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1. What are we talking about ? What for ?



A classical description of matter

In classical mechanics, a common way of describing a system at a
fixed temperature T is to consider:

• a set of atoms with positions x ;

• a potential energy given by a Hamiltonien H(x);

• a force F acting on the system, typically typically F(x) = −∇H(x);

• a thermal agitation at temperature T , generally represented by a
random noise.
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Mathematical formulation

In practice, the latter elements are resumed in the following time
evolution, for n ∈N:

xn+1 = xn + F(xn) + σGn ,

where:

• n corresponds to time;

• F(xn) is the force at location xn ;

• σ is the intensity of the noise, proportional to
√
T ;

• Gn is a sequence of Gaussian random variables.
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Mathematical formulation

In practice, the latter elements are resumed in the following time
evolution, for n ∈N:

xn+1 = xn + F(xn) + σGn ,

where:

• n corresponds to time;

• F(xn) is the force at location xn ;

• σ is the intensity of the noise, proportional to
√
T ;

• Gn is a sequence of Gaussian random variables.

When F = −∇H , we have

xn+1 = xn −∇H(xn) + σGn ,

hence xn+1 «reduces» the energy H in average.
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Some motivations and questions

This basic framework can be used to model many different systems:

• molecules, chemical reactions;

• metals, phase transition;

• surface interactions, etc.
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Some motivations and questions

This basic framework can be used to model many different systems:

• molecules, chemical reactions;

• metals, phase transition;

• surface interactions, etc.

The dynamics of the system is encoded in the transition kernel P , for a
position x and a set S ,

P(x ,S) = P

[
xn+1 ∈ S

∣∣∣xn = x
]
,

that is the probability of reaching a set S starting from x . There are
natural questions about such systems:

• their long time behavior (Sec. 2. );

• the probabilities of fluctuations (Sec. 3. );

• decorrelation times, linear response theory, etc.
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2. Markov chains and their stability



What is stability?

Importance of the long time behavior for the computation of averages
of functions ϕ (like a pressure), as:

1
Niter

Niter−1∑
n=0

ϕ(xn) −−−−−−−−−→
Niter→+∞

average of ϕ.

For this, an important condition to hold is stability. By this, we mean
somehow that the system does not get lost at infinity. Two useful
applications:

• more physical insight into the considered system;

• stability of numerical schemes.
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A basic example

Brownian motion over R2: F = 0, so (xn) is a sum of 2d -Gaussian
random variables.
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The process starts at (0,0)...
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A basic example

Brownian motion over R2: F = 0, so (xn) is a sum of 2d -Gaussian
random variables.
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The process starts at (0,0)...
and goes away without
restriction.
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Partially confined particle

Dynamics over R2 with F(x;y) = (−5x;0).
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The process is confined in the x
direction...
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Partially confined particle

Dynamics over R2 with F(x;y) = (−5x;0).
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The process is confined in the x
direction... but moves without
restriction in the y direction.
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Ornstein-Uhlenbeck process

Dynamics over R2 with F(x;y) = (−2x;−2y).
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Hand waving theorem

How can we understand this stability ?
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Hand waving theorem

How can we understand this stability ?

A possible solution: show the existence of an energy that decreases in
average.

Idea of theorem

If there exists a function W > 0 and constants γ ∈ (0,1), b > 0 such
that

PW(x) 6 γW(x) + b ,

and W(x)→+∞ as |x | →+∞, then the dynamics is stable.
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Back to the Ornstein-Uhlenbeck process

Dynamics over R2 with F(x;y) = (−2x;−2y).
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directions.
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directions.

The force F = −∇H derives
from the energy

H(x ,y) = x2 + y2.
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Back to the Ornstein-Uhlenbeck process

Dynamics over R2 with F(x;y) = (−2x;−2y).
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The process is confined in both
directions.

The force F = −∇H derives
from the energy

H(x ,y) = x2 + y2.

In practice, one can choose

W(x ,y) = H(x ,y),

the energy of the system.
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3. Branching processes



What is a branching process?

A branching system consists of:

• a set of M replicas (xm)Mm=1;

• each replica follows a Markovian dynamics;

• each replica m is assigned a weight wm depending on its past
trajectory;

• the total weight is w̄ =
∑M

m=1wm ;

• one computes a probability of surviving pm = wm /w̄ ;

• the particles are resampled according to the vector p .
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What is a branching process?

A branching system consists of:

• a set of M replicas (xm)Mm=1;

• each replica follows a Markovian dynamics;

• each replica m is assigned a weight wm depending on its past
trajectory;

• the total weight is w̄ =
∑M

m=1wm ;

• one computes a probability of surviving pm = wm /w̄ ;

• the particles are resampled according to the vector p .

In practice, the weight over k steps of the mth replica is computed with

wk
m = exp

k−1∑
i=0

V(xmi )

 .
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Some motivations

There are (at least) three motivations for studying such dynamics:

• in quantum physics;

• in rare event simulation;

• in filtering.
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A quantum mechanics example

Brownian dynamics (xn) over R2 with V(x) = −|x |2.
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Remember the weight

wk
m = exp

k−1∑
i=0

V(xmi )

 .
used for resampling.
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A quantum mechanics example

Brownian dynamics (xn) over R2 with V(x) = −|x |2.
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Remember the weight

wk
m = exp

k−1∑
i=0

V(xmi )

 .
used for resampling.

Conclusion: there is a
confinement by selection.
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A rare event example

Ornstein-Uhlenbeck dynamics with F(x ,y) = (−2x ,−2y). Weight
function V(x ,y) = x .
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k−1∑
i=0

V(xmi )

 .
used for resampling.

Conclusion: the particles are
selected towards the right.
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Some heuristic

First observations:

• there are two phenomena: the dynamics itself and the selection
rule;

• the confinement can be provided by the dynamics or by the
selection;
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Some heuristic

First observations:

• there are two phenomena: the dynamics itself and the selection
rule;

• the confinement can be provided by the dynamics or by the
selection;

Two natural questions:

• unstable Markov dynamics (first example)→ stable branching
process ?

• stable Markov dynamics (stable example)→ unstable branching
process ?
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Hand waving new theorem

Condition of stability based on the decrease of some energy ? The
answer is yes [G.F., M. Rousset, G. Stoltz, in prep.]. For this, define

PV = eVP .
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Hand waving new theorem

Condition of stability based on the decrease of some energy ? The
answer is yes [G.F., M. Rousset, G. Stoltz, in prep.]. For this, define

PV = eVP .

Idea of theorem

If there exists a function W > 1 and sequences γn > 0, bn > 0,
compact sets Kn , such that

PVW(x) 6 γnW(x) + bn1Kn ,

and γn → 0 then the branching dynamics is stable.
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Hand waving new theorem

Condition of stability based on the decrease of some energy ? The
answer is yes [G.F., M. Rousset, G. Stoltz, in prep.]. For this, define

PV = eVP .

Idea of theorem

If there exists a function W > 1 and sequences γn > 0, bn > 0,
compact sets Kn , such that

PVW(x) 6 γnW(x) + bn1Kn ,

and γn → 0 then the branching dynamics is stable.

Question: what the d does that mean?
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Hand waving of hand waving etc

Idea: the energy decrease must take into account the weight V .
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Hand waving of hand waving etc

Idea: the energy decrease must take into account the weight V .

Result in a nutshell

More generally,

• if V(x)→−∞ as |x | →+∞, the dynamics is always stable, since
replicas always end up dying;

• if not, there is a trade-off: too many kids away may blow up to

your face.
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Conclusion

Take home message:

• random systems for modeling physics;

• problems of stability, long time behavor and energy;

• branching processes, a funny problem (as far as mathematics
can be funny);

• new results, «energy» for branching processes.
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