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Motivation

More and more complex materials are used in industry:

Courtesy M. Thomas (Airbus) and S. Brisard (ENPC)

For such complex materials => need to efficiently compute the
electrical, temperature or mechanical response to some input.
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Problem

Goal: Compute uε, the response of a material whose properties are
defined by Aε.

Elliptic equation with highly oscillating coefficients{
− div [Aε (x)∇uε(x)] = f (x) in D,
uε(·) = 0 on ∂D.

where D ⊂ Rd , ε� diam(D), and the matrix Aε is elliptic,
symmetric, bounded and is varying at the small scale ε.
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Variational approach

The problem

Equation with highly oscillating coefficients{
− div [Aε (x)∇uε(x)] = f (x) in D,
uε(·) = 0 on ∂D.

is equivalent to

Variational formulation

Find uε ∈ H1
0 (D) such that

aε(uε, v) = b(v), ∀v ∈ H1
0 (D)

where {
aε(u, v) =

´
D(Aε(x)∇u(x)) · ∇v(x) dx ,

b(v) =
´
D f (x)v(x) dx .
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Galerkine approach

Instead of solving the variational formulation on H1
0 (D)

-> Solve the problem on a finite dimensional space VH ⊂ H1
0 (D).

Galerkine variational problem
Find uH ∈ VH such that

aε(uH , vH) = b(vH), ∀vH ∈ VH

Denoting {φHi }{i=1..NH} a basis of VH , it is equivalent to solve the
linear system

Matrix problem
Find U ∈ Rn such that

KU = B,

with Ki ,j = aε(φHi , φ
H
j ), and B = b(φHi ).

The Galerkine approached solution: uH(x) =
∑NH

i=1 Uiφ
H
i (x)
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Finite Element Method (FEM) - 1

Finite Element Method (P1):

1 Mesh the domain D in NK

elements: edges (1D),
triangles (2D) or tetrahedron
(3D)

2 Define φi {i=1..Nbnodes} such
that : φi (xj) = δi ,j and φi is
linear on each element K . •

φ1(x1) = 1

•
φ1(x3) = 0

∂K

•
φ1(x2) = 0

KH
3 Write Galerkine approach for VH = Span(φi {i=1..Nbnodes})

4 Solve the system to have uFEM =
∑Nbnodes

i=1 Uiφi (x)

7 / 28



Finite Element Method (FEM) - 2

Figure : 2D FE basis for node xi = (0, 1) (left) and for node
xj = (1/4, 3/4) (right)

Computational cost: solve linear system of size O(1/H2)

Approximation result
Denoting H the maximal diameter of the elements, we have
‖uε − uFEM‖H1(D) ≤ CH‖uε‖H2(D)
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Toy example in 1D

1D Toy problem

{
−
(
aε(x)u′ε(x)

)′
= 1 in [0, 1],

uε(0) = uε(1) = 0,

with aε(x) = a( xε ) = 1.1 + sin( xε ).

Is the FEM efficient when coefficient aε is highly oscillating ?

Numerical experiment:
Set ε = 1

128 -> uε is periodic with Tε ' 1
20

Compute FEM method for H = 1
16 ,

1
32 ,

1
64

Compare to FEM reference solution obtained for H = 1
512
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Oscillating problem in 1D - FEM Results
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Limitations of FEM method for equation highly oscillating
coefficients

FEM performs well in the regime H � ε when oscillations are
captured, however when ε� 1 , the computational cost can
be too expensive.
In the regime H � ε, the FEM approximation is not accurate
at all because it fails to encrypt the oscillations of the
coefficient.
Need to find methods that can encrypt the knowledge of the
micro-structure of the coefficient to get more accurate
approximations for an acceptable computational cost.
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Multi-scale methods: bottom up approach

In our case, we apply a bottom-up approach: we have some
micro-scale knowledge of the problem and we want to use it to
compute solutions accurately at coarser scale.

Multi-scale methods: Different ways to exploit this knowledge to
enrich and design accurate approximations at the macro-scale.

Usually, local computations at a fine scale are used to improve
global accuracy on a coarser scale.
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Some examples of multi-scale methods

Some examples of such methods:
Homogenization techniques [Bensoussan, Lions and
Papanicolaou, 1978],
Multi-scale Finite Element Method (MSFEM) [Hou and Wu,
1997]
The Heterogeneous Multi-scale Method (HMM) [E, Engquist,
2003]
Decomposition domain methods ...

We will focus only on the MsFEM method.
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Review on MsFEM method - 1

Let us consider a coarse mesh (mesh size H) of D
Offline step: Create a nodal basis (similar to the Finite
elements) on each element K adapted to the problem.


−div(Aε∇φi ) = 0 in K

φi is linear on the edges
φi (xj) = δi ,j •

φ1(x1) = 1

•
φ1(x3) = 0

∂K

•
φ1(x2) = 0

KH

Online step: Solve the coarse Galerkine problem for any source
term f

aε(uMsFEM , v) =< f , v >, ∀v ∈ VMsFEM = Span({φi})

Then we have uMsFEM =
∑J

j=1 Ujφj

Approximation result, periodic case [Hou and Wu, 1999]

‖uε − uMsFEM‖H1(D) ≤ C

(√
ε+ H +

√
ε

H

)
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Review on MsFEM method - 2

The MsFEM basis φi is defined by local problems that can be
solved in parallel (usually solved with FEM on a finer
embedded grid)

The offline stage is independent from the source term f , hence
you can use the same basis for multiple f .

The Stiffness matrix Ki ,j = aε(φi , φj) is precomputed to speed
up the online phase.

Online phase cost: assemble the right-hand side term
Bi = b(φi ) and solve the coarse linear system KU = B .
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Example of MsFEM basis in 1D

We consider the former 1D example with a coefficient
aε(x) = a( xε ) = 1.1 + sin( xε ), and we compare the basis of Finite
Elements with the MsFEM basis
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2D example - Reference solution

Figure : Q1-FEM solution H=1/512
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2D example - Q1 solution

Figure : Q1-FEM solution H=1/8 18 / 28



2D example - MSFEM solution

Figure : MsFEM solution H=1/8
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The "resonance" regime

Recalling the result

Approximation result, periodic case [Hou and Wu, 1999]

‖uε − uMsFEM‖H1(D) ≤ C

(√
ε+ H +

√
ε

H

)
In the regime H ' ε, the error bound can be huge and seems to be
sharp as shown in the following numerical experiments.

Figure : MsFEM error map
H = 4ε = 1/8

Figure : MsFEM error map
H = ε = 1/32
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Pros and cons of the method

Pros:
Offline step can be parallelized as only local problems are
considered
Good behavior for coarse discretization H compared to FEM
Conformal approach (the solution is continuous)
Useful when computation have to be repeated for multiple
source term f (optimization process, inverse problem...)

Cons:
Resonance regime -> large error when H ' ε
The fine scale resolution h has to be chosen carefully ( ε

10)
Less useful if only one computation to do
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MsFEM enriched method - Setting

Consider the coarse mesh of size H

•

Γ

•

∂D

•

Ki

Kj

•

•

•

•

•

•

with Γ the interface between elements Ki .
We want an approximation of the solution to

Variational formulation

Find uε ∈ H1
0 (D) such that

aε(uε, v) = b(v), ∀v ∈ H1
0 (D)
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MsFEM enriched method - Motivation: Orthogonal
decomposition - 1

aε(u, v) -> defines a scalar product Hence the following orthogonal
decomposition:

H1
0 (D) = {⊕{Vi}i=1..NbTri} ⊕ VΓ

Vi : space of functions in H1
0 (Ki )

VΓ: space of functions in H1
0 (D) such that aε(u, v) = 0 for all

v ∈ H1
0 (Ki ) that are not vanishing on the interface Γ

Define the energy error norm:

E (uε − u) = aε(uε − u, uε − u),

We have the solution uε = uKε + uΓ
ε -> decomposition of the error

between bubble terms in Vi and interface terms VΓ
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MsFEM enriched method - Motivation: Orthogonal
decomposition - 2

Bubble a priori error

E (uKε ) ≤ C‖f ‖L2(D)H
2 with C independent of ε

Problem: when H = Diam(K )↘ then Diam(Γ)↗
-> Interface error do not converge in H independently of ε.

We recall that uMsFEM ∈ VΓ

E (uε − uMsFEM) = E (uKε ) + E (uΓ
ε − uMsFEM)

E (uΓ
ε − uMsFEM) -> Error term responsible for resonance effect

Idea -> Enrich the MsFEM approximation only in the VΓ space
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Construction of MsFEM enriched basis

Offline step: Consider the same nodal basis φj . Compute the
edge enrichments τe,k for all 1 < k ≤ N such that on each
element K containing the edge e


−div(Aε∇τe,N) = 0 in K

τe,k = Pk on e

τe,k = 0 on ∂K \ e •

•

τ
e
,N

=
0

•

τ
e,N (x)

=
P
N (x)

•
τe,N = 0

K

with Pk the kth Legendre polynomial
Online step: Solving the Galerkine problem with the basis
VMsFEM,N = Span({{φj}j=1..#Nodes , {τei ,l}i=1..#edges,l=1..N})

aε(uMsFEM,N , v) =< f , v >, ∀v ∈ VMsFEM,N
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Results

Interface a priori error

E (uεΓ − uMsFEM,N) ≤ C H2

N2 ‖uΓ
ε ‖H2

‖uΓ
ε ‖H2 ' C

ε2
-> when H ' ε adjust polynomial degree N to

decrease resonance error
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Figure : Error (as a function of the coarse discretization H (left) and the number of
DOF (right)) for linear MsFEM (MSFEM-L) and MsFEM enriched with polynomials
of degree N (Leg N)
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Error maps at the resonance

Figure : MsFEM solution and
gradient error maps
H = ε = 1/32

Figure : Legendre 10 solution
and gradient error maps
H = ε = 1/32 27 / 28



Conclusions and perspectives

Summary:
Design of an enriched MsFEM method with Legendre
polynomials -> convergence proved with an a priori error
bound
Numerical experiments show a cancellation of the resonance
error with N large enough and the error is greatly decreased
even with small N
Reasonable additional time cost compared to MsFEM online
phase
Same pros as the MsFEM

Perspectives:
Develop an adaptive method by choosing the polynomial
degree according to the local fluctuations of the coefficient A.
An a posteriori error estimator has already been designed
-> numerical tests has to be performed to assess its efficiency.
The a priori bound is pessimistic when H � ε, hence need to
use different approach to get a sharper result in this case.
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