The Martingale Optimal Transport (MOT) problem

William MARGHERITI
Under the supervision of Benjamin JOURDAIN

Inria’s Junior Seminar

February 18, 2020
1 The optimal transport problem

2 The Martingale Optimal Transport Problem

3 A new family of martingale couplings
1. The optimal transport problem

2. The Martingale Optimal Transport Problem

3. A new family of martingale couplings
Monge’s Formulation

- μ and ν: two probability measures on \mathbb{R}
- $c : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$: a nonnegative cost function
- X: a random variable distributed according to μ
Monge’s Formulation

- μ and ν: two probability measures on \mathbb{R}
- $c : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$: a nonnegative cost function
- X: a random variable distributed according to μ

Optimal Transport problem (Monge’s Formulation):

$$\inf_T \mathbb{E}[c(X, T(X))]$$

where T is such that $T(X) \sim \nu$.
Kantorovich’s Formulation

Figure: Leonid Kantorovich (1912-1986)

Kantorovich’s Formulation

- μ and ν: two probability measures on \mathbb{R}
- $c : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$: a nonnegative cost function

Optimal Transport problem (Kantorovich’s Formulation):

$$\inf_{X,Y} \mathbb{E}[c(X, Y)]$$

where $X \sim \mu$ and $Y \sim \nu$.
1. The optimal transport problem

2. The Martingale Optimal Transport Problem

3. A new family of martingale couplings
Robust finance: model-free pricing bounds on derivative financial products

- μ and ν: two probability measures
- $c : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+:$ a nonnegative cost function

The Martingale Optimal Transport Problem:

$$\inf_{X, Y} \mathbb{E}[c(X, Y)],$$

where $X \sim \mu$, $Y \sim \nu$ and $\mathbb{E}[Y|X] = X.$
Application: Option Pricing

- \((S_t)_{t \in [0, T]}\): value of a financial asset between 0 and \(T\)
- \(c : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+:\) a nonnegative function payoff of an option which only depends on \(S_0\) and \(S_T\)
- \(\mu\) and \(\nu\): respective distributions of \(S_0\) and \(S_T\)
- \(r\): interest rate (suppose \(r = 0\) for convenience)

An option is a contract which gives the buyer the right to buy or sell an underlying asset at a specified strike price on a specified date.
Hypothesis: the payoff is of the form $c(S_0, S_T)$. Examples:

- Payoff from buying a call: $(S_T - K)^+$
- Payoff from buying a put: $(K - S_T)^+$
Hypothesis: the payoff is of the form $c(S_0, S_T)$. Examples:

- Payoff from buying a call: $(S_T - K)^+$
- Payoff from buying a put: $(K - S_T)^+$

Fundamental theorem of asset pricing:

$$\text{Price of the option} = \mathbb{E}^*[c(S_0, S_T)].$$
Hypothesis: the payoff is of the form $c(S_0, S_T)$. Examples:

- Payoff from buying a call: $(S_T - K)^+$
- Payoff from buying a put: $(K - S_T)^+$

Fundamental theorem of asset pricing:

$$\text{Price of the option} = \mathbb{E}^*[c(S_0, S_T)].$$

$$\inf_{X \sim \mu, \ Y \sim \nu} \mathbb{E}^*[c(X, Y)] \leq \mathbb{E}^*[c(S_0, S_T)] \leq \sup_{X \sim \mu, \ Y \sim \nu} \mathbb{E}^*[c(X, Y)]$$
Hypothesis: the payoff is of the form $c(S_0, S_T)$. Examples:

- Payoff from buying a call: $(S_T - K)^+$
- Payoff from buying a put: $(K - S_T)^+$

Fundamental theorem of asset pricing:

$$\text{Price of the option} = \mathbb{E}^*[c(S_0, S_T)].$$

$$\inf_{X \sim \mu \atop Y \sim \nu} \mathbb{E}^*[c(X, Y)] \leq \mathbb{E}^*[c(S_0, S_T)] \leq \sup_{X \sim \mu \atop Y \sim \nu} \mathbb{E}^*[c(X, Y)]$$

$$\mathbb{E}^*[Y|X] = X \quad \mathbb{E}^*[Y|X] = X$$
How to solve the Martingale Optimal Transport problem?

Hypothesis: \(\mu = \sum_{i=1}^{I} p_i \delta_{x_i}, \nu = \sum_{j=1}^{J} q_j \delta_{y_j} \)

Then the MOT problem becomes

\[
\inf \sum_{i=1}^{I} \sum_{j=1}^{J} r_{i,j} c(x_i, y_j),
\]

subject to

- \(r_{i,j} \geq 0 \)
- \(\sum_{i=1}^{I} r_{i,j} = q_j \)
- \(\sum_{j=1}^{J} r_{i,j} = p_i \)
- \(\sum_{j=1}^{J} r_{i,j} y_j = p_i x_i \)
The optimal transport problem

The Martingale Optimal Transport Problem

A new family of martingale couplings
The convex order

Two μ, ν probability measures on \mathbb{R} are said to be in the convex order, denoted $\mu \leq_{cx} \nu$, if

$$\forall \varphi : \mathbb{R} \to \mathbb{R} \text{ convex}, \quad \int_{\mathbb{R}} \varphi(x) \mu(dx) \leq \int_{\mathbb{R}} \varphi(y) \nu(dy).$$

Theorem (Strassen (1964))

Let μ, ν be two probability measures on \mathbb{R}. Then

$$\exists X \sim \mu, Y \sim \nu, \; \mathbb{E}[Y|X] = X \; \text{a.s.} \iff \mu \leq_{cx} \nu.$$
Main Theorem

- \(\mu \) and \(\nu \) : two probability measures on \(\mathbb{R} \) such that \(\mu \leq_{cx} \nu \)
- Wasserstein distance:

\[
W_1(\mu, \nu) = \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[|X - Y|] = \mathbb{E}[|F_\mu^{-1}(U) - F_\nu^{-1}(U)|],
\]

where \(U \sim \mathcal{U}((0, 1)) \) and \(F_\eta^{-1}(u) = \inf\{x \in \mathbb{R} \mid \eta((-\infty, x]) \geq u\} \).
- "Martingale-Wasserstein" distance:

\[
M_1(\mu, \nu) = \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[|X - Y|].
\]

Theorem (Stability inequality)

\[
W_1(\mu, \nu) \leq M_1(\mu, \nu) \leq 2W_1(\mu, \nu).
\]
A new family of martingale couplings

- Family \(\{(X^Q, Y^Q) \mid Q \in Q\} \) parametrised by a set \(Q \) of probability measures on \((0, 1)^2\)

Proposition

\[
\forall Q \in Q, \quad \begin{cases}
X^Q \sim \mu \\
Y^Q \sim \nu \\
\mathbb{E}[Y^Q|X^Q] = X^Q \\
\mathbb{E}[|X^Q - Y^Q|] \leq 2\mathcal{W}_1(\mu, \nu)
\end{cases}
\]
Some Properties

- $|Q| = +\infty$
- $|\text{supp } \nu| \leq 2 \implies$ unique coupling
- μ and ν with densities \implies infinitely many couplings
- generalisation to the sub- and supermartingale case
The Inverse Transform Martingale Coupling

- \(\Psi_\pm(u) = \int_0^u (F^{-1}_\mu - F^{-1}_\nu) \pm(v) \, dv \)
- \(\varphi(u) = \begin{cases}
\Psi_-(\Psi_+(u)) & \text{if } F^{-1}_\mu(u) > F^{-1}_\nu(u) \\
\Psi_+(\Psi_-(u)) & \text{if } F^{-1}_\mu(u) < F^{-1}_\nu(u) \\
u & \text{if } F^{-1}_\nu(u) = F^{-1}_\mu(u)
\end{cases} \)
- \(U, V \sim \mathcal{U}((0,1)) \) independent

\[
X^Q = F^{-1}_\mu(U) \\
Y^Q = F^{-1}_\nu(U)1_{\{V \geq \frac{F^{-1}_\mu(U) - F^{-1}_\nu(U)}{F^{-1}_\nu(\varphi(U)) - F^{-1}_\nu(U)}\}} + F^{-1}_\nu(\varphi(U))1_{\{V \leq \frac{F^{-1}_\mu(U) - F^{-1}_\nu(U)}{F^{-1}_\nu(\varphi(U)) - F^{-1}_\nu(U)}\}}
\]