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Motivation

How to compute very complex composite materials?

A composite material used in the aeronautics industry, reproduced
from Anantharaman, A., Costaouec, R., Bris, C. L., Legoll, F.,
Thomines, F. (2012)



Homogenization problem

Consider the linear, elliptic problem

—div(Ag Vue) = f,
where Ag(x) is a symmetric definite positive oscillatory matrix-valued
coefficient that varies at the characteristic scale ¢ (and may be random).
We have a sequence of similar problems parametrized by a lengthsclae «.
Homogenization amounts to perform an asymptotic analysis when ¢ — 0:

H *
lim ug =u™.
0
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Homogenization problem

If € is asymptotically small, the solution ug can be accurately approximated by
the solution to the homogenized problem

—div(A* Vu*) = f.

TWO CONNECTED BUT DIFFERENT QUESTIONS:

How to find u*? How to find A*?

We know that if A is periodic, then A()—g) —_

e—0

1
(A) = |7|fYA weakly.

First naive idea: A* = (A)?

Lsee, for instance, Anantharaman, A., Costaouec, R., Bris, C. L., Legoll, F.,
Thomines, F. (2012)



Homogenization problem

If € is asymptotically small, the solution ug can be accurately approximated by
the solution to the homogenized problem

—div(A* Vu*) = f.

TWO CONNECTED BUT DIFFERENT QUESTIONS:
How to find u*? How to find A*?

X
We k that if Ai iodic, then A|—] — A kl
e know that if A is periodic, then (E) =" (A) |Y|f weakly.

First naive idea: A* = (4)? NO1

For convenient A; the homogenized coefficient A* can be evaluated
beforehand by solving the corrector problem (we will see now 2 different
examples). However, computing the corrector function (and hence A*) can be
expensive and difficult.

Lsee, for instance, Anantharaman, A., Costaouec, R., Bris, C. L., Legoll, F.,
Thomines, F. (2012)



Homogenization problem: periodic example

{—div(Aper(;—() vUE) =f inQ,

ug =0, on 09,

where a coefficient Aper(y) is Y-periodic and satisfies the classical boundedness
and coercivity conditions: V¢ eR" and for two constants ¢; >0, ¢ >0

Aper(}’)f'fZCﬂflz, |Aper(y)f| SC2|£| a.e. on Q.

Corresponding homogenized equation:

—div(A*Vu*)=f inQ,
u* =0, on 8Q,



Homogenization problem: periodic example

Periodic checkerboard geometry

Figure 1: Periodic coefficient Ape,. Each square is of size e x£. On the
red squares, Aper(x)=1. On the yellow squares, Aper(x)=100.
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Homogenization problem: periodic example

Effective coefficient
Arjj= fY[(Aper(Y)VyWi) -ej + Aperij(¥)]dy,

where w; is the corrector function that we obtain from the microscopic problem
(called the corrector problem in the terminology of homogenization theory):

~divy (Aper(y) (e +Tywi(y))) =0 in ¥,
y = wi(y), Y — periodic,



Homogenization: problem example

{—div(A(f,a)) Vug(x,w)) =f inQ,

ug(x, w) :EO, on 0Q,

where the coefficient A now is random (and as before bounded and coercive).
+ . For any ke 29, A(x,-) and A(x+k,-) share the same probability

distribution. L
+ . space average = average over realizations.

Homogenized problem
{—div(A*Vu*) =f inQ,

u* = O, on GQ,

where A* is the deterministic and constant homogenized coefficient.



Homogenization: random checkerboard

Figure 2: Random coefficient A. Each square is of size € x . On the red
squares, aj(x)=1. On the blue squares, aj(x)=100.

Alxw)= ) aj(w) 1j,q(x), (1)

jez?

where @ = (0,1)? is the unit square, and where aj are i.i.d. random variables.
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Homogenization: problem example

Effective coefficient
Ay =€ ([ A9y iy, )¢+ Azl ),

where for any peRY the corrector function wp is obtained from the
microscopic problem:
—div(A(y,w) (ej + Vw;(y,»))) =0 as. in RY,

Vwp is stationary ,
[E(f Vw, (y,-)dy).
Q P

= computing the corrector function (and hence A*) can be expensive and
difficult.



Motivation for an

It is possible to determine A* upon solving a minimization problem of the type

e fuaen-in],

f of unit norm

where u(Ag, f) and u(A,f) respectively denote the solution of the diffusion
problem with coefficient matrix A; and A, for the same right-hand side f.

» Le Bris, C.; Legoll F.; Lemaire, S., ESAIM: Control, Optimisation and
Calculus of Variations, 24(4), 1345-1380 (2018)

The approach is based upon the theoretical result that as € — 0, the minimum
of ¢ is achieved at the homogenized matrix A*. The approach does not require
to solve a corrector problem !

A similar idea, based on a minimization problem to capture A* is described
now.



The Arlequin method

We choose a specific minimization problem based on the Arlequin coupling
method:
» Cottereau, R., Int. J. Numer. Methods Eng. 95, No. 1, 71-90 (2013)

2 models + 3 domains

We have a part of the domain D where only the effective model (k) is defined,
a part of the domain Df where only the fine model (k¢) is defined and a part of
the domain D, where both models are defined and over which they are coupled.
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Arlequin problem

Consists in considering the following minimization problem:

. &(T,ue), we HY(DUD), T(x)=xqonT, }
'"f{ ve € HH(DeUDy), Cliieue,) =0 for any pe HA(De) | P

where the energy & is the sum of the contributions of each of the three
subdomains:

fleu(x f ke(x)IVu(x)
2[ SKIVB)P + 5 ke () IVee()P). (3)
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Arlequin problem

Find we V, ugce W, we W€ such that
AL(GV)+C(w,v)=0, VVeViyr)o

AkE(U{-,VE)_C(w,VE)zo, Yvee W, (%)

C(¢p,u. —1) =0, Ve WE.

with Tlp = x; and V = HY(DUD.), W = HY(D.uDy), W€ =HL(D,),

Z;(u, v)=fDEVqu+fD %az(x)FVqu,

A (u,v =f

ke (u,v) b

C(u,v):f Vqu+f uv.
D. D.

1
—kgVqu+f k-VuVv,
2 Ds
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Finite element approximation of the Arlequin problem

Find @ e Vi, ul e W), and yH € W such that

Ar(@ M)+ cyH vty =0, wwhe VilgH (r)=o
Akg(uz " Ve ) ClyH,vf ) 0,

yhieW,, (%)
C(oM, ul-ay =0,

voH e W,

with 7| = and Viy =P} (DuUDc), W), =P}(DcuDy), W =PL(Dc). This
corresponds to the following linear system

A 0 Cyllu
0

u fM
Ae =G| |uel=1]01]. 4)
o -¢ o]y 0
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Minimization problem

Key idea

The solution of the coupled Arlequin problem with the homogenized model
(k*) and the heterogeneous model (k) "=" the solution of the homogenized
model (k*) alone.

Stated otherwise, we consider the minimization problem
le,Hyp = inf{Je pn(K), ke (0,00)}, (5)

with

- — 2 —H 2
J k :f vl —vu :f Vol -—e1|5, 6
E,H:h( ) DUDCI k,kE I’ef| DUDC| k,kf 1| ( )

where we impose ng =xj at the boundary of the "effective" domain D.
yRE



Minimization problem
Key idea

The solution of the coupled Arlequin problem with the homogenized model
(k*) and the heterogeneous model (k) "=" the solution of the homogenized
model (k*) alone.

Stated otherwise, we consider the minimization problem

le iy =inf {Je prn(K), K€ (0,00)}, (5)

with
- — 2 —H 2
J k :f vl —vu :f Vol -—e1|5, 6
E,H:h( ) DUDCI k,kE I’ef| DUDC| k,kf 1| ( )

where we impose ng =xj at the boundary of the "effective" domain D.
yRE

Lemma

If k = k*, then the solution to Arlequin system is U(x)=xj in DUD. and
ug(x)=x7 in Dc U Df.

Conversely, if (u,ug) is a solution to Arlequin system with t(x)=x1 in DU Dc,
then ug(x)=x1 in DcU Dy and k = k*.



Consistency

Assume that we are in 1D, e =0 and k=k. = k*. If 1=xy, 1 =x7 then the
second line of the Arlequin system can be simplified as follows:

1
i k*<v£>'+fok*(v£)’—fD( Yby - [ viv=0, vt e w,

Whence we obtain that w7 is the solution of the exact lagrange multiplier
problem:

-Ay+y =0, in De,

1
Vy-n= Ek*’ on dD..

Remedy

Insert exact lagrange multiplier in W‘,_CI space = Wf_;”iChed.



Consistency

K*
0.12 - - : :
Enriched Arlequin pfoblem ——
Arlequin problem
0.1

0.08 \
0.06 \
0.04 \

N
0.02

0
1.115 132 142 15

K
Inserting LM in FEM space improves accuracy at no extra cost.

I(K)
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Variational formulation + minimization problem

Find 7/ € VE”BC, ule Wy, and yH e WI_eI”riCh such that

vvievp, Az@! v+ c(vH yH) =0,
vvhe v, Ake(ué',vh)—C(vh,u/H)=0,

voH e wenrich, ¢ (aH - ub,¢H) = 0.
+ the minimization problem
IE,H,h = inf{Jg,H,h(F), F€ (0,00)},
with

- — 2 —H 2
J k =f vl —vu =f vuZ —e1l7,
£,H,h( ) DUDC| K ke ref| DUDC| K ke 1

here eq is the first canonical vector.

(7)

(8)

(9)



Mathematical analysis

Following properties of the approach:

(i) for a fixed value of ¢, there exists an optimized value of k, denoted
by k2P, where the cost function (3) attains its minimum.

(i) as e —0, the optimal value k2P* converges to the homogenized
coefficient k*.



Conclusions

» Detailed numerical and mathematical analysis of the approach

» Various improvements of the algorithm: post treatment to
recover corrector function, selection approach for random
realizations, good choice of initial guess [see GLL, 2020].

» More difficult matrix case (in progress)
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