# Practical computation of homogenized coefficients

### **Olga GORYNINA**

#### joint work with Claude LE BRIS and Frederic LEGOLL

Ecole des Ponts & Inria MATHERIALS team

Inria Junior Seminar

15.12.2020

# Outline

- Homogenization problem
- Alternative approach: Arlequin method
- Alternative approach: Minimization problem
- Analysis of the approach
- Conclusions

### Motivation

How to compute very complex composite materials?



A composite material used in the aeronautics industry, reproduced from Anantharaman, A., Costaouec, R., Bris, C. L., Legoll, F., Thomines, F. (2012)

### Homogenization problem

Consider the linear, elliptic problem

 $-{\rm div}\big({A}_{\varepsilon}\nabla u_{\varepsilon}\big)=f,$ 

where  $A_{\varepsilon}(x)$  is a symmetric definite positive oscillatory matrix-valued coefficient that varies at the characteristic scale  $\varepsilon$  (and may be random). We have a sequence of similar problems parametrized by a lengthsclae  $\varepsilon$ . Homogenization amounts to perform an asymptotic analysis when  $\varepsilon \rightarrow 0$ :

$$\lim_{\varepsilon\to 0}u_\varepsilon=u^\star.$$

### Homogenization problem

If  $\varepsilon$  is asymptotically small, the solution  $u_\varepsilon$  can be accurately approximated by the solution to the homogenized problem

$$-\operatorname{div}(A^{\star}\nabla u^{\star})=f.$$

### TWO CONNECTED BUT DIFFERENT QUESTIONS:

How to find  $u^*$ ? How to find  $A^*$ ?

We know that if A is periodic, then  $A\left(\frac{x}{\varepsilon}\right) \xrightarrow[\varepsilon \to 0]{} \langle A \rangle = \frac{1}{|Y|} \int_{Y} A$  weakly.

First naive idea:  $A^* = \langle A \rangle$ ?

<sup>&</sup>lt;sup>1</sup>see, for instance, Anantharaman, A., Costaouec, R., Bris, C. L., Legoll, F., Thomines, F. (2012)

### Homogenization problem

If  $\varepsilon$  is asymptotically small, the solution  $u_\varepsilon$  can be accurately approximated by the solution to the homogenized problem

$$-\operatorname{div}(A^{\star}\nabla u^{\star})=f.$$

### TWO CONNECTED BUT DIFFERENT QUESTIONS:

How to find  $u^*$ ? How to find  $A^*$ ?

We know that if A is periodic, then 
$$A\left(\frac{x}{\varepsilon}\right) \xrightarrow[\varepsilon \to 0]{} \langle A \rangle = \frac{1}{|Y|} \int_Y A$$
 weakly.

First naive idea:  $A^* = \langle A \rangle$ ? NO<sup>1</sup>

For convenient  $A_{\varepsilon}$  the homogenized coefficient  $A^*$  can be evaluated beforehand by solving the corrector problem (we will see now 2 different examples). However, computing the corrector function (and hence  $A^*$ ) can be expensive and difficult.

<sup>1</sup>see, for instance, Anantharaman, A., Costaouec, R., Bris, C. L., Legoll, F., Thomines, F. (2012)

### Homogenization problem: periodic example

$$\begin{cases} -\operatorname{div}\left(A_{per}\left(\frac{x}{\varepsilon}\right)\nabla u_{\varepsilon}\right) = f & \text{ in } \Omega, \\ u_{\varepsilon} = 0, & \text{ on } \partial\Omega, \end{cases}$$

where a coefficient  $A_{per}(y)$  is Y-periodic and satisfies the classical boundedness and coercivity conditions:  $\forall \xi \in \mathbb{R}^n$  and for two constants  $c_1 > 0$ ,  $c_2 > 0$ 

$$A_{per}(y)\xi \cdot \xi \ge c_1 |\xi|^2$$
,  $|A_{per}(y)\xi| \le c_2 |\xi|$  a.e. on  $\Omega$ .

Corresponding homogenized equation:

$$\begin{cases} -\operatorname{div}(A^{\star} \nabla u^{\star}) = f & \text{in } \Omega, \\ u^{\star} = 0, & \text{on } \partial\Omega, \end{cases}$$

# Homogenization problem: periodic example

Periodic checkerboard geometry



Figure 1: Periodic coefficient  $A_{per}$ . Each square is of size  $\varepsilon \times \varepsilon$ . On the red squares,  $A_{per}(x) = 1$ . On the yellow squares,  $A_{per}(x) = 100$ .

### Homogenization problem: periodic example

Effective coefficient

$$A^{\star}_{ij} = \int_{Y} [(A_{per}(y) \nabla_{y} w_{i}) \cdot e_{j} + A_{perij}(y)] dy,$$

where  $w_i$  is the corrector function that we obtain from the microscopic problem (called the corrector problem in the terminology of homogenization theory):

$$\begin{cases} -\operatorname{div}_{y} \left( A_{per}(y) \left( e_{i} + \nabla_{y} w_{i}(y) \right) \right) = 0 & \text{ in } Y, \\ y \to w_{i}(y), & Y - \text{periodic,} \end{cases}$$

## Homogenization: random problem example

$$\begin{cases} -\operatorname{div}\left(A\left(\frac{x}{\varepsilon},\omega\right)\nabla u_{\varepsilon}(x,\omega)\right) = f & \text{ in } \Omega, \\ u_{\varepsilon}(x,\omega) = 0, & \text{ on } \partial\Omega, \end{cases}$$

where the coefficient A now is random (and as before bounded and coercive).

+ Stationarity: For any  $k \in \mathbb{Z}^d$ ,  $A(x, \cdot)$  and  $A(x+k, \cdot)$  share the same probability distribution. + Ergodic property: space average  $\simeq$  average over realizations.

Homogenized problem

$$\begin{cases} -\operatorname{div}(A^{\star} \nabla u^{\star}) = f & \text{in } \Omega, \\ u^{\star} = 0, & \text{on } \partial\Omega, \end{cases}$$

where  $A^{\star}$  is the deterministic and constant homogenized coefficient.

# Homogenization: random checkerboard



Figure 2: Random coefficient A. Each square is of size  $\varepsilon \times \varepsilon$ . On the red squares,  $a_i(x) = 1$ . On the blue squares,  $a_i(x) = 100$ .

$$A(x,\omega) = \sum_{j \in \mathbb{Z}^2} a_j(\omega) \ \mathbf{1}_{j+Q}(x), \tag{1}$$

where  $Q = (0,1)^2$  is the unit square, and where  $a_j$  are i.i.d. random variables.

### Homogenization: random problem example

Effective coefficient

$$A^{\star}_{ij} = \mathbb{E}\left(\int_{Q} \left[ (A(y, \cdot) \nabla_{y} w_{i}(y, \cdot)) \cdot e_{j} + A_{ij}(y, \cdot) \right] dy \right),$$

where for any  $p \in \mathbb{R}^d$  the corrector function  $w_p$  is obtained from the microscopic problem:

$$\begin{cases} -\operatorname{div}(A(y,\omega)(e_i + \nabla w_i(y,\omega))) = 0 & \text{ a.s. in } \mathbb{R}^d, \\ \nabla w_p \text{ is stationary }, \\ \mathbb{E}\left(\int_Q \nabla w_p(y,\cdot)dy\right). \end{cases}$$

 $\Rightarrow$  computing the corrector function (and hence  $A^{\star}$ ) can be expensive and difficult.

# Motivation for an alternative approach

It is possible to determine  $A^*$  upon solving a minimization problem of the type

$$I_{\varepsilon} = \inf_{\overline{A} \text{ constant matrix } f \text{ of unit norm}} \left\| u(A_{\varepsilon}, f) - u(\overline{A}, f) \right\|_{L^{2}}$$

where  $u(A_{\varepsilon}, f)$  and  $u(\overline{A}, f)$  respectively denote the solution of the diffusion problem with coefficient matrix  $A_{\varepsilon}$  and  $\overline{A}$ , for the same right-hand side f.

Le Bris, C.; Legoll F.; Lemaire, S., ESAIM: Control, Optimisation and Calculus of Variations, 24(4), 1345-1380 (2018)

The approach is based upon the theoretical result that as  $\varepsilon \to 0$ , the minimum of  $I_{\varepsilon}$  is achieved at the homogenized matrix  $A^*$ . The approach does not require to solve a corrector problem !

A similar idea, based on a minimization problem to capture  $A^{\star}$  is described now.

### The Arlequin method

We choose a specific minimization problem based on the Arlequin coupling method:

► Cottereau, R., Int. J. Numer. Methods Eng. 95, No. 1, 71-90 (2013)





#### 2 models + 3 domains

We have a part of the domain D where only the effective model  $(\overline{k})$  is defined, a part of the domain  $D_f$  where only the fine model  $(k_{\varepsilon})$  is defined and a part of the domain  $D_c$  where both models are defined and over which they are coupled.

# Arlequin problem



Consists in considering the following minimization problem:

$$\inf \left\{ \begin{array}{cc} \mathscr{E}(\overline{u}, u_{\varepsilon}), & \overline{u} \in H^{1}(D \cup D_{c}), & \overline{u}(x) = x_{1} \text{ on } \Gamma, \\ u_{\varepsilon} \in H^{1}(D_{c} \cup D_{f}), & C(\overline{u} - u_{\varepsilon}, \phi) = 0 \text{ for any } \phi \in H^{1}(D_{c}) \end{array} \right\},$$
(2)

where the energy  $\ensuremath{\mathscr{E}}$  is the sum of the contributions of each of the three subdomains:

$$\mathscr{E}(\overline{u},u) = \frac{1}{2} \int_{D} \overline{k} |\nabla \overline{u}(x)|^{2} + \frac{1}{2} \int_{D_{f}} k_{\varepsilon}(x) |\nabla u(x)|^{2} + \frac{1}{2} \int_{D_{c}} \left(\frac{1}{2} \overline{k} |\nabla \overline{u}(x)|^{2} + \frac{1}{2} k_{\varepsilon}(x) |\nabla u_{\varepsilon}(x)|^{2}\right).$$
(3)

### Arlequin problem

Find 
$$\overline{u} \in V$$
,  $u_{\varepsilon} \in W$ ,  $\psi \in W^{c}$  such that  

$$\begin{cases}
\overline{A}_{\overline{k}}(\overline{u}, \overline{v}) + C(\psi, \overline{v}) = 0, & \forall \overline{v} \in V|_{\overline{v}(\Gamma)=0}, \\
A_{k_{\varepsilon}}(u_{\varepsilon}, v_{\varepsilon}) - C(\psi, v_{\varepsilon}) = 0, & \forall v_{\varepsilon} \in W, \\
C(\phi, u_{\varepsilon} - \overline{u}) = 0, & \forall \phi \in W^{c}.
\end{cases}$$



with 
$$\underline{\overline{u}}|_{\Gamma} = x_1$$
 and  $V = H^1(D \cup D_c)$ ,  $W = H^1(D_c \cup D_f)$ ,  $W^c = H^1(D_c)$ ,

$$\overline{A}_{\overline{k}}(u,v) = \int_{D} \overline{k} \nabla u \nabla v + \int_{D_{c}} \frac{1}{2} \alpha_{2}(x) \overline{k} \nabla u \nabla v,$$
  

$$A_{k_{\varepsilon}}(u,v) = \int_{D_{c}} \frac{1}{2} k_{\varepsilon} \nabla u \nabla v + \int_{D_{f}} k_{\varepsilon} \nabla u \nabla v,$$
  

$$C(u,v) = \int_{D_{c}} \nabla u \nabla v + \int_{D_{c}} uv.$$

### Finite element approximation of the Arlequin problem

Find 
$$\overline{u}^{H} \in V_{H}$$
,  $u_{\varepsilon}^{h} \in W_{h}$  and  $\psi^{H} \in W_{H}^{c}$  such that  

$$\begin{cases}
\overline{A}_{\overline{k}}(\overline{u}^{H}, \overline{v}^{H}) + C(\psi^{H}, \overline{v}^{H}) = 0, & \forall \overline{v}^{H} \in V_{H}|_{\overline{v}^{H}(\Gamma) = 0}, \\
A_{k_{\varepsilon}}(u_{\varepsilon}^{h}, v_{\varepsilon}^{h}) - C(\psi^{H}, v_{\varepsilon}^{h}) = 0, & \forall v_{\varepsilon}^{h} \in W_{h}, \quad (**) \\
C(\phi^{H}, u_{\varepsilon}^{h} - \overline{u}^{H}) = 0, & \forall \phi^{H} \in W_{H}^{c}.
\end{cases}$$



with  $\overline{u}^H|_{\Gamma} = x_1$  and  $V_H = \mathbb{P}^1_H(D \cup D_c)$ ,  $W_h = \mathbb{P}^1_h(D_c \cup D_f)$ ,  $W_H^c = \mathbb{P}^1_H(D_c)$ . This corresponds to the following linear system:

$$\begin{bmatrix} \overline{A} & 0 & C_{M} \\ 0 & A_{\varepsilon} & -C_{\varepsilon} \\ C_{M}^{T} & -C_{\varepsilon}^{T} & 0 \end{bmatrix} \begin{bmatrix} \overline{u} \\ u_{\varepsilon} \\ \psi \end{bmatrix} = \begin{bmatrix} f_{M} \\ 0 \\ 0 \end{bmatrix}.$$
 (4)

### Minimization problem

### Key idea

The solution of the coupled Arlequin problem with the homogenized model  $(k^*)$  and the heterogeneous model  $(k_{\varepsilon})$  "=" the solution of the homogenized model  $(k^*)$  alone.

Stated otherwise, we consider the minimization problem

$$I_{\varepsilon,H,h} = \inf \left\{ J_{\varepsilon,H,h}(\overline{k}), \quad \overline{k} \in (0,\infty) \right\},$$
(5)

with

$$J_{\varepsilon,H,h}(\overline{k}) = \int_{D \cup D_c} |\nabla \overline{u}_{\overline{k},k_{\varepsilon}}^H - \nabla u_{\text{ref}}|^2 = \int_{D \cup D_c} |\nabla \overline{u}_{\overline{k},k_{\varepsilon}}^H - e_1|^2, \quad (6)$$

where we impose  $\overline{u}_{\overline{k},k_{\varepsilon}}^{H} = x_{1}$  at the boundary of the "effective" domain *D*.

### Minimization problem

### Key idea

The solution of the coupled Arlequin problem with the homogenized model  $(k^*)$  and the heterogeneous model  $(k_{\varepsilon})$  "=" the solution of the homogenized model  $(k^*)$  alone.

Stated otherwise, we consider the minimization problem

$$I_{\varepsilon,H,h} = \inf \left\{ J_{\varepsilon,H,h}(\overline{k}), \quad \overline{k} \in (0,\infty) \right\},$$
(5)

with

$$J_{\varepsilon,H,h}(\overline{k}) = \int_{D \cup D_c} |\nabla \overline{u}_{\overline{k},k_{\varepsilon}}^H - \nabla u_{\text{ref}}|^2 = \int_{D \cup D_c} |\nabla \overline{u}_{\overline{k},k_{\varepsilon}}^H - e_1|^2, \quad (6)$$

where we impose  $\overline{u}_{\overline{k},k_{\varepsilon}}^{H} = x_{1}$  at the boundary of the "effective" domain *D*.

#### Lemma

If  $\overline{k} = k^*$ , then the solution to Arlequin system is  $\overline{u}(x) = x_1$  in  $D \cup D_c$  and  $u_0(x) = x_1$  in  $D_c \cup D_f$ . Conversely, if  $(\overline{u}, u_0)$  is a solution to Arlequin system with  $\overline{u}(x) = x_1$  in  $D \cup D_c$ , then  $u_0(x) = x_1$  in  $D_c \cup D_f$  and  $\overline{k} = k^*$ .

### Consistency

Assume that we are in 1D,  $\varepsilon = 0$  and  $\overline{k} = k_{\varepsilon} = k^{\star}$ . If  $\overline{u} = x_1$ ,  $u_{\varepsilon} = x_1$  then the second line of the Arlequin system can be simplified as follows:

$$\frac{1}{2}\int_{D_c} k^{\star}(v_{\varepsilon}^h)' + \int_{D_f} k^{\star}(v_{\varepsilon}^h)' - \int_{D_c} (\psi^H)' (v_{\varepsilon}^h)' - \int_{D_c} \psi^H v_{\varepsilon}^h = 0, \quad \forall v_{\varepsilon}^h \in W_h.$$

Whence we obtain that  $\psi^H$  is the solution of the exact lagrange multiplier problem:

$$\begin{cases} -\Delta \psi + \psi = 0, & \text{in } D_c, \\ \nabla \psi \cdot n = \frac{1}{2} k^*, & \text{on } \partial D_c. \end{cases}$$

### Remedy

Insert exact lagrange multiplier in  $W_H^C$  space =  $W_H^{enriched}$ .

# Consistency



Inserting LM in FEM space improves accuracy at no extra cost.

# Variational formulation + minimization problem

Find 
$$\overline{u}^{H} \in V_{H}^{DirBC}$$
,  $u_{\varepsilon}^{h} \in W_{h}$  and  $\psi^{H} \in W_{H}^{enrich}$  such that  

$$\begin{cases}
\forall \overline{v}^{H} \in V_{H}^{0}, & \overline{A}_{\overline{k}}(\overline{u}^{H}, \overline{v}^{H}) + C(\overline{v}^{H}, \psi^{H}) = 0, \\
\forall v^{h} \in V_{h}, & A_{k_{\varepsilon}}(u_{\varepsilon}^{h}, v^{h}) - C(v^{h}, \psi^{H}) = 0, \\
\forall \phi^{H} \in W_{H}^{enrich}, & C(\overline{u}^{H} - u_{\varepsilon}^{h}, \phi^{H}) = 0.
\end{cases}$$
(7)

+ the minimization problem

$$I_{\varepsilon,H,h} = \inf \left\{ J_{\varepsilon,H,h}(\overline{k}), \quad \overline{k} \in (0,\infty) \right\},$$
(8)

with

$$J_{\varepsilon,H,h}(\overline{k}) = \int_{D \cup D_c} \left| \nabla \overline{u}_{\overline{k},k_{\varepsilon}}^H - \nabla u_{\text{ref}} \right|^2 = \int_{D \cup D_c} \left| \nabla \overline{u}_{\overline{k},k_{\varepsilon}}^H - e_1 \right|^2, \tag{9}$$

here  $e_1$  is the first canonical vector.

## Mathematical analysis

Following properties of the approach:

- (i) for a fixed value of ε, there exists an optimized value of k, denoted by k<sub>ε</sub><sup>opt</sup>, where the cost function (3) attains its minimum.
- (ii) as  $\varepsilon \to 0$ , the optimal value  $k_{\varepsilon}^{opt}$  converges to the homogenized coefficient  $k^{\star}$ .

# Conclusions

- Detailed numerical and mathematical analysis of the approach
- Various improvements of the algorithm: post treatment to recover corrector function, selection approach for random realizations, good choice of initial guess [see GLL, 2020].
- More difficult matrix case (in progress)

### References

- Gorynina, O.; Le Bris, C.; Legoll, F., Some remarks on a coupling method for the practical computation of homogenized coefficients. arXiv preprint2005.09760 (2020).
- Gorynina, O.; Le Bris, C.; Legoll, F., Mathematical analysis of a cou-pling method for the practical computation of homogenized coefficients, in preparation.
- Cottereau, R., Numerical strategy for unbiased homogenization of random materials, Int. J. Numer. Methods Eng. 95, No. 1, 71-90 (2013).
- ► Le Bris, C.; Legoll F.; Lemaire, S., On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators. ESAIM: Control, Optimisation and Calculus of Variations, 24(4), 1345-1380 (2018).

Partial support from EOARD is gratefully acknowledged