kk?

� Cayley-Hamilton theorem
� Cheap to construct: a sequence of SpMVs (Sparse Matrix-Vector product)

� How to choose Lk?
� Its dimension has to be the same as the one of Kk

� It has to be cheap to construct

12 of 25

Conjugate Gradient

� Krylov method
� A is symmetric positive definite
� ||v ||A =

√
v>Av is a norm

� Lk = Kk

� ||x∗ − xk ||A = miny∈Kk
||x∗ − y ||A

� ∀k 6= i , p>k Api = 0

� ||x∗− xk ||A ≤ ||x∗− x0||A
(√

κ−1√
κ+1

)n
� Condition number κ = λmax/λmin

� Preconditioning to reduce κ

Classic CG
1: r0 = b − Ax0
2: p1 = r0√

r>0 Ar0

3: while ||rk−1||2 > ε||b||2 do
4: αk = p>k rk−1
5: xk = xk−1 + pkαk

6: rk = rk−1 − Apkαk

7: pk+1 = rk −pk(p>k Ark)
8: pk+1 = pk+1√

p>k+1Apk+1

9: end while

13 of 25

Performance bottleneck

Each iteration requires

� AXPY (y ← αx + y)
� No communication
� BLAS 1

� SpMV (y ← αAx + β y)
� Point-to-point communication
� BLAS 2

� Dot products (α← x>y)
� Global communication
� BLAS 1

⇒ less than 10% of the peak
performance on supercomput-
ers3!

3http://www.hpcg-benchmark.org/
14 of 25

http://www.hpcg-benchmark.org/

Outline

What is a supercomputer?

Solving linear systems

Enlarged Conjugate Gradient

15 of 25

Increase performances of CG

� Overlap communications by flops
� Pipelined algorithms
� Limited in practice

� Construct several vector of the basis at once
� s-step methods
� Unstable
� Difficult to use an efficient preconditioner

→ Search the solution in a bigger space than Krylov subspace
� Block Krylov methods
� Derive new algoritms

16 of 25

Enlarged Krylov methods [Grigori et al., 2014]

� Partition the matrix into t domains

� Split the residual rk into t vectors corresponding to the t domains

r0 → T (r0) =



∗ 0 0

.

.

.

.

.

.

.

.

.
∗ 0 0
0 ∗ 0

.

.

.

.

.

.

.

.

.
0 ∗ 0

.
.
.

0 0 ∗
.
.
.

.

.

.

.

.

.
0 0 ∗


� Generate t new basis vectors, obtain an enlarged Krylov subspace

Kt,k(A, r0) = span�{T (r0),AT (r0),A2T (r0), . . . ,Ak−1T (r0)}

� Search for the solution of the system Ax = b in Kt,k(A, r0)

17 of 25

Properties

� b − Axn ⊥ Rn =⇒ xn = x∗
� ∃kmax, such that ∀q > 0
Kt,1(A, r0) (· · · (Kt,kmax−1(A, r0) (Kt,kmax(A, r0) = Kt,kmax+q(A, r0)

� ∀k, Kk(A, r0) ⊂ Kt,k(A, r0)

� Construction: a sequence of SpMMs (Sparse Matrix-Matrix product)

� Find an approximation of AX∗ = T (b) where X∗ ∈ Rn×t

→ A special case of block Krylov methods
� Vectors → Matrices (n × t)
� Scalars → Matrices (t × t)

� xk =
∑t

i=1 X
(i)
k (idem for rk)

18 of 25

Enlarged Conjugate Gradient

� ||x∗ − xk ||A = miny∈Kt,k
||x∗ − y ||A

� Conjugacy of Pk

� ∀k 6= i , P>k APi = 0
� P>i APi = It×t

� Breakdowns ?
� No, for this algorithm
� Yes, for other variants...

� ||x∗ − xk ||A ≤ C
(√

κt−1√
κt+1

)n
� κt = λmax/λt

� C is more complicated

EK-CG
1: R0 = T (b − Ax0)
2: P1 = A-orthonormalize(R0)

3: while ||
∑t

i=1 R
(i)
k ||2 < ε||b||2 do

4: αk = Pt
kRk−1 . t × t

5: Xk = Xk−1 + Pkαk . n × t
6: Rk = Rk−1 − APkαk . n × t
7: Pk+1 = APk − Pk (P

t
kAAPk) −

Pk−1(P
t
k−1AAPk) . n × t

8: Pk+1 = A-orthonormalize(Pk+1)
9: end while
10: x =

∑t
i=1 X

(i)
k . n × 1

19 of 25

Classical v.s. Enlarged

Classic CG
1: r0 = b − Ax0
2: p1 =

r0√
rt
0
Ar0

3: while ||rk−1||2 > ε||b||2 do
4: αk = pt

k rk−1

5: xk = xk−1 + pkαk

6: rk = rk−1 − Apkαk

7: pk+1 = rk − pk (p
t
kArk)

8: pk+1 =
pk+1√

pt
k+1

Apk+1

9: end while

BLAS 1&2 operations

messages per iteration

O(1) from SpMV +

O(log P) from dot prod + norm

EK-CG
1: R0 = T (b − Ax0)
2: P1 = A-orthonormalize(R0)

3: while ||
∑t

i=1 R
(i)
k ||2 < ε||b||2 do

4: αk = Pt
kRk−1 . t × t

5: Xk = Xk−1 + Pkαk . n × t
6: Rk = Rk−1 − APkαk . n × t
7: Pk+1 = APk − Pk (P

t
kAAPk) −

Pk−1(P
t
k−1AAPk) . n × t

8: Pk+1 = A-orthonormalize(Pk+1)
9: end while
10: x =

∑t
i=1 X

(i)
k . n × 1

BLAS 3 operations

messages per iteration

O(1) from SpMM +

O(log P) from BCGS + A-ortho

20 of 25

Parallel Implementation3

� Written in C/MPI

� Dependencies
� MKL (sequential linear algebra)
� Metis (graph partitioning)
� C Parallel Linear Algebra Memory Management (parallel block Krylov

building blocks, and more...)

� Several variants
� EK-CG, BRRHS-CG, Coop-CG
� Orthodir, Orthomin

� Matrix-free

� Interface for preconditioners
� Only block diagonal for the moment

3Started during Cemracs 2016 summer school
21 of 25

Numerical Results

Method Nb cores Iter Time (s)

EK-CG

t = 4 16 875 17.7
32 865 9.3
64 1084 7.9

t = 8 16 304 8.9
32 433 6.4
64 480 4.8

t = 16 16 280 13.9
32 255 6.2
64 370 5.9

Petsc 16 1807 191.5
32 2755 66.6
64 4227 48.5

� Run on hpc2
� LJLL’s cluster
� 320 cores

� Elasticity matrix
� n = 145 563
� nnz = 4 907 997

� ε = 10−5

� Block diagonal
preconditioner

22 of 25

Conclusion and perspectives

� On today’s supercomputers communication is the bottleneck for
obtaining good performances

� For solving sparse linear systems on idea is to use Enlarged Krylov
methods
� Special kind of block Krylov methods

� First results of the parallel implementation are very promising

� Ongoing work
� Test on large scale machines (around 10 000 cores)
� Reduce dynamically the number of search directions
� Generalize to non-symmetric case (Enlarged BiCG-STAB)

23 of 25

Thank you for your attention!

Questions?

24 of 25

References (1)

Grigori, L., Moufawad, S., and Nataf, F. (2014).

Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication.
Technical Report 8597, INRIA.

25 of 25

	What is a supercomputer?
	Solving linear systems
	Enlarged Conjugate Gradient

