Practical computation of homogenized coefficients

Olga GORYNINA

joint work with
Claude LE BRIS and Frederic LEGOLL

Ecole des Ponts \& Inria MATHERIALS team

Inria Junior Seminar
15.12.2020

Outline

- Homogenization problem
- Alternative approach: Arlequin method
- Alternative approach: Minimization problem
- Analysis of the approach
- Conclusions

Motivation

How to compute very complex composite materials?

A composite material used in the aeronautics industry, reproduced from Anantharaman, A., Costaouec, R., Bris, C. L., Legoll, F., Thomines, F. (2012)

Homogenization problem

Consider the linear, elliptic problem

$$
-\operatorname{div}\left(A_{\varepsilon} \nabla u_{\varepsilon}\right)=f
$$

where $A_{\varepsilon}(x)$ is a symmetric definite positive oscillatory matrix-valued coefficient that varies at the characteristic scale ε (and may be random). We have a sequence of similar problems parametrized by a lengthsclae ε. Homogenization amounts to perform an asymptotic analysis when $\varepsilon \rightarrow 0$:

$$
\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}=u^{\star}
$$

Homogenization problem

If ε is asymptotically small, the solution u_{ε} can be accurately approximated by the solution to the homogenized problem

$$
-\operatorname{div}\left(A^{\star} \nabla u^{\star}\right)=f
$$

TWO CONNECTED BUT DIFFERENT QUESTIONS:

How to find u^{\star} ? How to find A^{\star} ?
We know that if A is periodic, then $A\left(\frac{x}{\varepsilon}\right) \underset{\varepsilon \rightarrow 0}{\longrightarrow}\langle A\rangle=\frac{1}{|Y|} \int_{Y} A$ weakly.
First naive idea: $A^{\star}=\langle A\rangle$?

[^0]
Homogenization problem

If ε is asymptotically small, the solution u_{ε} can be accurately approximated by the solution to the homogenized problem

$$
-\operatorname{div}\left(A^{\star} \nabla u^{\star}\right)=f
$$

TWO CONNECTED BUT DIFFERENT QUESTIONS:

How to find u^{\star} ? How to find A^{\star} ?
We know that if A is periodic, then $A\left(\frac{x}{\varepsilon}\right) \underset{\varepsilon \rightarrow 0}{\longrightarrow}\langle A\rangle=\frac{1}{|Y|} \int_{Y} A$ weakly.
First naive idea: $A^{\star}=\langle A\rangle$? NO^{1}
For convenient A_{ε} the homogenized coefficient A^{\star} can be evaluated beforehand by solving the corrector problem (we will see now 2 different examples). However, computing the corrector function (and hence A^{\star}) can be expensive and difficult.

[^1]
Homogenization problem: periodic example

$$
\begin{cases}-\operatorname{div}\left(A_{p e r}\left(\frac{x}{\varepsilon}\right) \nabla u_{\varepsilon}\right)=f & \text { in } \Omega \\ u_{\varepsilon}=0, & \text { on } \partial \Omega\end{cases}
$$

where a coefficient $A_{p e r}(y)$ is Y-periodic and satisfies the classical boundedness and coercivity conditions: $\forall \xi \in \mathbb{R}^{n}$ and for two constants $c_{1}>0, c_{2}>0$

$$
A_{p e r}(y) \xi \cdot \xi \geq c_{1}|\xi|^{2}, \quad\left|A_{p e r}(y) \xi\right| \leq c_{2}|\xi| \quad \text { a.e. on } \Omega \text {. }
$$

Corresponding homogenized equation:

$$
\begin{cases}-\operatorname{div}\left(A^{\star} \nabla u^{\star}\right)=f & \text { in } \Omega \\ u^{\star}=0, & \text { on } \partial \Omega\end{cases}
$$

Homogenization problem: periodic example

Periodic checkerboard geometry

Figure 1: Periodic coefficient $A_{p e r}$. Each square is of size $\varepsilon \times \varepsilon$. On the red squares, $A_{p e r}(x)=1$. On the yellow squares, $A_{p e r}(x)=100$.

Homogenization problem: periodic example

Effective coefficient

$$
A^{\star}{ }_{i j}=\int_{Y}\left[\left(A_{p e r}(y) \nabla_{y} w_{i}\right) \cdot e_{j}+A_{p e r i j}(y)\right] d y
$$

where w_{i} is the corrector function that we obtain from the microscopic problem (called the corrector problem in the terminology of homogenization theory):

$$
\begin{cases}-\operatorname{div}_{y}\left(A_{\text {per }}(y)\left(e_{i}+\nabla_{y} w_{i}(y)\right)\right)=0 & \text { in } Y \\ y \rightarrow w_{i}(y), & Y \text {-periodic }\end{cases}
$$

Homogenization: random problem example

$$
\begin{cases}-\operatorname{div}\left(A\left(\frac{x}{\varepsilon}, \omega\right) \nabla u_{\varepsilon}(x, \omega)\right)=f & \text { in } \Omega \\ u_{\varepsilon}(x, \omega)=0, & \text { on } \partial \Omega\end{cases}
$$

where the coefficient A now is random (and as before bounded and coercive).

+ Stationarity: For any $k \in \mathbb{Z}^{d}, A(x, \cdot)$ and $A(x+k, \cdot)$ share the same probability distribution.
+ Ergodic property: space average \simeq average over realizations.
Homogenized problem

$$
\begin{cases}-\operatorname{div}\left(A^{\star} \nabla u^{\star}\right)=f & \text { in } \Omega \\ u^{\star}=0, & \text { on } \partial \Omega\end{cases}
$$

where A^{\star} is the deterministic and constant homogenized coefficient.

Homogenization: random checkerboard

Figure 2: Random coefficient A. Each square is of size $\varepsilon \times \varepsilon$. On the red squares, $a_{j}(x)=1$. On the blue squares, $a_{j}(x)=100$.

$$
\begin{equation*}
A(x, \omega)=\sum_{j \in \mathbb{Z}^{2}} a_{j}(\omega) 1_{j+Q}(x), \tag{1}
\end{equation*}
$$

where $Q=(0,1)^{2}$ is the unit square, and where a_{j} are i.i.d. random variables.

Homogenization: random problem example

Effective coefficient

$$
A^{\star}{ }_{i j}=\mathbb{E}\left(\int_{Q}\left[\left(A(y, \cdot) \nabla_{y} w_{i}(y, \cdot)\right) \cdot e_{j}+A_{i j}(y, \cdot)\right] d y\right),
$$

where for any $p \in \mathbb{R}^{d}$ the corrector function w_{p} is obtained from the microscopic problem:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(A(y, \omega)\left(e_{i}+\nabla w_{i}(y, \omega)\right)\right)=0 \quad \text { a.s. in } \mathbb{R}^{d} \\
\nabla w_{p} \text { is stationary } \\
\mathbb{E}\left(\int_{Q} \nabla w_{p}(y, \cdot) d y\right)
\end{array}\right.
$$

\Rightarrow computing the corrector function (and hence A^{\star}) can be expensive and difficult.

Motivation for an alternative approach

It is possible to determine A^{\star} upon solving a minimization problem of the type

$$
I_{\varepsilon}=\inf _{\bar{A} \text { constant matrix } f \text { of unit norm }}\left\|u\left(A_{\varepsilon}, f\right)-u(\bar{A}, f)\right\|_{L^{2}}
$$

where $u\left(A_{\varepsilon}, f\right)$ and $u(\bar{A}, f)$ respectively denote the solution of the diffusion problem with coefficient matrix A_{ε} and \bar{A}, for the same right-hand side f.

- Le Bris, C.; Legoll F.; Lemaire, S., ESAIM: Control, Optimisation and Calculus of Variations, 24(4), 1345-1380 (2018)
The approach is based upon the theoretical result that as $\varepsilon \rightarrow 0$, the minimum of I_{ε} is achieved at the homogenized matrix A^{\star}. The approach does not require to solve a corrector problem!
A similar idea, based on a minimization problem to capture A^{\star} is described now.

The Arlequin method

We choose a specific minimization problem based on the Arlequin coupling method:

- Cottereau, R., Int. J. Numer. Methods Eng. 95, No. 1, 71-90 (2013)

2 models +3 domains

We have a part of the domain D where only the effective model (\bar{k}) is defined, a part of the domain D_{f} where only the fine model $\left(k_{\varepsilon}\right)$ is defined and a part of the domain D_{C} where both models are defined and over which they are coupled.

Arlequin problem

Consists in considering the following minimization problem:

$$
\inf \left\{\begin{array}{c}
\mathscr{E}\left(\bar{u}, u_{\varepsilon}\right), \quad \bar{u} \in H^{1}\left(D \cup D_{c}\right), \quad \bar{u}(x)=x_{1} \text { on } \Gamma, \tag{2}\\
u_{\varepsilon} \in H^{1}\left(D_{c} \cup D_{f}\right), \quad C\left(\bar{u}-u_{\varepsilon}, \phi\right)=0 \text { for any } \phi \in H^{1}\left(D_{c}\right)
\end{array}\right\}
$$

where the energy \mathscr{E} is the sum of the contributions of each of the three subdomains:

$$
\begin{align*}
& \mathscr{E}(\bar{u}, u)=\frac{1}{2} \int_{D} \bar{k}|\nabla \bar{u}(x)|^{2}+\frac{1}{2} \int_{D_{f}} k_{\varepsilon}(x)\left|\nabla u_{(x)}\right|^{2} \\
&+\frac{1}{2} \int_{D_{c}}\left(\frac{1}{2} \bar{k}|\nabla \bar{u}(x)|^{2}+\frac{1}{2} k_{\varepsilon}(x)\left|\nabla u_{\varepsilon}(x)\right|^{2}\right) . \tag{3}
\end{align*}
$$

Arlequin problem

Find $\bar{u} \in V, u_{\varepsilon} \in W, \psi \in W^{c}$ such that

$$
\left\{\begin{array}{lr}
\bar{A}_{\bar{k}}(\bar{u}, \bar{v})+C(\boldsymbol{\psi}, \bar{v})=0, & \left.\forall \bar{v} \in V\right|_{\bar{v}(\Gamma)=0}, \\
A_{k_{\varepsilon}}\left(u_{\varepsilon}, \boldsymbol{v}_{\varepsilon}\right)-C\left(\boldsymbol{\psi}, \boldsymbol{v}_{\varepsilon}\right)=0, & \forall \boldsymbol{v}_{\varepsilon} \in W, \\
C\left(\boldsymbol{\phi}, u_{\varepsilon}-\bar{u}\right)=0, & \forall \boldsymbol{\phi} \in W^{c} .
\end{array}\right.
$$

with $\left.\bar{u}\right|_{\Gamma}=x_{1}$ and $V=H^{1}\left(D \cup D_{c}\right), W=H^{1}\left(D_{c} \cup D_{f}\right), W^{c}=H^{1}\left(D_{c}\right)$,

$$
\begin{aligned}
& \bar{A}_{\bar{k}}(u, v)=\int_{D} \bar{k} \nabla u \nabla v+\int_{D_{c}} \frac{1}{2} \alpha_{2}(x) \bar{k} \nabla u \nabla v, \\
& A_{k_{\varepsilon}}(\boldsymbol{u}, \boldsymbol{v})=\int_{D_{c}} \frac{1}{2} k_{\varepsilon} \nabla \boldsymbol{u} \nabla \boldsymbol{v}+\int_{D_{f}} k_{\varepsilon} \nabla \boldsymbol{u} \nabla \boldsymbol{v} \\
& C(\boldsymbol{u}, \boldsymbol{v})=\int_{D_{c}} \nabla \boldsymbol{u} \nabla \boldsymbol{v}+\int_{D_{c}} \boldsymbol{u v} .
\end{aligned}
$$

Finite element approximation of the Arlequin problem

Find $\bar{u}^{H} \in V_{H}, u_{\varepsilon}^{h} \in W_{h}$ and $\psi^{H} \in W_{H}^{c}$ such that

$$
\left\{\begin{array}{ll}
\bar{A}_{\bar{k}^{\prime}}\left(\bar{u}^{H}, \bar{v}^{H}\right)+C\left(\psi^{H}, \bar{v}^{H}\right)=0, & \left.\forall \bar{v}^{H} \in V_{H}\right|_{\bar{v}^{H}}(\Gamma)=0^{\prime} \\
A_{k_{\varepsilon}}\left(u_{\varepsilon}^{h}, v_{\varepsilon}^{h}\right)-C\left(\psi^{H}, v_{\varepsilon}^{h}\right)=0, & \forall v_{\varepsilon}^{h} \in W_{h}, \quad(* *) \\
C\left(\phi^{H}, u_{\varepsilon}^{h}-\bar{u}^{H}\right)=0, & \forall \phi^{H} \in W_{H}^{c} .
\end{array},\right.
$$

with $\left.\bar{u}^{H}\right|_{\Gamma}=x_{1}$ and $V_{H}=\mathbb{P}_{H}^{1}\left(D \cup D_{c}\right), W_{h}=\mathbb{P}_{h}^{1}\left(D_{c} \cup D_{f}\right), W_{H}^{c}=\mathbb{P}_{H}^{1}\left(D_{c}\right)$. This corresponds to the following linear system:

$$
\left[\begin{array}{ccc}
\bar{A} & 0 & C_{M} \tag{4}\\
0 & A_{\varepsilon} & -C_{\varepsilon} \\
C_{M}^{T} & -C_{\varepsilon}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\bar{u} \\
u_{\varepsilon} \\
\psi
\end{array}\right]=\left[\begin{array}{c}
f_{M} \\
0 \\
0
\end{array}\right] .
$$

Minimization problem

Key idea

The solution of the coupled Arlequin problem with the homogenized model $\left(k^{\star}\right)$ and the heterogeneous model $\left(k_{\varepsilon}\right) "="$ the solution of the homogenized model (k^{\star}) alone.

Stated otherwise, we consider the minimization problem

$$
\begin{equation*}
I_{\varepsilon, H, h}=\inf \left\{J_{\varepsilon, H, h}(\bar{k}), \quad \bar{k} \in(0, \infty)\right\}, \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
J_{\varepsilon, H, h}(\bar{k})=\int_{D \cup D_{c}}\left|\nabla \bar{u}_{\bar{k}, k_{\varepsilon}}^{H}-\nabla u_{\mathrm{ref}}\right|^{2}=\int_{D \cup D_{c}}\left|\nabla \bar{u}_{\bar{k}, k_{\varepsilon}}^{H}-e_{1}\right|^{2}, \tag{6}
\end{equation*}
$$

where we impose $\bar{u} \frac{H}{k}, k_{\varepsilon}=x_{1}$ at the boundary of the "effective" domain D.

Minimization problem

Key idea

The solution of the coupled Arlequin problem with the homogenized model $\left(k^{\star}\right)$ and the heterogeneous model $\left(k_{\varepsilon}\right) "="$ the solution of the homogenized model (k^{\star}) alone.

Stated otherwise, we consider the minimization problem

$$
\begin{equation*}
I_{\varepsilon, H, h}=\inf \left\{J_{\varepsilon, H, h}(\bar{k}), \quad \bar{k} \in(0, \infty)\right\}, \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
J_{\varepsilon, H, h}(\bar{k})=\int_{D \cup D_{c}}\left|\nabla \bar{u}_{\bar{k}, k_{\varepsilon}}^{H}-\nabla u_{\mathrm{ref}}\right|^{2}=\int_{D \cup D_{c}}\left|\nabla \bar{u}_{\bar{k}, k_{\varepsilon}}^{H}-e_{1}\right|^{2}, \tag{6}
\end{equation*}
$$

where we impose $\bar{u} \frac{H}{k}, k_{\varepsilon}=x_{1}$ at the boundary of the "effective" domain D.

Lemma

If $\bar{k}=k^{\star}$, then the solution to Arlequin system is $\bar{u}(x)=x_{1}$ in $D \cup D_{c}$ and $u_{0}(x)=x_{1}$ in $D_{c} \cup D_{f}$.
Conversely, if $\left(\bar{u}, u_{0}\right)$ is a solution to Arlequin system with $\bar{u}(x)=x_{1}$ in $D \cup D_{C}$, then $u_{0}(x)=x_{1}$ in $D_{c} \cup D_{f}$ and $\bar{k}=k^{\star}$.

Consistency

Assume that we are in $1 \mathrm{D}, \varepsilon=0$ and $\bar{k}=k_{\varepsilon}=k^{\star}$. If $\bar{u}=x_{1}, u_{\varepsilon}=x_{1}$ then the second line of the Arlequin system can be simplified as follows:

$$
\frac{1}{2} \int_{D_{c}} k^{\star}\left(v_{\varepsilon}^{h}\right)^{\prime}+\int_{D_{f}} k^{\star}\left(v_{\varepsilon}^{h}\right)^{\prime}-\int_{D_{c}}\left(\psi^{H}\right)^{\prime}\left(v_{\varepsilon}^{h}\right)^{\prime}-\int_{D_{c}} \psi^{H} v_{\varepsilon}^{h}=0, \quad \forall v_{\varepsilon}^{h} \in W_{h} .
$$

Whence we obtain that ψ^{H} is the solution of the exact lagrange multiplier problem:

$$
\begin{cases}-\Delta \psi+\psi=0, & \text { in } D_{c}, \\ \nabla \psi \cdot n=\frac{1}{2} k^{\star}, & \text { on } \partial D_{c} .\end{cases}
$$

Remedy

Insert exact lagrange multiplier in W_{H}^{C} space $=W_{H}^{\text {enriched }}$.

Consistency

Inserting LM in FEM space improves accuracy at no extra cost.

Variational formulation + minimization problem

Find $\bar{u}^{H} \in V_{H}^{\operatorname{Dir} B C}, u_{\varepsilon}^{h} \in W_{h}$ and $\psi^{H} \in W_{H}^{e n r i c h}$ such that

$$
\begin{cases}\forall \bar{v}^{H} \in V_{H}^{0}, & \bar{A}_{\bar{k}}\left(\bar{u}^{H}, \bar{v}^{H}\right)+C\left(\bar{v}^{H}, \psi^{H}\right)=0 \tag{7}\\ \forall v^{h} \in V_{h}, & A_{k_{\varepsilon}}\left(u_{\varepsilon}^{h}, v^{h}\right)-C\left(v^{h}, \psi^{H}\right)=0 \\ \forall \phi^{H} \in W_{H}^{\text {enrich }}, & C\left(\bar{u}^{H}-u_{\varepsilon}^{h}, \phi^{H}\right)=0\end{cases}
$$

+ the minimization problem

$$
\begin{equation*}
I_{\varepsilon, H, h}=\inf \left\{J_{\varepsilon, H, h}(\bar{k}), \quad \bar{k} \in(0, \infty)\right\} \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
J_{\varepsilon, H, h}(\bar{k})=\int_{D \cup D_{c}}\left|\nabla \bar{u}_{\bar{k}, k_{\varepsilon}}^{H}-\nabla u_{\mathrm{ref}}\right|^{2}=\int_{D \cup D_{c}}\left|\nabla \bar{u}_{\bar{k}, k_{\varepsilon}}^{H}-e_{1}\right|^{2}, \tag{9}
\end{equation*}
$$

here e_{1} is the first canonical vector.

Mathematical analysis

Following properties of the approach:
(i) for a fixed value of ε, there exists an optimized value of \bar{k}, denoted by $k_{\varepsilon}^{\text {opt }}$, where the cost function (3) attains its minimum.
(ii) as $\varepsilon \rightarrow 0$, the optimal value $k_{\varepsilon}^{o p t}$ converges to the homogenized coefficient k^{\star}.

Conclusions

- Detailed numerical and mathematical analysis of the approach
- Various improvements of the algorithm: post treatment to recover corrector function, selection approach for random realizations, good choice of initial guess [see GLL, 2020].
- More difficult matrix case (in progress)

References

- Gorynina, O.; Le Bris, C.; Legoll, F., Some remarks on a coupling method for the practical computation of homogenized coefficients. arXiv preprint2005.09760 (2020).
- Gorynina, O.; Le Bris, C.; Legoll, F., Mathematical analysis of a cou-pling method for the practical computation of homogenized coefficients, in preparation.
- Cottereau, R., Numerical strategy for unbiased homogenization of random materials, Int. J. Numer. Methods Eng. 95, No. 1, 71-90 (2013).
- Le Bris, C.; Legoll F.; Lemaire, S., On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators. ESAIM: Control, Optimisation and Calculus of Variations, 24(4), 1345-1380 (2018).

Partial support from EOARD is gratefully acknowledged

[^0]: $1_{\text {see, }}$ for instance, Anantharaman, A., Costaouec, R., Bris, C. L., Legoll, F., Thomines, F. (2012)

[^1]: $1_{\text {see, }}$ for instance, Anantharaman, A., Costaouec, R., Bris, C. L., Legoll, F., Thomines, F. (2012)

