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Cryptography

Asymmetric
No shared secret;
Key exchange protocols,
digital signature, public-key
systems (RSA, ECC). . .

Symmetric
Shared secret;
Block ciphers, stream
ciphers, hash functions. . .
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Symmetric cryptography

Alice and Bob share a secret key k and communicate with a block
cipher Ek : {0, 1}n → {0, 1}n.

Typically n = 128.

Ek
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Symmetric cryptography

Alice and Bob share a secret key k and communicate with a block
cipher Ek : {0, 1}n → {0, 1}n.

Typically n = 128.

Ek

An adversary attacks!
He wants to recover the key.

A. Schrottenloher (Inria, SECRET) Efficient Quantum Collision Search 5/33



Cryptographic Context
Quantum Collision Search

Efficient Quantum Collision Search

Generic attacks

An ideal cipher has its security defined by generic attacks.

Example
Generic key-recovery attack on Ek : {0, 1}n → {0, 1}n: given
a few plaintext-ciphertext pairs, find k by exhaustive search.
Costs 2|k|.
|k | = 128: 2128 = approx. 1022 core-years.
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Cryptanalysis

The cipher is not ideal.
The adversary tries very hard to find a better way of
recovering the key.
If there is a way, the cipher is broken.
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A (wild) quantum adversary attacks!

He has a quantum computer.
What happens?

Quantum principles
A quantum algorithm is a sequence of quantum gates applied to a
pool of qubits. At each time step, the qubits are in a superposition
of states (zeroes and ones).
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We are doomed

Since the computations are done in superposition, the quantum
adversary can try all possibilities at once, hence breaking everything!
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Entering the post-quantum era

Having broken all cryptography that ever existed, the adversary
comes to reconsider his purpose in life.

This is not true.
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Entering (for real) the post-quantum era

RSA (factorization) and ECC (discrete logarithms) become
broken in polynomial time (Shor).
We are looking for replacements (ongoing NIST call): codes,
lattices, isogenies. . .

. . . but all of this concerns asymmetric cryptography. . .
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In symmetric cryptography

We know how to speed up some generic attacks.

Grover’s algorithm
f : {0, 1}n → {0, 1} is a test function.
We look for x such that f (x) = 1 (there are 2t solutions).
We implement f as a quantum circuit.
With Grover: O

(
2(n−t)/2

)
calls to f instead of 2n−t classically.
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Quantum attacks on symmetric crypto

Quantum key-recovery on a block cipher:

With |k | = 128: classically
2|k| = 2128 = 1022 core-years;
Quantumly 2|k|/2 = 264 = 103

core-years. . .

Common belief: to reach the same security, “double the key
size”.
Can we improve cryptanalysis?
Can we improve other generic attacks?
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Quantum Collision Search
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Hash functions

A hash function H : {0, 1}? → {0, 1}n behaves like a random
function.

If it does not, it is broken.
Typically n = 256 or 512.

In this work: restriction to H : {0, 1}n → {0, 1}n.
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Classical collision search

Collision resistance
Finding a pair x , y with H(x) = H(y) (a collision of H) takes time
O
(
2n/2

)
.

Birthday paradox: among 2n/2 queries, there is a collision with
constant probability (2n/2 queries ' 2n pairs).
Pollard’s rho: O

(
2n/2

)
time and queries with O(n) memory.

This is a query lower bound.
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Quantum collision search

The quantum adversary strikes again!
Doesn’t he?

He implements H : {0, 1}n → {0, 1}n as a quantum circuit.

Using Grover: O(2n/2) time and queries. . .
Brassard, Høyer and Tapp, 1998: Õ(2n/3) time, O(2n/3)
queries, and using Õ(2n/3) qubits.
Ω(2n/3) is the quantum query lower bound.

n/2n/3n/4
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Too many qubits is not “reasonable”

The quantum memory problem
Quantum computing seems even more difficult with too many
qubits (Grover and Rudolph, 2004).

What happens if we reduce the number of qubits to O(n)?
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Collision search with few qubits

The quantum query lower bound (2n/3 instead of 2n/2) has been
reached.

But. . .
With O(n) qubits, no quantum speedup for collision search!

Challenge (Grover and Rudolph, 2004)

Find an algorithm for collision [. . . ] which gives a searching
speedup greater than merely a square-root factor over the number
of available processing qubits.
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In what follows

Time Queries Qubits Classical memory

Grover O(2n/2) O(2n/2) O(n) 0
BHTa O(2n/3) O(2n/3) O(2n/3) 0

BHT variant O
(
22n/3) O

(
2n/3

)
O(n) O(2n/3)

Our resultb O(22n/5) O(22n/5) O(n) O(2n/5)

n/2n/3n/4 2n/5

And more significant quantum speedups on other problems.
aBrassard, Høyer, and Tapp, 1998
bChailloux, Naya-Plasencia, S., ASIACRYPT 2017
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Generalizing Grover

Grover’s algorithm

Search space of size 2n, 2t solutions, an efficient test function;
Time and queries O

(
2(n−t)/2

)
instead of 2n−t ;

Returns the superposition of all solutions.

Amplitude amplification (Brassard et al., 2002)

Building the search space in time T1;
Testing in time T2;
2t solutions among 2n;
Time O

(
2(n−t)/2 (T1 + T2)

)
.
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BHT algorithm (Brassard, Høyer, Tapp, 1998)

Classical:
Perform ` arbitrary classical
queries to H :
H(x1), . . . ,H(x`).
Search x ∈ {0, 1}n such that
H(x) ∈ {H(x1), . . . ,H(x`)}.

Optimal ` = 2n/2:

2n/2 +
2n

2n/2

Quantum (BHT):
Perform ` arbitrary classical
queries to H :
H(x1), . . . ,H(x`).
With Grover, search
x ∈ {0, 1}n such that
H(x) ∈ {H(x1), . . . ,H(x`)}.

Optimal ` = 2n/3:

2
n
3︸︷︷︸

Initial list

+

√
2n

2n/3︸ ︷︷ ︸
2n/3 solutions among 2n
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BHT without quantum memory

Membership query:
We must test whether H(x) ∈ {H(x1), . . . ,H(x`)}.

With a quantum data structure:
This is done in O(n).

Without:
There is a way. . . sequentially in time O(`).

Queries:
2n/3 +

√
2n/2n/3 (1 + 0)

Time:
2n/3 + 2n/3

(
1 + 2n/3

)
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Improving

2
n
3︸︷︷︸

Initial list

+ 2
n
3︸︷︷︸

2n/3 solutions among 2n

 1︸︷︷︸
Querying H

+ 2
n
3︸︷︷︸

Membership


Ideas

Use the same method!
Replace quantum memory by classical storage.
Define distinguished points.
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Step 1: distinguished points

Definition (Distinguished points)

All the x whose image starts with u zeroes.

We generate a list of distinguished points.
We are now searching only among the distinguished points
(2n−u) for the same number of solutions (2n/3).

Total time:

2
n
3︸︷︷︸

List size

× 2
u
2︸︷︷︸

Grover search
of a DP︸ ︷︷ ︸

First step: constructing the list

+ 2
n
3−

u
2︸︷︷︸

Fewer queries

 2
u
2︸︷︷︸

Building
all the DPs

+ 2
n
3︸︷︷︸

Membership


︸ ︷︷ ︸

Second step: searching a collision
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Step 2: optimize the list size

The list now contains 2v distinguished points.

Total time:

2v︸︷︷︸
List size

× 2
u
2︸︷︷︸

Grover search
of a DP︸ ︷︷ ︸

First step: constructing the list

+ 2
n−v−u

2︸ ︷︷ ︸
Fewer queries

 2
u
2︸︷︷︸

Building
all the DPs

+ 2v︸︷︷︸
Membership


︸ ︷︷ ︸

Second step: searching a collision

A. Schrottenloher (Inria, SECRET) Efficient Quantum Collision Search 27/33



Cryptographic Context
Quantum Collision Search

Efficient Quantum Collision Search

Balancing the computing time

Total time:

2v︸︷︷︸
List size

× 2
u
2︸︷︷︸

Grover search
of a DP︸ ︷︷ ︸

First step: constructing the list

+ 2
n−v−u

2︸ ︷︷ ︸
Fewer queries

 2
u
2︸︷︷︸

Building
all the DPs

+ 2v︸︷︷︸
Membership


︸ ︷︷ ︸

Second step: searching a collision

Optimized as:
v = n

5 , u = 2n
5 ;

Time: Õ(22n/5);
Qubits: O(n) (running Grover instances);
Classical memory: 2n/5.
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Consequences

We trade quantum memory for classical storage.

n/2n/3n/4 2n/5

n C. time Q. time Classical memory

128 264 251.2 225.6 ≤ 1GB
160 280 264 232 ≤ 86GB
256 2128 2102.4 251.2 ≤ 83PB
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More recent results
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Further low-qubits results
3-xor problem
Find x , y , z such that H(x)⊕ H(y)⊕ H(z) = 0.

Classically (up to log factors) it is as hard as collision search
(O(2n/2)).
Now O(25n/14) quantum time and O(2n/7) classical memory.c

n/2n/3n/4 5n/14

Also available for multicollision search, 5-xor, 6-xor, 7-xor.
Parallelization speedups are better than Grover.d

cJoint work with Lorenzo Grassi and María Naya-Plasencia, under
submission.

dWork under submission.
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Conclusion
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Conclusion

Quantum collision search speedup with few qubits:

n/2n/3n/4 2n/5

Problems such as 3-xor behave even better:

n/2n/3n/4 5n/14

Many applications in cryptanalysis.
Doubling the key size is not enough: one should also have a
look at the state sizes.
Can we bring the complexity down to the optimal?
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Thank you.
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