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Linear algebraic problem

We are solving the system of linear algebraic equations

Ax = b

Natural questions
� How to measure the error?
� Which solver should be used?
� When should we stop the iterations?
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Linear algebraic problem

Where does the system come from? What properties does it have?

How to measure the error?
The problems from which the system originates from have (usually) a
natural measure for the error. We should respect this also in the matrix
computations.

Which solver should be used?
The choice of the particular method should be justified (rigorously or
heuristically) and it should, if possible, be related to the measure of the error.

– 3 –



Complex view

When should we stop the iterations?
An appropriate stopping criterion for iterative algebraic solver cannot be set
within the matrix computations only. Effective numerical solution requires
comparison of the algebraic error with errors of other origin (discretization
error, error of the model, etc.).

Linking various fields
It is necessary to link all the stages of the real-world problem solution.
This is a general requirement!
We will now focus on the numerical solution of the PDEs.
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Phases of the solution process in numerical PDEs

Real-world problem

Mathematical model (PDE + BC)

Algebraic problem

Approximation to the solution

modeling
error of the model

discretization
discretization error

algebraic solution
algebraic error (truncation + rounding)
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Spatial distribution of the errors of different origin
1D example
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1D Poisson problem, uniform partition with 19 nodes, P1 FEM.
Left: discretization error u − uh . Right: algebraic error uh − u9h
(dashed-dotted line) and total error u − u9h (solid line).

‖uh − u9h‖a = 1.23× 10−3 < 6.81× 10−3 = ‖u − uh‖a
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Spatial distribution of the errors of different origin
L-shaped domain (2D)
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Exact solution u (left) and the discretization error u − uh (right) in the
Poisson model problem on the L-shaped domain.
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Spatial distribution of the errors of different origin
L-shaped domain (2D)

−1
0

1 −1

0

1−4

−2

0

2

4

x 10
−4

−1
0

1 −1

0

1−4

−2

0

2

4

x 10
−4

Algebraic error uh − uih (left) and the total error u − uih (right). Here

‖uh − uih‖a < 0.1 ‖u − uh‖a.
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Estimating the total error using flux reconstruction
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Elementwise distribution of the total error (left) and the local error
indicators (right).

This technique allows to provide guaranteed (global) upper bounds on the
total and algebraic errors, and the indicators to estimate the local
distribution of the errors.
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Estimating the algebraic error using flux reconstruction

Algebraic error
×10-7

2

4

6

8

Local error indicators
×10-7

2

4

6

8

Elementwise distribution of the algebraic error (left) and the local error
indicators (right).

However, in this case, many additional algebraic iterations are necessary to
evaluate the error indicators!
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Adaptive mesh refinement

One step of the procedure is

SOLVE→ ESTIMATE→ MARK→ REFINE

Most of the results in the literature are based on the assumption that the
SOLVEr is exact, i.e., no algebraic error is allowed.

For ESTIMATing the (discretization) error, often a simple and cheap
residual-based error estimator is considered.

What happens if we plug in a computed approximation instead of the
(unavailable) exact algebraic solution?
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Adaptive mesh refinement based on EST(uih)
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Left: the decrease of the discretization error norm in adaptive FEM that is
based on EST(uh) (black) and EST(uih) (red), respectively. Right: the
corresponding number of degrees of freedom in refinement steps.
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Adaptive mesh refinement based on EST(uih)

The difference of the adaptively refined meshes after 35, respectively 48
refinement steps.
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Conclusions and summary

� Solution of the algebraic problem should be considered an indivisible part
of the overall solution process.

� In problems stemming from real-world applications, the exact algebraic
solution is unaffordable.

� Algebraic error can significantly affect the computed approximation.
� The techniques used for numerical solution of PDEs must incorporate the

algebraic error, or clearly state that they are based on assumptions that
are not valid and that they may provide inaccurate results.

� There are still many challenges ahead of us.
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Thank you for your attention
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