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Motivation
How to compute very complex composite materials?

A composite material used in the aeronautics industry, reproduced
from Anantharaman, A., Costaouec, R., Bris, C. L., Legoll, F.,

Thomines, F. (2012)
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Homogenization problem

Consider the linear, elliptic problem

−div(Aε∇uε) = f ,

where Aε(x) is a symmetric definite positive oscillatory matrix-valued
coefficient that varies at the characteristic scale ε (and may be random).

We have a sequence of similar problems parametrized by a lengthsclae ε.

Homogenization amounts to perform an asymptotic analysis when ε→ 0:

lim
ε→0

uε = u?.
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Homogenization problem

If ε is asymptotically small, the solution uε can be accurately approximated by
the solution to the homogenized problem

−div(A?∇u?) = f .

TWO CONNECTED BUT DIFFERENT QUESTIONS:
How to find u?? How to find A??

We know that if A is periodic, then A

(
x

ε

)
−−−→
ε→0

〈A〉 = 1
|Y |

∫
Y
A weakly.

First naive idea: A? = 〈A〉?

NO1

For convenient Aε the homogenized coefficient A? can be evaluated
beforehand by solving the corrector problem (we will see now 2 different
examples). However, computing the corrector function (and hence A?) can be
expensive and difficult.

1see, for instance, Anantharaman, A., Costaouec, R., Bris, C. L., Legoll, F.,
Thomines, F. (2012)
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Homogenization problem: periodic example

−div

(
Aper

(
x

ε

)
∇uε

)
= f in Ω,

uε = 0, on ∂Ω,

where a coefficient Aper (y) is Y -periodic and satisfies the classical boundedness
and coercivity conditions: ∀ξ ∈Rn and for two constants c1 > 0, c2 > 0

Aper (y)ξ ·ξ≥ c1|ξ|2,
∣∣Aper (y)ξ

∣∣≤ c2|ξ| a.e. on Ω.

Corresponding homogenized equation:{−div(A?∇u?) = f in Ω,

u? = 0, on ∂Ω,
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Homogenization problem: periodic example
Periodic checkerboard geometry

Figure 1: Periodic coefficient Aper . Each square is of size ε×ε. On the
red squares, Aper (x)= 1. On the yellow squares, Aper (x)= 100.
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Homogenization problem: periodic example

Effective coefficient

A?ij =
∫
Y
[(Aper (y)∇ywi ) ·ej +Aper ij (y)]dy ,

where wi is the corrector function that we obtain from the microscopic problem
(called the corrector problem in the terminology of homogenization theory):{−divy (Aper (y)(ei +∇ywi (y))) = 0 in Y ,

y →wi (y), Y −periodic,
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Homogenization: random problem example

−div

(
A

(
x

ε
,ω

)
∇uε(x ,ω)

)
= f in Ω,

uε(x ,ω)= 0, on ∂Ω,

where the coefficient A now is random (and as before bounded and coercive).

+ Stationarity: For any k ∈Zd , A(x , ·) and A(x+k , ·) share the same probability
distribution.
+ Ergodic property: space average ' average over realizations.

Homogenized problem {−div(A?∇u?) = f in Ω,

u? = 0, on ∂Ω,

where A? is the deterministic and constant homogenized coefficient.
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Homogenization: random checkerboard

Figure 2: Random coefficient A. Each square is of size ε×ε. On the red
squares, aj (x)= 1. On the blue squares, aj (x)= 100.

A(x ,ω)= ∑
j∈Z2

aj (ω) 1j+Q(x), (1)

where Q = (0,1)2 is the unit square, and where aj are i.i.d. random variables.
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Homogenization: random problem example

Effective coefficient

A?ij = E
(∫

Q
[(A(y , ·)∇ywi (y , ·)) ·ej +Aij (y , ·)]dy

)
,

where for any p ∈Rd the corrector function wp is obtained from the
microscopic problem:

−div(A(y ,ω)(ei +∇wi (y ,ω))) = 0 a.s. in Rd ,

∇wp is stationary ,

E

(∫
Q
∇wp(y , ·)dy

)
.

⇒ computing the corrector function (and hence A?) can be expensive and
difficult.
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Motivation for an alternative approach

It is possible to determine A? upon solving a minimization problem of the type

Iε = inf
A constant matrix

sup
f of unit norm

∥∥∥u(Aε, f )−u(A, f )
∥∥∥
L2

where u(Aε, f ) and u(A, f ) respectively denote the solution of the diffusion
problem with coefficient matrix Aε and A, for the same right-hand side f .

Ï Le Bris, C.; Legoll F.; Lemaire, S., ESAIM: Control, Optimisation and
Calculus of Variations, 24(4), 1345-1380 (2018)

The approach is based upon the theoretical result that as ε→ 0, the minimum
of Iε is achieved at the homogenized matrix A?. The approach does not require
to solve a corrector problem !
A similar idea, based on a minimization problem to capture A? is described
now.
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The Arlequin method

We choose a specific minimization problem based on the Arlequin coupling
method:

Ï Cottereau, R., Int. J. Numer. Methods Eng. 95, No. 1, 71-90 (2013)

2 models + 3 domains

We have a part of the domain D where only the effective model (k) is defined,
a part of the domain Df where only the fine model (kε) is defined and a part of
the domain Dc where both models are defined and over which they are coupled.
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Arlequin problem

Consists in considering the following minimization problem:

inf

{
E (u,uε), u ∈H1(D∪Dc ), u(x)= x1 on Γ,

uε ∈H1(Dc ∪Df ), C(u−uε,φ)= 0 for any φ ∈H1(Dc )

}
, (2)

where the energy E is the sum of the contributions of each of the three
subdomains:

E (u,u)= 1
2

∫
D
k |∇u(x)|2+ 1

2

∫
Df

kε(x) |∇u(x)|2

+ 1
2

∫
Dc

(1
2
k |∇u(x)|2+ 1

2
kε(x) |∇uε(x)|2

)
. (3)
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Arlequin problem

Find u ∈V , uε ∈W , ψ ∈W c such that
A
k
(u,v)+C(ψ,v)= 0, ∀v ∈V |v(Γ)=0,

Akε(uε,vε)−C(ψ,vε)= 0, ∀vε ∈W , (∗)
C(φ,uε−u)= 0, ∀φ ∈W c .

with u|Γ = x1 and V =H1(D∪Dc ), W =H1(Dc ∪Df ), W c =H1(Dc ),

A
k
(u,v)=

∫
D
k∇u∇v +

∫
Dc

1
2
α2(x)k∇u∇v ,

Akε(u,v)=
∫
Dc

1
2
kε∇u∇v +

∫
Df

kε∇u∇v ,

C(u,v)=
∫
Dc

∇u∇v +
∫
Dc

uv .
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Finite element approximation of the Arlequin problem

Find uH ∈VH , uhε ∈Wh and ψH ∈W c
H

such that



A
k
(uH ,vH )+C(ψH ,vH )= 0, ∀vH ∈VH |

vH(Γ)=0,

Akε(u
h
ε ,vhε )−C(ψH ,vhε )= 0, ∀vhε ∈Wh, (∗∗)

C(φH ,uhε −uH )= 0, ∀φH ∈W c
H

.

,

with uH |Γ = x1 and VH =P1
H
(D∪Dc ), Wh =P1

h
(Dc ∪Df ), W c

H
=P1

H
(Dc ). This

corresponds to the following linear system:

 A 0 CM

0 Aε −Cε
CT
M

−CT
ε 0


 u

uε
ψ

=

fM0
0

 . (4)
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Minimization problem

Key idea

The solution of the coupled Arlequin problem with the homogenized model
(k?) and the heterogeneous model (kε) "=" the solution of the homogenized
model (k?) alone.

Stated otherwise, we consider the minimization problem

Iε,H ,h = inf
{
Jε,H ,h(k), k ∈ (0,∞)

}
, (5)

with
Jε,H ,h(k)=

∫
D∪Dc

∣∣∇uH
k ,kε

−∇uref
∣∣2 =

∫
D∪Dc

∣∣∇uH
k ,kε

−e1
∣∣2, (6)

where we impose uH
k ,kε

= x1 at the boundary of the "effective" domain D.

Lemma
If k = k?, then the solution to Arlequin system is u(x)= x1 in D∪Dc and
u0(x)= x1 in Dc ∪Df .
Conversely, if (u,u0) is a solution to Arlequin system with u(x)= x1 in D∪Dc ,
then u0(x)= x1 in Dc ∪Df and k = k?.
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Consistency

Assume that we are in 1D, ε= 0 and k = kε = k?. If u = x1, uε = x1 then the
second line of the Arlequin system can be simplified as follows:

1
2

∫
Dc

k?(vhε )
′+

∫
Df

k?(vhε )
′−

∫
Dc

(ψH )′(vhε )′−
∫
Dc

ψHvhε = 0, ∀vhε ∈Wh.

Whence we obtain that ψH is the solution of the exact lagrange multiplier
problem: 

−∆ψ+ψ= 0, in Dc ,

∇ψ ·n= 1
2
k?, on ∂Dc .

Remedy

Insert exact lagrange multiplier in WC
H

space = Wenriched
H

.
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Consistency

Inserting LM in FEM space improves accuracy at no extra cost.
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Variational formulation + minimization problem

Find uH ∈VDirBC
H

, uhε ∈Wh and ψH ∈W enrich
H

such that


∀vH ∈V 0

H
, A

k
(uH ,vH )+C(vH ,ψH )= 0,

∀vh ∈Vh, Akε(u
h
ε ,vh)−C(vh,ψH )= 0,

∀φH ∈W enrich
H

, C(uH −uhε ,φH )= 0.

(7)

+ the minimization problem

Iε,H ,h = inf
{
Jε,H ,h(k), k ∈ (0,∞)

}
, (8)

with
Jε,H ,h(k)=

∫
D∪Dc

∣∣∇uH
k ,kε

−∇uref
∣∣2 =

∫
D∪Dc

∣∣∇uH
k ,kε

−e1
∣∣2, (9)

here e1 is the first canonical vector.
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Mathematical analysis

Following properties of the approach:

(i) for a fixed value of ε, there exists an optimized value of k, denoted
by k

opt
ε , where the cost function (3) attains its minimum.

(ii) as ε→ 0, the optimal value k
opt
ε converges to the homogenized

coefficient k?.
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Conclusions

Ï Detailed numerical and mathematical analysis of the approach
Ï Various improvements of the algorithm: post treatment to

recover corrector function, selection approach for random
realizations, good choice of initial guess [see GLL, 2020].

Ï More difficult matrix case (in progress)
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