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More and more complex materials are used in industry:

Lo ...%W&A}J%%%
Courtesy M. Thomas (Airbus) and S. Brisard (ENPC)

For such complex materials => need to efficiently compute the
electrical, temperature or mechanical response to some input.
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Goal: Compute ug, the response of a material whose properties are
defined by A..

Elliptic equation with highly oscillating coefficients

{—div [A- (x) Vus(x)] = f(x) in D,
u:(-) =0 on OD.
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where D C RY, ¢ « diam(D), and the matrix A; is elliptic,
symmetric, bounded and is varying at the small scale ¢.

4/28



Variational approach

The problem

Equation with highly oscillating coefficients

—div[A: (x) Vue(x)] = f(x) in D,
us(-) =0 on 9D.

is equivalent to

Variational formulation
Find u. € H}(D) such that

a:(uz,v) = b(v), Vv e HYD)

where

x) dx.

{as(u v fD x)Vu(x)) - Vv(x) dx,
Joflx

5/28



Galerkine approach

Instead of solving the variational formulation on Hg(D)
-> Solve the problem on a finite dimensional space Vi C H3(D).

Galerkine variational problem

Find uy € Vy such that

aE(uH,vH):: b(VH), Vvy € Vy

Denoting {qb,’-"}{,-:l“,VH} a basis of V4, it is equivalent to solve the
linear system

Matrix problem
Find U € R” such that

KU = B,

with K = a.( ,H,qﬁjH) and B = b(gZ)IH).
The Galerkine approached solution: uy(x) = Z,N:H1 Uipt (%)

6/28



Finite Element Method (FEM) - 1

Finite Element Method (P1):

@ Mesh the domain D in Nk
elements: edges (1D),
triangles (2D) or tetrahedron

(3D)
¢1(x3) =0
© Define ¢ifi—1. nbyyye.} SUCh - oK
that : ¢,(XJ) = (5,"]' and Qi is
linear on each element K.
$1(x) =1 ¢1(x2) =0

© Write Galerkine approach for Vi = Span(eifi—1. b, ,.})

© Solve the system to have upgy = Zf\ff"d“ Uigi(x)
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Finite Element Method (FEM) - 2

Figure : 2D FE basis for node x; = (0, 1) (left) and for node
xj = (1/4,3/4) (right)

Computational cost: solve linear system of size O(1/H?)

Approximation result

Denoting H the maximal diameter of the elements, we have
lue — urem|p2(py < CHI| el 2(p)
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Toy example in 1D

{—( c(x)u ())—1 in [0, 1],
) =

(0) = u=(1

with a.(x) = a(%) = 1.1 +sin(%).

Is the FEM efficient when coefficient a. is highly oscillating 7

Numerical experiment:
@ Sete = 1%8 -> u. is periodic with T, ~ 2—10

@ Compute FEM method for H = 167 312 614
1

e Compare to FEM reference solution obtained for H = ¢35
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Oscillating problem in 1D - FEM Results
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Limitations of FEM method for equation highly oscillating

coefficients

@ FEM performs well in the regime H < ¢ when oscillations are
captured, however when ¢ < 1, the computational cost can
be too expensive.

@ In the regime H > ¢, the FEM approximation is not accurate
at all because it fails to encrypt the oscillations of the
coefficient.

@ Need to find methods that can encrypt the knowledge of the
micro-structure of the coefficient to get more accurate
approximations for an acceptable computational cost.
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Multi-scale methods: bottom up approach

In our case, we apply a bottom-up approach: we have some
micro-scale knowledge of the problem and we want to use it to
compute solutions accurately at coarser scale.

Multi-scale methods: Different ways to exploit this knowledge to
enrich and design accurate approximations at the macro-scale.

Usually, local computations at a fine scale are used to improve
global accuracy on a coarser scale.
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Some examples of multi-scale methods

Some examples of such methods:
e Homogenization techniques [Bensoussan, Lions and
Papanicolaou, 1978],
@ Multi-scale Finite Element Method (MSFEM) [Hou and Wau,
1997]
@ The Heterogeneous Multi-scale Method (HMM) [E, Engquist,
2003]

@ Decomposition domain methods ...

We will focus only on the MsFEM method.
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Review on MsFEM method - 1

Let us consider a coarse mesh (mesh size H) of D
@ Offline step: Create a nodal basis (similar to the Finite
elements) on each element K adapted to the problem.

$1(x3) =0
—div(A:Ve;)) =0 in K oK
¢; is linear on the edges T
9i0) = 01y $a0a) = 1 $1052) = 0
@ Online step: Solve the coarse Galerkine problem for any source
term f

a:(umsrem, v) =< f,v >, Vv € Viysrem = Span({¢;})

Then we have upspepm = Zle Ujo;

Approximation result, periodic case [Hou and Wu, 1999]

€
|ue — umsrem || 2Dy < C (\@-F H+/ H)




Review on MsFEM method - 2

@ The MsFEM basis ¢; is defined by local problems that can be
solved in parallel (usually solved with FEM on a finer
embedded grid)

@ The offline stage is independent from the source term f, hence
you can use the same basis for multiple f.

o The Stiffness matrix Kj; = a-(¢i, ¢;) is precomputed to speed
up the online phase.

@ Online phase cost: assemble the right-hand side term
Bi = b(¢;) and solve the coarse linear system KU = B.
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Example of MsFEM basis in 1D

We consider the former 1D example with a coefficient
a:(x) = a(%) = 1.1 +sin(%), and we compare the basis of Finite
Elements with the MsFEM basis

Solution for e=1/128

T T T
— MsFEM basis
1.0 — FEM basis

0.8

o
o

Value of solution

I
'S

0.2
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rence solutio

IsoValue

IO 00103515

Figure : Q1-FEM solution H=1/512
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2D example - Q1 solutio

IsoValue

H-0.00609178
0545054

-0.0016031
0.00096186
W0.00064124

Figure : Q1-FEM solution H=1/8 18/28



2D example - MSFEM solution

IsoValue

0155907
H0.00103938

Figure : MsFEM solution H=1/8
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The "resonance" regime

Recalling the result

Approximation result, periodic case [Hou and Wu, 1999]

&
|ue — umsrem || 2Dy < C (\/EJF H+ H)

In the regime H ~ ¢, the error bound can be huge and seems to be
sharp as shown in the following numerical experiments.

Figure : MsFEM error map Figure : MsFEM error map
H=4:=1/8 H=¢e¢=1/32
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Pros and cons of the method

Pros:

@ Offline step can be parallelized as only local problems are
considered

@ Good behavior for coarse discretization H compared to FEM
e Conformal approach (the solution is continuous)
@ Useful when computation have to be repeated for multiple
source term f (optimization process, inverse problem...)
Cons:
@ Resonance regime -> large error when H ~ ¢
@ The fine scale resolution h has to be chosen carefully (35)

@ Less useful if only one computation to do
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MsFEM enriched method - Setting

Consider the coarse mesh of size H

oD
Ki

Kj

with I the interface between elements K.
We want an approximation of the solution to

Variational formulation

Find u. € H}(D) such that

a:(uz,v) = b(v), Vv e HYD)
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MsFEM enriched method - Motivation: Orthogonal

decomposition - 1

ac(u, v) -> defines a scalar product Hence the following orthogonal
decomposition:

H3(D) = {&{Vi}iz1.mpmi} © Vi

o V;: space of functions in H}(K;)
o Vr: space of functions in H}(D) such that a.(u, v) = 0 for all
v € H}(K;) that are not vanishing on the interface I

Define the energy error norm:
E(u. — u) = a-(ue — u, u. — u),

We have the solution u. = u¢ + ul -> decomposition of the error
between bubble terms in V; and interface terms Vf
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MsFEM enriched method - Motivation: Orthogonal
decomposition - 2

Bubble a priori error

E(uf) < CHfHLz(D)H2 with C independent of ¢

Problem: when H = Diam(K) “\, then Diam(I")
-> Interface error do not converge in H independently of .

We recall that upserepm € Vi

E(ue — umsrem) = E(uf) + E(ul — upsrem)

E(ul — umsrenm) -> Error term responsible for resonance effect
Idea -> Enrich the MsFEM approximation only in the Vi space

24 /28



Construction of MsFEM enriched basis

o Offline step: Consider the same nodal basis ¢;. Compute the

edge enrichments 7, 4 for all 1 < k < N such that on each
element K containing the edge e

—div(A:V7en) =0in K
Tek = Px on e

Te,N =0

Tek =0o0n 0K\ e

with Py the k' Legendre polynomial

@ Online step: Solving the Galerkine problem with the basis
Vimsrem,n = Span({{®; }j=1. #Nodes, { Te;,1 }i=1.. #edges,I=1.N })

a-(umsFem,N, V) =< f,v >,

Vv € Viusrem,n
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Interface a priori error

E(uf — umsremn) < CHE [l || e

|ul || g = E% -> when H ~ ¢ adjust polynomial degree N to
decrease resonance error

Error for e=1/32 function of 1/H Error for e=1/32 function of number of DOF

Relative energy error
Relative energy error

oe WsFEN |
107 o msFEm1

UH number of DOF

Figure : Error (as a function of the coarse discretization H (left) and the number of
DOF (right)) for linear MsFEM (MSFEM-L) and MsFEM enriched with polynomials
of degree N (Leg N)
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Error maps at the resonance

Sl

E

H
:
H
H
H
H
H
H
H
H
H
i
4
:
H
H
H

Figure : MsFEM solution and

gradient error maps Figure : Legendre 10 solution

H=e=1/32 and gradient error maps
H=e=1/32 27/28



Conclusions and perspectives

@ Summary:

e Design of an enriched MsFEM method with Legendre
polynomials -> convergence proved with an a priori error
bound

o Numerical experiments show a cancellation of the resonance
error with N large enough and the error is greatly decreased
even with small N

o Reasonable additional time cost compared to MsFEM online
phase

e Same pros as the MsFEM

@ Perspectives:

e Develop an adaptive method by choosing the polynomial
degree according to the local fluctuations of the coefficient A.

e An a posteriori error estimator has already been designed
-> numerical tests has to be performed to assess its efficiency.

e The a priori bound is pessimistic when H >> ¢, hence need to
use different approach to get a sharper result in this case.
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